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Abstract 

This paper presents calculus with an innovative approach. Without the help of limit and infinitesimal, 

it directly defines derivative and definite integral on an ordered field, proves the fundamental theorem 

of calculus with no auxiliary conditions. It easily reveals the common properties of derivatives and 

obtains derivative formulas for elementary functions. Further discussion shows that for continuously 

differentiable functions, our new definitions are in accord with the traditional concepts. 

 

1 View Derivative through an Inequality 

Let 𝑢 < 𝑣 be two real numbers. We have 2𝑢 < 𝑢 + 𝑣 < 2𝑣, in other words,  

 

   2𝑢 <
𝑣2−𝑢2

𝑣−𝑢
< 2𝑣,      (1-1) 

 

The above inequality seemingly indicates the function 2x is the derivative of the 

function f(x) = x2. 

 

Does it show a general pattern? 

 

If it does, then the above may have revealed an important fact: one can evaluate 

derivatives without using limit process which had been tried by many mathematicians, 

including Newton and Lagrange, without success. 

 

In China, the high school students are required of finding the derivatives of the 

functions 𝑥3, √𝑥, and 
1

𝑥
. Their derivatives can be similarly obtained as follows: 
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For 𝑓(𝑥) = 𝑥3, we have 
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
=

𝑣2−𝑢2

𝑣−𝑢
= 𝑢2 + 𝑢𝑣 + 𝑣2, which yields, when 0 < u < 

v, 3𝑢2 <
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
< 3𝑣2, indicating that the derivative of 𝑓(𝑥) = 𝑥3 is 3𝑥2. 

 

For 𝑓(𝑥) = √𝑥, we have 
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
=

√𝑣−√𝑢

𝑣−𝑢
=

1

√𝑣+√𝑢
, which yields, when 0 < u < v, 

1

2√𝑣
<

𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
<

1

2√𝑢
, indicating that the derivative of 𝑓(𝑥) = √𝑥 is 

1

2√𝑥
. 

 

For 𝑓(𝑥) =
1

𝑥
, we have 

𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
=

1

𝑣
−

1

𝑢

𝑣−𝑢
= −

1

𝑢𝑣
, which yields, when 0 < u < v, −

1

𝑢
<

𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
< −

1

𝑣2, indicating that the derivative of 𝑓(𝑥) =
1

𝑥
 is −

1

𝑥2. 

 

Newton was not perfectly satisfied with his calculus, wishing to eliminate the vague 

“infinitesimal” from his fluxional calculus. He showed some thoughts about “limit” in 

his Principia. Historians believe that he had spent years to think over how to eliminate 

the vague “infinitesimal” and to perfect his theory without success. 

 

Lagrange endeavored to establish calculus without infinitesimal or limit. He tried to use 

infinite series to overcome the dilemma of infinitesimal and limit. However, the 

convergence of a series cannot be explored without the concept of limit. 

 

It has been an unshakable belief and tradition that calculus cannot be established 

without limit theory.  

 

However, tradition is changeable. Inspired by the above discovery, we are going to 

show how to rigorously establish calculus without limit theory. 

 

2 From Instantaneous Velocity to Difference-Quotient Control Function 

To reveal the general pattern contained in (1-1) — (1-4), we explore the instantaneous 

velocity problem, a classical physical model of differential calculus. 

 

Let 𝑆 = 𝑆(𝑡) denote the location of a moving object at time t along a straight line, and 

𝑉 = 𝑉(𝑡) the instantaneous velocity at the time t. Then, the average velocity of the 

object over a time period [u, v] must be between instantaneous velocities at two 

moments in the time period. That is, there are p and q in [u, v] such that the following 

inequality holds: 

 

   𝑉(𝑝) ≤
𝑆(𝑣)−𝑆(𝑢)

𝑣−𝑢
≤ 𝑉(𝑞). 

 



      
 

The abstraction of the characteristic of instantaneous velocity leads to the concept of 

Difference-Quotient Control Function. 

