
Teaching Mathematical Modelling
in a Technology-Enabled Environment

Keng-Cheng Ang

kengcheng.ang@nie.edu.sg

National Institute of Education
Nanyang Technological University

1, Nanyang Walk, Singapore 637616

Abstract:
This paper examines the use of computer simulation as a modelling approach in the teaching of
mathematical modelling. In a technology-enabled environment, teachers can design modelling
activities based on simulation models that are both suitable and accessible to their learners. We
describe how an electronic spreadsheet equipped with coding and programming capabilities is
used to investigate problems through suitable simulation models. Three examples of modelling
activities will be discussed. Details of the problem situation, problem solution and construction of
simulation models will be described in each case. Through these examples of tried and tested
modelling activities, we demonstrate the underlying principles in designing simulation models
appropriate for use in teaching mathematical modelling. In concluding the paper, we will briefly
discuss the support that teachers need in designing, developing and delivering mathematical
modelling lessons involving computer simulations.

Introduction
Mathematical modelling begins with a problem in real life and is, by nature, often an inter- and
cross-disciplinary activity. As a classroom activity, mathematical modelling often requires both the
learner and the teacher to draw on their knowledge outside of mathematics, and as such, it can be
challenging, especially when the context is not a familiar one. It is therefore understandable that
some learners and teachers find mathematical modelling demanding [9]. In addition, the rather
unpredictable and sometimes unexpected outcome of mathematical modelling tasks in the
classroom can be daunting and may discourage teachers from carrying out modelling activities [3].
It is no wonder that despite recognising the importance and relevance of mathematical modelling,
some teachers remain uncertain and unconvinced about teaching it.

Nonetheless, in a technology-enabled environment, it is possible to find ways to bridge these
cognitive gaps experienced by both learners and teachers. Some of the ways to address cognitive
challenges using technology while performing mathematical modelling tasks have been examined
by various researchers (for example, see [1], [2] and [6]). The proper, timely and appropriate use of
a suitable technological tool can often alleviate some of the issues related to cognitive demands.
However, a requisite before doing so would necessarily be the acquisition, and perhaps mastery, of
the related technological skills and competencies.

In this paper, we describe how an electronic spreadsheet, equipped with built-in coding or
programming capabilities may be used to construct mathematical models using the approach of
simulation modelling.

Simulation Modelling
While there are several approaches to mathematical modelling, such as deterministic approach,
empirical modelling and so on, modelling using simulation often requires the need for technology.
In fact, computer simulation has been used as a form of mathematical model in many practical
applications and as a teaching tool in a mathematics classroom. In many real world situations, the
problem that one wishes to investigate cannot be analysed easily for a deterministic modelling
approach to be used. At times, relevant data are not readily available or cannot be obtained easily.
In such situations, simulation models can provide a way to study or investigate these problems.

Typically, one would use computer simulations to model a phenomenon or situation when it is
either impossible or impractical to construct real physical experiments to model or study it. In such
situations, a simulation model would be a useful and inexpensive means of studying the problem.

In simulation modelling, a computer program or some technological tool to generate a scenario
based on a set of rules is often used. The rules that control the model or dictate the scenario usually
arise from an interpretation of how a certain process or a phenomenon is supposed to evolve or
progress. Based on these rules, a computer program can then be written, and executed, and the
outcomes of the interactions of the variables or components in the model are generated.

It is quite clear that in order to perform a simulation, we need a technological or computing tool
because calculations of values of variables in the model are performed iteratively, rapidly and even
continuously throughout the simulation process. While there are many possible tools and
computing languages or platforms available, in terms of teaching in the school, one has to consider
how accessible these tools are to the learner or even the teacher. For this reason, in the current
discussion, the tool that is used is Microsoft Excel. Though some may argue that it may not be the
best tool, Excel does provide the convenience of a spreadsheet and graphing features, and
programming capabilities through its Visual Basic Applications (VBA).

Random Numbers
The construction of a simulation model often requires the need to make decisions based on certain
outcomes. These outcomes can sometimes depend on variables of the model taking certain specific
values. As a simple example, we could simulate a person walking along a straight line with the rule
that he takes a step forward if he tosses a coin and gets a “Head”, but a step backward otherwise. In
order to simulate this, we therefore need to be able to simulate the tossing of a (fair) coin. This can
be done on the computer by using random numbers.

For the purpose of this paper, we define a random number as one selected purely by chance from
some distribution. For instance, suppose the integers in the interval [1, 10] are uniformly
distributed. Then, if we are to randomly pick an integer from this interval, then every one of the ten
integers would have an equal chance of being picked. The concept of randomness lies in the fact
that we cannot quite predict which one of the integer will be picked, and thus refer to it as a
random(ly chosen) number.

Many computers and computing tools are equipped with a “random number generator”. A random
number generator runs a procedure that gives a user a “random number”. Excel has a built-in
random number function, rand(), which returns a random number between 0 and 1. To use it,
one simply enters the function as a formula in a cell (for example, in Cell A1) as shown in the
screenshot in Figure 1 below.

Figure 1: Formula for generating a random number in Excel

Once the formula is entered and the RETURN key is hit, a number between 0 and 1 is randomly
chosen and placed in Cell A1. Pressing the function key F9 produces a new random number. One
may assume that every number in the interval (0, 1) that is representable by the computer has an
equal chance of being selected. Another useful Excel function is the randbetween(m,n) function,
which returns a random integer in the interval [𝑚𝑚,𝑛𝑛]. Here, the arguments 𝑚𝑚 and 𝑛𝑛 need not be
integers; however, the condition 𝑚𝑚 ≤ 𝑛𝑛 must hold for the function to work.

