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Abstract

It is clear that many uninspired and uninteresting math problems are created mainly
to test students� algebraic manipulation skills. In this paper, we shed some lights on
how technological tools can be adopted in a classroom to stimulate students�interests in
discovering mathematics. It has been demonstrated in [9] and [10] that college entrance
exam problems from China sometimes can be daunting to students. However, if tech-
nological tools are adopted for explorations, those problems can become more accessible
to more students. Furthermore, those explorations can inspire some deep and serious
research activities with the help of technological tools. In this paper, we use examples to
rea¢ rm that the �rst step to attract students�interests in a math problem is to interpret
the problem in a more understandable way such as in a real-life setting. Next, we inves-
tigate if further 3D or higher dimension extensions are possible while exploring activities
with technological tools. Consequently, many boring exercises can be made lively and
appealing to broader students again. Moreover, real-life applications in 3D may become
possible from these exploratory activities.

1 Introduction

In this paper, we use technological tools to explore and investigate two challenging problems.
The �rst problem is to �nd the intersecting areas enclosed by a circle and a circle or an ellipse.
The problem could have been boring if it involves only algebraic manipulations. It was made
more interesting by interpreting it as solving a donkey problem [6]. The problem, however,
becomes more algebraic tedious when it is generalized to other scenarios, not to mention if it
is generalized to cases in 3D. We present various methods in handling di¤erent scenarios in
2D, which involves using the regular coordinate systems, the change of basis and the Green�s
theorem. Subsequently, we extend the 2D scenarios to challenging scenarios in 3D. In Section 3,



we present a problem that was originated from college entrance practice problems from China
[9]. To attract students�attentions to explore more challenging tasks with technological tools,
we present the problem by �rst interpret the 2D and 3D problems into real-life settings.
To make our original problems more accessible, interesting and challenging at times, we

typically start with a Dynamic Geometry System (DGS) for construction and exploration, and
next forming conjectures before verifying the solutions analytically with a Computer Algebra
System (CAS). Two problems discussed in 2D in this paper can be extended to respective 3D
scenarios once students have knowledge of multivariable calculus and linear algebra. The author
also suggests some possibilities for further research or studies and invites readers to imagine
more real-life applications on their own. We encourage students and readers to bravely make
conjectures while exploring their activities with their favorite DGS. Only when we can expand
our abilities to visualize objects in 3D, will we have desire to expand our content knowledge in
validating our observations analytically with a CAS.

2 Donkey Problems

Mathematically speaking, our objective is to �nd the intersecting areas enclosed by a circle
and a circle or an ellipse. To make the problem more appealing (see [6]), the problem in 2D is
described as follows: A donkey is tethered with a rope at a grass seeded park that resembles
the shape of a circle: Find the length of the rope so the area that can be eaten by the donkey
is the same as the area of uneaten portion.

2.1 Simple scenario using rectangular coordinates

The �rst case can be explored by middle or high school students using rectangular coordi-
nates. Although middle school students may not know the concept of integration, but they can
approximate necessary areas.

Example 1 A donkey is tethered with a rope of length r at the (0; 0) position at a park that is
about the shape of x2 + (y � 1)2 = 1: Find the length of the rope r so that the area donkey can
reach is the same as the area of uneaten portion.

It is easy to see the graphs of x2+(y�1)2 = 1 and x2+y2 = r2 are symmetric to the y-axis;
we �nd the y-value of these two intersections to be r2

2
: We observe from the Figure 1 and label

proper areas as follows: Area a = BDCB; area c = CEBC; area b = BFCB: With the help



of Maple [3] and assume r > 0:

Figure 1. A donkey
problem and

rectangular coordinates
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We thus use Maple [3] to solve for r so that a + c = b � a or, equivalent, 2a = b � c; which
yields

r = 1:158728473018121517828233509933: (7)

The preceding simple 2D scenario can be easily extended to the following 3D case.