 

Definition 1 Assume functions F and f  be defined on a set S. If for any two points 

𝑢 < 𝑣 in S, there are p and q in the set [𝑢, 𝑣] ∩ 𝑆 such that 

 

   𝑓(𝑝) ≤
𝐹(𝑣)−𝐹(𝑢)

𝑣−𝑢
≤ 𝑓(𝑞),     (2-1) 

 

then the function f  is called a difference-quotient control function of F on the set S. 

The above inequality is called difference-quotient control inequality. In cases with no 

confusion, difference-quotient control functions are called control functions. 

 

Obviously, the functions F(x) and F(x) + C have same control functions. 

 

Assume f is a control function of F on a set S, and Q an interval contained in S. The 

following are true: 

 

 If 𝑓(𝑥) ≡ 0 in Q, then F(x) is a constant in Q. 

 If 𝑓(𝑥) ≡ 𝐶 in Q, then F(x) is a linear function in Q. 

 If 𝑓(𝑥) > 0 in Q, then F(x) is increasing in Q. 

 If 𝑓(𝑥) < 0 in Q, then F(x) is decreasing in Q. 

 If 𝑓(𝑥) is increasing in Q, then F(x) is convex down in Q. 

 If 𝑓(𝑥) is decreasing in Q, then F(x) is convex up in Q. 

The above properties show that a control function contains plenty of information of the 

function controlled by it.  

 

It is known from (1-1) to (1-4) that the functions 2x, 3𝑥2, 
1

2√𝑥
, and −

1

𝑥2
 are control 

functions of the functions x2, 𝑥3, √𝑥, and 
1

𝑥
. Similarly, we can see that, for positive 

integer n,  𝑔(𝑥) = 𝑛𝑥𝑛−1 is a control function of the function 𝑓(𝑥) = 𝑥𝑛 on the 

intervals (−∞, 0]𝑎𝑛𝑑 [0, ∞); the function cosx is a control function of sinx on the 

intervals [𝑘𝜋, 𝑘𝜋 +
𝜋

2
] and [𝑘𝜋 −  

𝜋

2
 , 𝑘𝜋], see [10] and [12] for the proofs, where the 

control functions are named “B” functions. 

 

How to show that cosx is a control function of sinx on the intervals (−∞, ∞)? We have 

the following theorem: 

 

Proposition 1 Assume 𝑔(𝑥) is a control function of 𝑓(𝑥) on an interval I, as well as 

on an interval J. Then the following hold: 



      
 

 

(1) If an interval K is contained in I or J, then 𝑔(𝑥) is also a control function of 𝑓(𝑥) on 

an interval K. 

(2) If 𝐾 = 𝐼 ∪ 𝐽 and 𝐼 ∩ 𝐽 ≠ 𝜑 then 𝑔(𝑥) is also a control function of 𝑓(𝑥) on an 

interval K. 

Proof The proof of (1) is left for readers. We are now proving (2). 

According to the definition, we need to show if [𝑢, 𝑣] is a subinterval of K, then there 

are points p and q in [u, v] such that  

   𝑓(𝑝) ≤
𝐹(𝑣)−𝐹(𝑢)

𝑣−𝑢
≤ 𝑓(𝑞). 

If [u, v] is a subinterval of I or J, then the result is true from the proof of (1). Otherwise, 

without loss of generality, there is a point a with 𝑎 ∈ 𝐼 ∩ 𝐽, [𝑢, 𝑎]  ⊂ I and [𝑎, 𝑣]  ⊂ J. 

Noting that the difference-quotient 
𝐹(𝑣)−𝐹(𝑢)

𝑣−𝑢
 is between 

𝐹(𝑎)−𝐹(𝑢)

𝑎−𝑢
 and 

𝐹(𝑣)−𝐹(𝑎)

𝑣−𝑎
, and 

there are 𝑝1 and 𝑞1 in [𝑢, 𝑎], 𝑝2 and 𝑞2 in [𝑎, 𝑣], such that the value of  
𝐹(𝑎)−𝐹(𝑢)

𝑎−𝑢
 is 

between 𝑔(𝑝1) and 𝑔(𝑞1), and the value of  
𝐹(𝑣)−𝐹(𝑎)

𝑣−𝑎
 is between 𝑔(𝑝2) and 𝑔(𝑞2), we 

can see that the value of 
𝐹(𝑣)−𝐹(𝑢)

𝑣−𝑢
 is between 𝑔(𝑝) and 𝑔(𝑞), where 𝑔(𝑝) =

𝑀𝑖𝑛{𝑔(𝑝1), 𝑔(𝑞1), 𝑔(𝑝2), 𝑔(𝑞2) } and 𝑔(𝑞) = 𝑀𝑎𝑥{𝑔(𝑝1), 𝑔(𝑞1), 𝑔(𝑝2), 𝑔(𝑞2) }. The 

proof is completed. 

 

Example 1 Show that 𝑔(𝑥) = 3𝑥2 + 2𝑎𝑥 + 𝑏 is a control function of 𝑓(𝑥) =

𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 on the interval (−∞, ∞). 

Proof The difference-quotient of 𝑓(𝑥) on the interval [u, v] is  

        𝐷 =
𝐹(𝑣)−𝐹(𝑢)

𝑣−𝑢
= 𝑣2 + 𝑢𝑣 + 𝑢2 + 𝑎(𝑢 + 𝑣) + 𝑏. 

Its differences from 𝑔(𝑢) and 𝑔(𝑣) are 

  𝐷 − 𝑔(𝑢) = 𝑣2 − 𝑢2 + 𝑢𝑣 − 𝑢2 + 𝑎(𝑣 − 𝑢) = (𝑣 − 𝑢)(𝑣 + 2𝑢 + 𝑎), 

                 𝑔(𝑣) − 𝐷 = 𝑣2 − 𝑢2 + 𝑣2 − 𝑢𝑣 + 𝑎(𝑣 − 𝑢) = (𝑣 − 𝑢)(2𝑣 + 𝑢 + 𝑎). 

If 𝑣 > 𝑢 ≥ −
𝑎

3
, the above two expressions are positive, i.e., 𝑔(𝑢) < 𝐷 < 𝑔(𝑣), 

meaning that 𝑔(𝑥) is a control function of 𝑓(𝑥) on the interval [−
𝑎

3
, ∞). If 𝑢 < 𝑣 ≤

−
𝑎

3
, the above two expressions are negative, i.e., 𝑔(𝑣) < 𝐷 < 𝑔(𝑢), meaning that 𝑔(𝑥) 

is a control function of 𝑓(𝑥) on the interval (−∞, −
𝑎

3
]. Therefore, 𝑔(𝑥) is a control 

function of 𝑓(𝑥) on the interval (−∞, ∞). The proof is completed. 



      
 

We have considered only one ordinary difference-quotient control inequality and apply 

it to a few common functions. But we have been able to use them to easily reveal 

important properties of many functions. These properties are usually taught in the late 

stage of a calculus course. The following are two more examples. 

Example 2  Find an approximation for √10 and estimate the error. 

Using the control function of √𝑥, we have 
1

2√𝑣
<

√𝑣−√𝑢

𝑣−𝑢
<

1

2√𝑢
, yielding 

 
1

2√10
< √10 − √9 <

1

2√9
, i.e., 

1

2√10
−

1

6
< √10 − (3 +

1

6
) < 0. We can choose (3 +

1

6
) as 

an approximation for √10, and its error is smaller than 

 |
1

2√10
−

1

6
| =

√10−3

6√10
=

1

6(3√10+10)
<

1

114
. 

 

Example 3  If an increasing function 𝑔(𝑥) is a control function of  𝑓(𝑥) on an interval I, 

then 𝑓(𝑥) is a convex function on I. 