Example 2 Consider two spheres of the form x2 + (y � 1)2 + z2 = 1 and x2 + y2 + z2 = r2:
Find r so that the volume that is bounded in between is the same as the volume that bounded
outside the sphere x2 + y2 + z2 = r2 but inside the sphere of x2 + (y � 1)2 + z2 = 1:



We consider the graph from 2D and use the disk method of rotating a proper curve around
the y axis. First, we write the x values for these two spheres respectively as

x1 =
p
2y � y2; x2 =

p
r2 � y2: (8)

Let
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We need to solve for r such that d + f = e � f or 2f = e � d; we use Maple [3] and obtain
r = 1:9129311827723891011991168:

2.2 Using a slanted line as the new x-axis

Now we consider an alternative way of �nding the area enclosed by curves when the rectangular
coordinate systems may be complex to use. The method mentioned here has been introduced
in [8], which is accessible to those students who may have only knowledge on basic integration
but do not know the concept of line integrals. We consider the following

Theorem 3 Let C be a smooth curve written as w(t) = [x(t); y(t)] (say for example C is the
curve BDA in Figure 2); where t1 � t � t2: Let R be the region bounded by C and by a line
segment (say for example AB in Figure 2, and is of the form y = mx+ b). Then the area of R
is given by

1

1 +m2

Z t2

t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt: (11)

In short, the formula (11) is derived by using AB as the new x�axis and a perpendicular
line to AB as its new y�axis.

Example 4 We are given the shape of the park resembles the ellipse of x
2

16
+ y2

9
= 1: A donkey

is tethered at the point (5; 5): Find the length of the rope so that the area of the eaten by the
donkey that is inside the park is equal to the area of the uneaten portion outside the park.



Figure 2. A donkey problem using
a slanted line

We let A1 be the area of BDAB and A2 be the area of BCAB: In essence, we need to �nd
the radius r so that

A1 + A2 =
�ab

2
; (12)

where a = 4 and b = 3:We write the parametric equations for the circle and the ellipse respec-
tively as follows [xp + r cos s; yp + r sin s] and [a cos t; b sin t]; where s; t 2 [0; 2�]: We proceed
to �nd a proper radius for our needs. In this case, since the point (5; 5) is outside the ellipse,
we can form two circles with the center (5; 5) and radii r1 and r2, respectively with r1 < r2;
so that two respective circles are tangent to the ellipse. We start with a value for the radius r
satisfying the condition r1 < r < r2: We thus start with a test value say r = 7 as a test value
and use the bisection method to check the signs for A1 + A2 � �ab

2
: If A1 + A2 � �ab

2
> 0; then

we reduce r: Otherwise, we increase r: After few trials and errors, we see if we set r = 7:35 and
extract two real intersections between the circle and the ellipse as follows:

s1 = �2:81154928777274; s2 = �1:85760686279737; (13)

t1 = 2:08096790465439; t2 = �:752208960479492;
A = (x1; y1) = (�1:95330793332386; 2:61798220317826) ; (14)

B = (x2; y2) = (2:92072548750653;�2:04976010242157) : (15)

We �nd the slope m of AB and the y-intercept of AB and apply Theorem 3 to obtain A1 +
A2� �ab

2
to be 0:0622432798052: To obtain even higher accuracy for the answer, we may apply

the bisection method from this point on to �nd appropriate r: We already see that a CAS is
needed in this case for computing and a hand-held graphic calculator will be very helpful for
visualizing the directions of parametric curves.

2.3 Applying the Green�s Theorem

Here we introduce the powerful Green�s theorem, which uses the concept of line integrals, to
�nd the area enclosed by curves. We note the conclusion of �nding the area enclosed by curves
is consistent with the Theorem 3 when using the change of basis, which we state as follows:



Theorem 5 Let C be a smooth curve written as w(t) = [x(t); y(t)] (for example, say C is the
curve BDA in Figure 2); where t1 � t � t2: Let R be the region bounded by C and by a line
segment (for example it is AB in Figure 2, and is of the form y = mx + b). If P (x; y) = �y

2
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2
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=
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1 +m2
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t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt:

We apply the Green�s Theorem to �nd the area of enclosed by circle and ellipse when we
have four intersections, which we state in Example 6.