Proof Let [𝑢, 𝑣]  ⊂ I. Since 𝑔(𝑥) is increasing, we have 

 𝑓 (
𝑢+𝑣

2
) − 𝑓(𝑢) < 𝑔 (

𝑢+𝑣

2
) (

𝑣−𝑢

2
) < 𝑓(𝑣) − 𝑓 (

𝑢+𝑣

2
). 

It implies 𝑓 (
𝑢+𝑣

2
) <

𝑓(𝑣)+𝑓(𝑢)

2
, that is, 𝑓(𝑥) is a convex function on I. 

 

Control functions are amazing. However, they are not necessary derivatives. For 

example, the Dirichlet function 𝑔(𝑥) = {0 𝑥 ∈ 𝑄

1  𝑥 ∈ 𝑅 − 𝑄
 is a control function of the 

function 𝑓(𝑥) = 0.5𝑥, but not its derivative. Therefore, “derivatives” should have more 

features than “control functions” do.  

 

3 Definition of Derivative without Limit 

What conditions should be added to a control function to make it a derivative? We 

should follow the rule of simplicity and naturalism. The purpose of finding velocity is to 

understand the motion process. Actually, velocity and motion process are mutually 

determined. Similarly, the purpose of introducing derivative is to understand the original 

(or the controlled) function. Therefore, derivative and original functions are supposed to 

closely related and mutually determined.  Based on this principle, we define derivatives 

as follows: 

 



      
 

Definition 2  Suppose 𝑓(𝑥) is a control function of 𝐹(𝑥) on an interval Q. If every 

function 𝐺(𝑥) with 𝑓(𝑥) as its control function on Q must take the form 𝐺(𝑥) = 𝐹(𝑥) +

𝐶, where C is a constant, then 𝑓(𝑥) is said to be the derivative of 𝐹(𝑥) on an interval Q. 

In this case, the function 𝐹(𝑥) is said to be differentiable and an original function of 

𝑓(𝑥) on the interval Q. 

 

In other words, the derivative of 𝐹(𝑥) is the control function belonging to only 𝐹(𝑥). 

 

Our definition of derivative is not equivalent to the traditional one and Lax’s one [1]. 

However, for the C1 functions, including all elementary functions, all the three 

definitions are equivalent, except at a few points. With our definition, if a function is 

differentiable on a closed interval [a, b], then its derivative function is bounded on [a, 

b]. This property hold for Lax differentiable functions, but not for the traditionally 

differentiable functions. 

 

What features, which are natural and easy to be operated mathematically, should be 

added to a control function to make it a derivative? We will address this problem in 

section 6. 

4 Integral Systems and Definite Integrals 

We are going to introduce an axiomatic definition of definite integral. Refereeing [6], 

[7], and [9], the readers can see how this idea gradually evolved in the past ten years. 

The essence of this idea is the geometric area properties depicted for curved trapezoids.  

 

Definition 3 Let Q be an interval, 𝑓: 𝑄 → 𝑅, and 𝑆: 𝑄 × 𝑄 → 𝑅. If the following 

properties hold 

 

(i) Additivity:  ∀(𝑢, 𝑣, 𝑤) ∈ 𝑄3, 𝑆(𝑢, 𝑣) + 𝑆(𝑣, 𝑤) = 𝑆(𝑢, 𝑤) 

 

(ii) Intermediate Value Property:  ∀ 𝑢 < 𝑣 in Q, ∃ 𝑝, 𝑞 in [u, v] such that 

                𝑓(𝑝)(𝑣 − 𝑢) ≤ 𝑆(𝑢, 𝑣) ≤ 𝑓(𝑞)(𝑣 − 𝑢), 

then S(u, v) is called an integral system of f(x) on Q. If  f(x) has a unique integral system 

S(u, v) on Q, then f(x) is said to be integrable on Q, and the value of S(u, v) is called the 

definite integral of f(x) on [u, v], denoted 𝑆(𝑢, 𝑣) = ∫ 𝑓(𝑥)𝑑𝑥
𝑣

𝑢
. 