Example 6 We are given the shape of the park that resembles the shape of an ellipse x2+y2

25
= 1:

A donkey is tethered at the point (�1; 0): Find the length of the rope so that the area of the
eaten by the donkey that is inside the park is equal to the area of the uneaten portion outside
the park.

Mathematically, we need to consider the intersections between the circle (x+ 1)2 + y2 =
r2 and the ellipse x2 + y2

25
= 1: We write the circle as [�1 + r cos s; r sin s] and the ellipse

as [cos(t); 5 sin(t)] respectively. After few trials on varying the radius r and use a DGS for
visualization purpose, we �nd that to have a chance for the area of eaten portion is the same as
that of uneaten portion, we need to have four intersections between the circle and the ellipse.
If we choose r =

p
7:6 and use Maple [3] to �nd four intersections (see Figure 3).

Figure 3. A
donkey problem
using the Green�s

Theorem

For the circle, we label the intersections in counter clockwise direction as

s1 = 0:8012307072; s2 = 1:510879382; s3 = �1:510879383



and
s4 = �0:801230708:

On the other hand, we label the intersections for the ellipse, in counter clockwise direction, as

t1 = :4071515203; t2 := 2:558782282; t3 = 3:724403025

and
t4 = �0:407151521:

In view of the Green�s theorem and by setting P (x; y) =
�y
2
and Q(x; y) =

x

2
; we see the

following line integral represents the area that can be eaten by the donkeyZ
C1[C2[C3[C4

P (x; y)dx+Q(x; y)dy; (17)

where C1 is the ellipse from t = t4 to t = t1; C2 is the circle from s = s1 to s = s2; C3 is the
ellipse from t = t2 to t = t3; and C4 is the circle from s = s3 to s = s4: We thus evaluate the
di¤erence between

R
C1[C2[C3[C4 Pdx+Qdy and the area of half of ellipse

�ab
2
, and yieldsZ

C1[C2[C3[C4
P (x; y)dx+Q(x; y)dy � �ab

2
= 0:017988876: (18)

To obtain more accuracy, we may use the bisection method from this point on to �nd the
appropriate radius r: It is clear that Example 6 will become very complicated if one intends
apply the earlier two methods to solve it.

Example 7 Consider the Example 4, we shall apply the Green�s Theorem to verify that our
answer is consistent with the one by using the slanted line. We refer to Figure 2 and consider
the curve C1 to be traveling from B to A while using the ellipse, and we use t1 = �:7522089605
for the point B and t2 = 2:080967905 for the point A: Similarly, we let C2 be the circle traveling
from A to B and we use s2 = 3:47163601917958 for the point A and use s1 = 4:42557844417958
for the point B: Now we considerZ

C1

P (x; y)dx+Q(x; y)dy +

Z
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s2

P (x; y)dx+Q(x; y)dy � �ab
2

= 0:0622432819877;

which is consistent with the answer from Example 4 up to the seventh decimal place.

We remark that we have discussed three methods in solving the donkey problems here:
Namely, the rectangular coordinates, the change of basis and the Green�s Theorem. We have
applied these three methods in solving two and four intersections between a circle and an
ellipse. We encourage readers to adopt these three methods appropriately when there are
three intersections between a circle and an ellipse. In the next subsection, we extend the 2D
scenarios to the corresponding 3D cases and note that we will lose the analogous theorem to the
Green�s Theorem when we want to �nd the intersecting surface areas bounded by two respective
surfaces.