 

The inequality in (ii) is equivalent to  

   𝑓(𝑝) ≤
𝑆(𝑢,𝑣)

𝑣−𝑢
≤ 𝑓(𝑞), 

which shows close relationship between integrals and control functions. 



      
 

 

Lax [1] writes the Riemann integral of f(x) on Q as I (f, Q), emphasizing that an 

integration is an operation, with its input a function plus an interval and its output a 

number. To determine the value of I (f, Q), one needs only two properties: 

(1) The additivity of I (f, Q) with respect to the interval Q:  If Q1 and Q2 are two disjoint 

subintervals of Q, then 𝐼(𝑓, 𝑄1 + 𝑄2) =  𝐼(𝑓, 𝑄1) + 𝐼(𝑓, 𝑄2). 

 

(2) The boundedness of I (f, Q) with respect to f :  If ∀𝑥 ∈ 𝑄   𝑚 ≤ 𝑓(𝑥) ≤ 𝑀, then 

𝑚|𝑄| ≤ 𝐼(𝑓, 𝑄) ≤ 𝑀|𝑄|. 

 

Readers can see the obvious similarity between Lax’s and our ideas, though they are still 

different. Lax first assumes the Riemann integrability, then explore its properties. We use 

these two properties, plus the uniqueness, as axioms to build the theory of integrals. 

Further explorations show that our definition of integrals is equivalent to that of Riemann 

integrals. The interested readers can refer Chapter 17 of [10] for the detailed proof. 

The following proposition shows the relationship between an integral system and a 

control function. Its proof is left for readers. 

Proposition 2 Suppose S(u, v) is an integral system of f(x) on Q. Let 𝑐 ∈ 𝑄, and 

𝐹(𝑥) = 𝑆(𝑐, 𝑥) , then f(x) is a control function of F(x) on Q. Conversely, if f(x) is a 

control function of F(x) on Q, and 𝑆(𝑢, 𝑣) = 𝐹(𝑣) − 𝐹(𝑢), then S(u, v) is an integral 

system of f(x) on Q. 

 

5 The Fundamental Theorem of Calculus 

Proposition 3  (Newton-Leibniz Formula)  If f(x) is the derivative of F(x) on an 

interval Q, then ∀ 𝑢 ∈ 𝑄, ∀ 𝑣 ∈ 𝑄, 

   ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑣) − 𝐹(𝑢)
𝑣

𝑢
  

Vice versa, if  f(x) has a unique integral system 𝑆(𝑢, 𝑣) = ∫ 𝑓(𝑥)𝑑𝑥
𝑣

𝑢
 on Q, for any fixed 

u in Q, the function 𝐹(𝑥) = 𝑆(𝑢, 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑢
 has f(x) as its derivative on Q. 

Proof Assume 𝐹′(𝑥) = 𝑓(𝑥) on Q. Since f(x) is the control function of F(x), we 

have from Proposition 2 that 𝑆(𝑢, 𝑣) = 𝐹(𝑣) − 𝐹(𝑢) is an integral system of f(x) on Q. 

According to the definition of definite integral, we need to show S(u, v) is the  unique 

integral system, i.e., if R(u, v) is also an integral system of f(x) on Q, then 𝑅(𝑢, 𝑣) =

𝑆(𝑢, 𝑣). In fact, let a point 𝑎 ∈ 𝑄 and 𝐺(𝑥) = 𝑅(𝑎, 𝑥), then f(x) is also a control 

function of G(x) on Q. Since f(x) is the derivative of F(x), that is, f(x) is the control 



      
 

function of only functions F(x) + C, where C is a constant, implying 𝐺(𝑥) = 𝐹(𝑥) + 𝐶. 

Therefore, 𝑅(𝑢, 𝑣) = 𝐺(𝑣) − 𝐺(𝑢) = 𝐹(𝑣) − 𝐹(𝑢) = 𝑆(𝑢, 𝑣), i.e., S(u, v) is the unique 

integral system of f(x) on Q. 