2.4 Description of 3D extensions

The objective here is to �nd the radius of a sphere such that the surface areas of the portions of
the sphere and an ellipsoid that are inside one another are equal. As it turns out, the question
addressed is applicable in more important contexts than the above problem. In fact, the
intersection of two quadrics is a question that has been studied extensively in various contexts
because of its usefulness in computer aided design, solid modeling, and design of mechanical
parts. We limit our attention to the question for ellipsoids and spheres and discuss the case
when using rectangular coordinates is possible, which has been studied in [7]. For completeness
of this paper, we brie�y state the theory. Without loss of generality, we assume the ellipsoid is
�xed and centered at the origin with the equation�x

a

�2
+
�y
b

�2
+
�z
c

�2
= 1 (20)

where a; b; c are �xed positive constants.
We denote by (h; k; l) the �xed center of the sphere and by r the radius of the sphere. The

equation of the sphere is then

(x� h)2 + (y � k)2 + (z � l)2 = r2 (21)

It is clear that we need to compute the surface integrals involvingZ x2

x1

Z �2(x)

�1(x)

q
[fx(x; y)]

2 + [fy(x; y)]
2 + 1 dy dx (22)

where f(x; y) is obtained from Eqs. (20 and 21) respectively. We remark that the surface
integral in Eq. (22) is useful only when rectangular coordinates can be adopted. We see from
the following Example 8 that we have no problem projecting the intersecting curve onto z = l
so we can apply Eq. (22).

Example 8 For our �rst example, we use (a; b; c) = (2; 3; 4), (h; k; l) = (0; 0; 5) and r = 2. In
this simple case the center of the sphere is on the z-axis. The intersection curve is determined
by two real branches y1(x) and y2(x) where

y1(x) =
3

7

�q
�541� 21x2 + 20

p
760 + 35x2

�
:

and y2(x) = �y1(x).

The real domain of y1(x) and y2(x) is approximately (�1:1055; 1:1055). The intersection
curve is below the equator of the sphere and above the equator of the ellipsoid. The curve
intersects neither equator for the quadrics. We refer to [7] to �nd the intersecting curves and
the respective spherical and ellipsoidal surface areas are 5:4 and 5:8. For detailed computational
results, we refer readers to [7]. These surfaces are depicted in Figure 4 and again, it is intuitive
to see from Figure 4 that there is no problem of using rectangular coordinate to compute the



respective surface areas in this case.

Figure 4. Surface areas and
rectangular coordinates

Example 9 For our second example, we use (a; b; c) = (2; 3; 4), (h; k; l) = (1; 2; 3) and r =
2:2574. The surface areas of the portion of the sphere inside the ellipsoid and the portion of the
ellipsoid inside the sphere are each approximately equal to 13:8, see [7].

Again, we refer to [7] for details in �nding the intersecting curve between these two surfaces
and the respective surface areas using rectangular coordinates. The corresponding surfaces are
depicted in Figure 5(a). Figure 5(b) depicts the projection of the curve onto the xy-plane and
the actual three-dimensional curve.

Figure 5(a). Two
surface areas and
an intersecting

curve

Figure 5(b) Two
surface areas and
horizotal planes

In Example 9, we start seeing that by projecting the intersecting curve between two surfaces
onto the rectangular coordinates may not be always ideal. It is natural to ask if we can �nd
an analogous extension of Theorem 3 and �nd the respective surface areas by projecting both
surface areas onto a properly selected plane. We describe the theoretical procedure as
follows: We assume the surfaces described as w (s; t) = f[x (s; t) ; y (s; t) ; z(s; t)] 2 R3 : (s; t) 2
Dg are smooth. Let B1 = fe1; e2; e3g be the standard basis for R3, and B2 = f p1

kp1k ;
p2
kp2k ;

n
knkg

be another orthonormal basis for R3. If
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Therefore, 24p(s; t)q(s; t)
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Keeping in mind that we would like to �nd the surface areas enclosed by the intersecting
curve C between a sphere and an ellipsoid (say in Figure 5(a)). We describe the surface
w(s; t) = [x(s; t); y(s; t); z(s; t)], t1 � t � t2, s1 � s � s2, representing either the sphere or the
ellipsoid, and is bounded by a simple closed curve C:We note that we need to choose a proper
plane P and appropriate basis to guarantee the projection of the intersecting curve onto P still
remains as a simple closed curve if possible. With this in mind, we let P = fd + au + bv :
a; b2 Rg be a plane that does not touch the intersecting curve. Furthermore, we assume P
does not necessarily pass through the origin and has the z-intercept d. In other words, P is
the plane spanned by p1 and p2, passing through d = (0; 0; d3).

Using the same notation as we did previously, we replace w with w�

0@ 0
0
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(by doing this, we are shifting the surface w down vertically by d3). In other words, we have24p(s; t)q(s; t)
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If we set
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Then the surface area bounded by the parametric surface w(s; t) = [x(s; t); y(s; t); z(s; t)],
t1 � t � t2, s1 � s � s2, with respect to a general plane P = fd+ au+ bv : a; b2 Rg is
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����� dsdt: (26)

We remark that we may choose the plane P of x+2y+3z = 0 in Example 9, where the normal
vector n = (1; 2; 3) for P is chosen by connecting the center of the sphere and the origin, see
Figure 6 below. In addition, we pick p1 and p2 to be any two perpendicular vectors on the



plane P so that fp1;p1;ng forms an orthogonal basis.

Figure 6. Two surfaces
and a slanted plane

We now apply Eq.(26) and leave detailed calculations in this case to future studies.
Remarks:

1. We invite those readers, who are familiar with the Stokes and Divergence Theorems, to
investigate further why we do not have an analogous theorem as Theorem 5 to �nd the
surface area bounded by an intersecting curve, such as shown in Figure 6 above, unless
both surfaces are collapsed onto a plane and enclosed by a plane curve.

2. We also invite readers to explore interpreting the 3D extensions as real-life applications.

3 When Should A Slower Runner Start Speeding Up?

There are two long distance runners B and C competing at a track course that whose shape
resembles a circle or an ellipse (circle shown in Figure 7(a)) or an ellipse (Figure 8). The coach
for the runner B sees that runner B is running behind C at a �xed angle from the point A
where the coach sits. At which point do you think the coach for the runner B should signal
runner B to start speeding up so B has a chance to pass C? This question is derived from
a college entrance practice exam in China, which has been discussed in details and we refer
readers to [9] for solving the problems analytically. Instead, we discuss �what if�scenarios when
a Dynamic Geometry System (DGS) is available for students to explore in this section. Indeed,
author did conjecture where the possible solutions could be by �rst exploring with the help of
a DGS before validating the results with a CAS.



3.1 Runners for the circle case

Consider the following Figures 7(a)-(c):

Figure 7(a). Circle and two
runners

Figure 7(b). Longest
distance between two

runners

Figure 7(c). Shortest
distance between two

runners

The observation point A = (a; 0) is located on the horizontal axis of the given circle, which
is centered at O = (0; 0) and of radius a. The angle ]BAC is kept at a �xed angle �0. The
original Chinese university entrance practice is to �nd where the extreme lengths of BC could
be when a = 2 and angle ]BAC = 90�. Using your favorite DGS for construction, we make
the moving points B and C on the circle and observe when the length of BC might reach either
maximum or minimum. We invite readers to further explore the followings:

1. What scenario will make these two runners running at a constant gap in distance?

2. By changing the �xed angle �0 2 [0; �]; can you conjecture when will the distance between
B and C be the longest and the shortest respectively?

After exploring with a DGS, one can easily make educated guesses that the maximum length
occurs when BC is perpendicular to OT and BC is on the opposite side of A (see Figure 7(b)).
Similarly, the minimum length occurs when BC is perpendicular to OT and BC is on the same
site as A (see Figure 7(c)). We refer readers to [9] and see how these observations can be veri�ed
analytically with the CAS Maple [3].



3.2 Runners and the ellipse case

Now we assume two runners are on a track �eld which resembles an ellipse (see Figure 8).