Conversely, if  f(x) has a unique integral system 𝑆(𝑢, 𝑣) = ∫ 𝑓(𝑥)𝑑𝑥
𝑣

𝑢
 on Q, then for any 

fixed u in Q, we know from Proposition 2 that the function 𝐹(𝑥) = 𝑆(𝑢, 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑢
 

has f(x) as its control function on Q. It follows from the uniqueness of integral system 

that f(x) is the control function of only functions F(x) + C, where C is a constant, that is, 

𝐹′(𝑥) = 𝑓(𝑥). The proof is completed. 

 

The above fundamental theorem is a little different from its counterpart in traditional 

calculus books. Our theorem does not require any continuity condition for f(x), and it is 

a somewhat “if and only if” biconditional statement. 

 

The property “uniqueness” plays an important role in the concepts of derivative and 

definite integral. However, it is difficult to verify the uniqueness in a general case. In the 

following, we are going to present some conditions which are sufficient for uniqueness 

and easy for being verified. 

 

Proposition 4 If f(x) is a function of bounded variation on an interval Q, and both 

S(u,v) and R(u,v) are integral systems of f(x) on Q, then S(u,v) = R(u,v). 

Proof Let 𝑢 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑣 be points in Q. Since both S(u,v) and R(u,v) 

are integral systems of f(x) on Q, there are 𝑝𝑘 and 𝑞𝑘 in [𝑥𝑘−1, 𝑥𝑘] for 𝑘 = 1, 2, … , 𝑛 

such that 

  |𝑆(𝑢, 𝑣) − 𝑅(𝑢. 𝑣)| ≤ ∑ (𝑥𝑘 − 𝑥𝑘−1)|𝑓(𝑞𝑘) − 𝑓(𝑝𝑘)|𝑛
𝑘=1 .           (5-1)  

And since f(x) is a function of bounded variation on an interval Q, there is a constant M, 

independent of the choices of u, v, 𝑥𝑘, 𝑝𝑘, and 𝑞𝑘, such that 

  ∑ |𝑓(𝑞𝑘) − 𝑓(𝑝𝑘)|𝑛
𝑘=1 < 𝑀            (5-2)  

We are going to prove the proposition by contradiction. Assume that there are u and v in 

Q with |𝑆(𝑢, 𝑣) − 𝑅(𝑢, 𝑣)| = 𝑑 > 0. Choose {xk |k = 1, 2, …, n}  equally dividing [u, v] 

. We have 

  𝑑 ≤ ∑ (𝑥𝑘 − 𝑥𝑘−1)|𝑓(𝑞𝑘) − 𝑓(𝑝𝑘)| <
(𝑣−𝑢)𝑀

𝑛

𝑛
𝑘=1                         (5-3)  

Selecting 𝑛 >
(𝑣−𝑢)𝑀

𝑑
 will lead a contradiction. The proof is completed. 



      
 

Since a piecewise monotonic function is of bounded variation, the following are 

immediate corollaries. 

Corollary 1 If f(x) is piecewise monotonic on an interval Q, and both S(u,v) and 

R(u,v) are integral systems of f(x) on Q, then S(u,v) = R(u,v). 

Corollary 2 If f(x) is a control function of F(x) on an interval Q, and it is 

piecewise monotonic, then 𝐹′(𝑥) = 𝑓(𝑥). 

Therefore, we can conclude (√𝑥)
′

=
1

2√𝑥
, (𝑠𝑖𝑛𝑥)′ = 𝑐𝑜𝑠𝑥, and (𝑥𝑛)′ = 𝑛𝑥𝑛−1 for any 

positive integer n. 

The following example shows our concept is not exactly same to the traditional 

derivative. 

Example 4  Let 𝑓(𝑥) = 𝑠𝑔𝑛(𝑥) and 𝑆(𝑢, 𝑣) = |𝑣| − |𝑢|, then 𝑆(𝑢, 𝑣) is 

the unique integral system of 𝑓(𝑥) on any interval Q. 