Figure 8. Two runners and an ellipse

Let the coach for the runner B sit at the observation point A = (d; 0) and is inside the given
ellipse of the form x2

a2
+ y2

b2
= 1 with d < a: The runners B and C are on the ellipse such that

the angle �0 = ]BAC is kept as a �xed angle and the runner C is ahead of the runner B (see
Figure 8). We want to know when the coach for the runner B should signal runner B start
speeding up so the runner B has the best chance to catch up on the runner C. Mathematically,
we would like to �nd the minimum of the length BC. For completeness purposes, we discuss
the extreme lengths for BC in this case. As we have done for the circle case, we �rst make
use of GInMA [2] and ClassPad [1] to conjecture where the solutions might be. We draw the
given ellipse and the �xed point A. We place moving point B on the ellipse curve, rotate AB
by a �xed angle �0 around point A, construct ray AC and de�ne the point C as the point of
the intersection of ellipse and ray AC (See Figure 8). We again emphasize that a DGS will
allow us to make challenging problems more accessible to more students. For example, we may
place the point B at any position on the ellipse and record the length of the chord BC. For
example, the green curve in Figure 5 shows the scattered plot when we use the x-coordinates
of the point C as inputs (x) and the lengths of BC as the outputs (y).

Figure 9. Scatter plot and the
extreme length BC

Learners can conjecture where the position of C will correspond to the extreme lengths of BC
by moving the point C. We refer readers to the video clip [4] to see how we use GInMA [2]



and ClassPad [1] for exploring the extreme lengths of BC. Consequently, when the length of
BC is at its minimum, it is the best chance for the runner B to catch up with the runner C if
the runner B starts speeding up. We observe from the computed extreme lengths for BC (see
Figure 9), when a = 2:24; b = 1:15; d = 1 and ]BAC = 30�.

Figure 9. A case for the extreme lengths of BC

Indeed, it follows from Figure 9 and further computed results stated in [9] that we do not see
a pattern how we can achieve the extreme lengths for BC in general for a given a; b; d and
]BAC. However, if a DGS is available for exploration, it is not hard to make the following
observations, which of course need to be veri�ed analytically in future studies.
Discussions. Here we consider the observation point is at A = (d; 0):

1. When d! 0+;]BOC = 90 degree, the largest length BC occurs when BC is when B is
close to the point (0; b) and C is close to the point (�a; 0); see Figure 10 below.

Figure 10. The largest length of BC when
d! 0+;]BOC = 90 degree

2. When d! 0+; BOC is 90 degree, the shortest length BC occurs when the angle bisector



of ]BOC is perpendicular to the minor axis, see Figure 11.

Figure 11. The shortest length of BC when
d! 0+;]BOC = 90 degree

3. For A = (d; 0) with d < a and a �xed angle ]BAC: If we denote the extreme length for
BC as F (d); then F is a continuous function. In other words, the extreme lengths for
BC will not vary too much if we vary d within a speci�ed range.

3.3 Where can we �nd the largest or smallest intersecting surface
area?

With the help of technological tools, we discuss the scenarios when we extend the 2D problems
in the preceding section to corresponding ones in 3D. It is not di¢ cult to visualize and extend
this problem from a circle to a sphere in 3D. We describe how the software GInMA [2] gives
a rich visual intuition to our conjectures. First, we describe the 3D setting mathematically
as follows: Given a sphere of the form x2 + y2 + z2 = r2 and pick the point A = (d; 0; 0),
where d 2 [0; r]. Let B be a point on the sphere and rotate AB with a �xed angle � to form
a cone, see Figure 12(a) or 12(b). We want to �nd, respectively, the maximum and minimum
intersecting surface areas between the cone and the sphere. After exploring with GInMA [2],
which we refer readers to the video clip [5], it is not di¢ cult to conjecture that the maximum
intersecting surface area occurs when the normal vector at B is parallel to the vector OA and
A is on the opposite of B (see Figure 12(a)). The minimum intersecting surface area occurs
when the normal vector at B is parallel to the vector OA but A is on the same side of B (see
Figure 12(b)). We note that the results are consistent with our answers from the corresponding



2D scenarios.