This example shows |𝑥|′ = 𝑠𝑔𝑛(𝑥) on (−∞, ∞), while it is not the case for the 

traditional definition of derivative. 

 

  



      
 

6 L-Derivative of a Function 

Since piecewise monotonic functions have unique integral systems, the piecewise 

monotonic control functions must be derivatives. However the class of piecewise 

monotonic functions is not closed under fundamental operations. Lipschitz functions are 

of bounded variations on any finite interval, they are closed under fundamental 

operations, and they are general enough to meet the needs of calculus and its 

applications. 

 

Definition 4 Let 𝑓(𝑥) be a function defined on a closed interval [a, b]. If there is a 

positive number M such that for any points u and v in [a, b], the following inequality 

holds 

 

   |𝑓(𝑢) − 𝑓(𝑣)| ≤ 𝑀|𝑢 − 𝑣|  

 

Then 𝑓(𝑥) is called a Lipschitz function on [a, b], or a bounded difference-quotient 

function on [a, b]. The number M is called a Lipschitz constant of 𝑓(𝑥) on [a, b]. 

 

Obviously, Lipschitz functions are of bounded variations on any finite interval, and they 

are closed under fundamental operations addition, subtraction, multiplication, division, 

and composition. The following is an immediate consequence of Proposition 4. 

 

Corollary 3 If a Lipschitz function 𝑓(𝑥) is a control function of both functions 

F(x) and G(x) on [a, b], then F(x) - G(x) is a constant on [a, b], that is, 𝑓(𝑥) is the 

derivative of  F(x) on [a, b]. In this case, F(x) is often said to be L-differentiable, and  

𝑓(𝑥) is often called the L-derivative of F(x) on [a, b]. 

 

Proposition 5 If 𝑔(𝑥) is the L-derivative of 𝑓(𝑥) on [a, b], M is a Lipschitz constant 

of 𝑔(𝑥) on [a, b], then for any [𝑢, 𝑣] ⊂ [𝑎, 𝑏] and 𝑠 ∈ [𝑢, 𝑣], the following inequality 

holds 

 

   |
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
− 𝑔(𝑠)| ≤ 𝑀|𝑣 − 𝑢|,     (6-1) 

 

And equivalently, 

 

                             |𝑓(𝑣) − 𝑓(𝑢) − 𝑔(𝑠)(𝑣 − 𝑢)| ≤ 𝑀(𝑣 − 𝑢)2   (6-2) 

 

Proof      From the difference-quotient control inequality (2-1), there are points p and q 

in [𝑢, 𝑣] such that 

 𝑔(𝑝) ≤
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
≤ 𝑔(𝑞). 



      
 

 

   We have 

  −𝑀|𝑣 − 𝑢| ≤ 𝑔(𝑝) − 𝑔(𝑠) ≤
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
− 𝑔(𝑠) ≤ 𝑔(𝑞) − 𝑔(𝑠) ≤ 𝑀|𝑣 − 𝑢|, 

 yielding (6-1) and (6-2). The proof is completed. 

  

We call the inequalities (6-1) and (6-2) as Linqun inequalities, because Lin used them to 

define derivatives, see [3], [5], [8].  

 

Proposition 6  If 𝑔(𝑥) and 𝑓(𝑥) are functions defined on [a, b] and for any two 

distinct points u and v in [a, b],  

   |
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
− 𝑔(𝑢)| ≤ 𝑀|𝑣 − 𝑢|,  

then, 𝑔(𝑥) is a Lipschitz function and a control function of 𝑓(𝑥) on [a, b]. 

 

Proof We first show that 𝑔(𝑥) is a Lipschitz function. Let ℎ = 𝑣 − 𝑢, we have from the 

given Linqu inequality that  

    −𝑀ℎ2 ≤ 𝑓(𝑣) − 𝑓(𝑢) − 𝑔(𝑢)ℎ ≤ 𝑀ℎ2  

and 

   −𝑀ℎ2 ≤ 𝑓(𝑢) − 𝑓(𝑣) + 𝑔(𝑣)ℎ ≤ 𝑀ℎ2  

Thus, 

   −2𝑀ℎ2 ≤ (𝑔(𝑣) − 𝑔(𝑢))ℎ ≤ 2𝑀ℎ2  

implying 

   |𝑔(𝑣) − 𝑔(𝑢)| ≤ 2𝑀|𝑣 − 𝑢|,  

 

which means 𝑔(𝑥) is a Lipschitz function on [a, b]. 

 

We are now going to prove that 𝑔(𝑥) is a control function of 𝑓(𝑥) on [a, b], that is, for 

any [𝑢, 𝑣] ⊂ [𝑎, 𝑏], there are two points p and q in [𝑢, 𝑣] such that  

 

𝑔(𝑝) ≤
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
≤ 𝑔(𝑞). 

 

We first show ∃𝑝 ∈ [𝑢, 𝑣] such that 𝑔(𝑝) ≤
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
. It is obviously true if for all 𝑥 ∈

(𝑢, 𝑣] the difference-quotient 
𝑓(𝑥)−𝑓(𝑢)

𝑥−𝑢
 is a constant. If they are not always a constant, 

then there is [𝑟, 𝑠] ⊂ [𝑢, 𝑣] with 



      
 

 

   
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
−

𝑓(𝑠)−𝑓(𝑟)

𝑠−𝑟
= 𝑑 > 0.  

 

Divide the interval into n equal subintervals with ℎ =
𝑠−𝑟

𝑛
. There must be at least one 

subinterval, say [p, p+h], such that 
𝑓(𝑝+ℎ)−𝑓(𝑝)

ℎ
≤

𝑓(𝑠)−𝑓(𝑟)

𝑠−𝑟
.  Choose n making 

 𝑀ℎ =
𝑀(𝑠−𝑟)

𝑛
< 𝑑, and we have 

 

                         𝑔(𝑝) ≤
𝑓(𝑝+ℎ)−𝑓(𝑝)

ℎ
+ 𝑀ℎ <

𝑓(𝑠)−𝑓(𝑟)

𝑠−𝑟
+ 𝑑 =

𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
. 

 

Similarly, it can be shown that ∃𝑞 ∈ [𝑢, 𝑣] such that (𝑞) ≥
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
 . The proof is 

completed. 

 

Therefore, we have reached an important result: the function 𝑔(𝑥) is a Lipschitz control 

function of f(x) on [a, b] if and only if there is a number M > 0, for any two distinct 

points u and v in [a, b],  

   |
𝑓(𝑣)−𝑓(𝑢)

𝑣−𝑢
− 𝑔(𝑢)| ≤ 𝑀|𝑣 − 𝑢|. 

The uniqueness of L-derivative and its operation rules can be obtained from the above 

sufficient-necessary condition. For the detailed proofs, please refer [10] and [12]. 

7 Concluding Remarks 

Due to the limitation of the space, we could not address all important topics in calculus. 

The interested readers are strongly encouraged to refer [10], [12], [7], [9], [3], [5], and 

[8]. 

 

The information we want to convey is that limit theory is not a necessary prerequisite 

for learning calculus and that high school students with knowledge of function can 

understand majority of calculus topics. 

 

Calculus is mathematics of motion, and functions are mathematical model of motions. 

Therefore, our approach of teaching calculus will help students to clearly see the 

relationship between calculus concepts and physical worlds, will help students to learn 

faster, easier, and more effectively, and will help students to quickly grasp the most 

important techniques of calculus, and apply calculus to solve a lot mathematics and real 

life problems. 

 

Of course, we do not mean that students should never study elegant limit theory. In fact, 

having been familiar with certain calculus knowledge, students may learn limit theory 



      
 

much better and much deep. We hope our alternate approach will stimulate mathematics 

professors’ creative thinking, thinking over the possibility of rebuilding calculus 

structure to enhance our students’ learning quality. 
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