Figure 12(a). Maximum
intersecting surface area

Figure 12(b).
Minimum intersecting

surface area

Real-life application. We may interpret the 3D scenario as following: There is a radar
beam resemble the shape of a cone, which starts at the point A and its beam center points at
a moving point B on the sphere. We want to �nd the point B on the sphere that will result in
achieving the largest or smallest intersecting surface areas between the cone and the sphere.

Figure 13. An ellipsoid and a cone

The problem becomes even more challenging and unsolved as mentioned in [9] if we replace
the sphere by an ellipsoid. For example, given an ellipsoid of the form x2

a2
+ y2

b2
+ z2

c2
= 1; and

let A = (d; 0; 0) with d 2 [0; a] be �xed. Pick B be on the ellipsoid and consider the cone that
is determined by rotating the axis AB with a �xed angle �, see Figure 13. Find the point B
so that the maximum or minimum intersecting surface area between the ellipsoid and the cone
(see Figure 13) can be achieved respectively. Just like ellipse cases, we expect the answers vary
depending on the shape of ellipsoid, the �xed angle � and the position of the point A. The
video clip of this ellipsoid and a cone problem can be seen in the latter part of [5]. Furthermore,
we observe the following
Discussions:

1. As we have seen in section 2.4 that we may apply Eq. (26) to �nd the intersecting surface
area between a cone and an ellipsoid, by using a projection method. In this case, we may
use the vector AB as the normal vector for the plane P and let the plane P pass through
A and note consequently that the intersecting curve between the cone and the ellipsoid
does not intersect the plane P .



2. Although we do not expect to �nd a pattern for �nding a general answer for the ellipsoid
and cone scenario, we leave it to readers to explore and verify if we have analogous
phenomenon to 2D scenarios when A is getting closer to the center of the ellipsoid (0; 0; 0) ;
and the rotating axis AB for the cone is rotating at the angle of 45�. More precisely, we
make the following observations:

(a) When A! (0; 0) and the angle of rotating axis AB is 45 degree, we conjecture that
the resulting minimum intersecting surface area between the cone and the ellipsoid
happens when AB is parallel to OB:We depict these scenarios in Figures 14(a) and
14(b):

Figure 14(a). Special case when A is
close to the center of ellipsoid

Figure 14(a) Di¤erent view
when AB is parallel to OB

(b) When A! (0; 0) and the angle of rotating axis AB is 45 degree, we conjecture that
the resulting maximum intersecting surface area between the cone and the ellipsoid
happens when AB is lying on the xz plane and the angle between BO and the
z � axis is 45 degree. Moreover, we shall get the 2D scenario depicted in Figure 10
if we project the ellipsoid and the cone onto the xz plane.

4 Conclusions

It is known that any form of college examinations is an inevitable policy for many countries
to control who can get into which colleges. Consequently, examiners �nd it necessary to cre-
ate harder and harder problems in their e¤orts to identify top students. Naturally students
are scared away by those algebraic manipulation intensive problems quickly and we are losing
potential students as a result. We all know that teaching to the test can never promote cre-
ative thinking skills, which make educators concerned about the nature of assessment methods
does not reward exploration. And yet it is common sense that innovation and creativity do
not come from drills or rote-type learning, but from exploration. Therefore, we should recog-
nize the importance of implementing a curriculum which involves stimulating the discussion
of mathematics and its applications through timely use of technological tools. Furthermore,
we encourage readers to continue creating innovative examples by adopting technological tools
for teaching and research and to in�uence their colleagues and communities and the decision



makers in their respective countries. Allowing users to drag and view �gures from di¤erent per-
spectives de�nitely assists us before we attempt to set up complex algebraic equations. Through
exploring these two examples mentioned in this paper, readers are challenged to think more
and do more because of evolving technological tools. Those examples in 2D and 3D explored
in this paper indeed can be explored from middle to high schools, university levels, or even
beyond. Only when we can explore and visualize objects in 3D with proper tools, will we have
motivation to expand our content knowledge accordingly. Access to evolving technological tools
has de�nitely motivated us to rethink how mathematics should be presented more interestingly,
and how mathematics can be explored as a cross disciplinary subject.
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