Similarly, one may also generate random numbers using the Excel’s VBA function, Rnd. Like
rand(), the VBA function Rnd returns a number randomly chosen from the interval (0, 1) .
However, unlike rand(), the function Rnd in VBA can have either no argument, or one argument.
Moreover, in Excel VBA, there is a related function, Randomize, which serves to initialize the
random-number generator.

The two sets of VBA code shown below are linked to “button” controls in an Excel worksheet.
Both generate a sequence of 10 numbers ranging from 1 to 6, used to simulate the roll of a fair dice.
The use of the Randomize function with an argument creates a fixed sequence. The rest of the
code is self-explanatory.

Using this button, each time the file is opened,
and the button clicked, the 10 dice rolls will
produce the sequence,

5, 1, 4, 6, 1, 1, 5, 2, 1 and 5

Using this button, a sequence of 10 dice rolls
are obtained but there is no (obvious) pattern
in the sequence in each run.

Sub Button1_Click()
Dim i As Integer
 Randomize (1)
 For i = 1 To 10
 Cells(1,i)=Int((6*Rnd)+1)
 Next i
End Sub

Sub Button2_Click()
Dim i As Integer
 Randomize
 For i = 1 To 10
 Cells(2,i) = Int((6*Rnd)+1)
 Next i
End Sub

Examples
In this section, we illustrate the use of simulation models in investigating certain problems. Three
examples will be discussed, and all simulations are implemented on the Excel spreadsheet.

Example 1: Chaos Game
Consider a game called the “chaos game”. In this “game”, a triangle is first drawn and the vertices
are labelled A, B and C. A starting point 𝑃𝑃0 is drawn somewhere inside this triangle. Imagine that
we now have a “three-sided dice”1 which, when rolled, will give only three possible outcomes (“1”,
“2” or “3”) with equal probability. The rules for the next course of action, based on each of the
possible outcomes, are as follows.

• If the dice shows a “1”: find the midpoint between 𝑃𝑃0 and vertex A;
• If the dice shows a “2”: find the midpoint between 𝑃𝑃0 and vertex B;
• If the dice shows a “3”: find the midpoint between 𝑃𝑃0 and vertex C;

Let this midpoint be 𝑃𝑃1.

The process is repeated for 𝑃𝑃1 to get the next point, 𝑃𝑃2, and so on. The figure shows the results of a
simulation of the chaos game set up using a spreadsheet after 8 rolls of the dice. After a large
number of repetitions of the same process, what happens?

The following results are obtained after about
8 simulated tosses of the dice

𝑥𝑥 𝑦𝑦 dice
1.00000 1.00000 2
1.50000 0.50000 2
1.75000 0.25000 1
0.87500 0.12500 3
0.93750 1.06250 3
0.96875 1.53125 3
0.98438 1.76563 1
0.49219 0.88281 2
1.24609 0.44141 2

Figure 2: Table and graph of points generated after 8 rolls of the dice

To set up the simulation on Excel, we use Columns A and B on the worksheet to store the values of
the coordinates (𝑥𝑥, 𝑦𝑦) of points 𝑃𝑃0 , 𝑃𝑃1 , 𝑃𝑃2 , …, and Column C to store the outcomes of the
simulated rolls of a “three-sided dice”. The randbetween(1,3) function is used to simulate the
rolls of this dice. Subsequent values of the coordinates of the points generated are calculated using
Excel’s IF statement or formula.

1 This could also be a spinner with three equally likely outcome.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

A B

C

P0

P1

P2
P3

P4

P5
P6

P7

P8

For a case where the vertices of the triangle are (0, 0), (0, 2) and (1, 2), the formulae to be entered
in the respective cells are shown in Figure 3 below.

Figure 3: Setting up the Excel worksheet to simulate the Chaos Game

Once the formulae are all entered into the cells (that is, Cells A3, B3 and C2) as shown above, they
may be copied down their respective columns (for instance, copy Cell A3 down to Cells A4, A5,
…) till the desired number of points to be generated is reached. Pressing function key F9 will
generate a new set of points. With a large number of points, a pattern will emerge from this
seemingly chaotic and unpredictable process (for details, see [4]).

Although this example does not involve any real life problem, it serves to illustrate the use of
simulation as a means of problem solving. In this case, without a simulation, it would have been
impossible to predict the outcome of the process this “chaos game”, or even imagine that a pattern
can arise from such a process.

Example 2: Secretary Problem
Suppose a company would like to hire a secretary, with the following conditions and assumptions.

• There are 𝒏𝒏 candidates, and they are ranked, from best to worst without ties.
• The candidates are interviewed sequentially in a random order, and each order is equally likely.
• Immediately after an interview, the interviewed candidate is either accepted or rejected.
• The decision to accept or reject a candidate can be based only on the relative ranks of

candidates interviewed so far.
• Rejected candidates cannot be recalled.
The task here is to propose a strategy which will maximise the probability of choosing the best
secretary from the set of 𝑛𝑛 candidates. Clearly, it would not be wise to simply offer the job to the
first candidate we interview. On the other hand, if we wait until the last candidate is interviewed,
we may miss out on earlier better candidates, and be forced to accept this last candidate.

A possibly more reasonable strategy is to reject a certain number, for example 𝑘𝑘 − 1 of the
candidates (where 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛), and then choose the first candidate that is better than all the previous
candidates. If no such candidate exists, then we accept the last candidate (implying that we have
failed). This is illustrated in Figure 4 below.

 A B C
1 𝑥𝑥 𝑦𝑦 dice
2 1.0000 1.0000
3
4
5

Key in coordinates of
starting Point 𝑃𝑃0

=randbetween(1,3)

=IF(C2=1,A2/2,(IF(C2=2,(A2+2)/2,IF(C2=3,(A2+1)/2))))

=IF(C2=1,B2/2,(IF(C2=2,B2/2,IF(C2=3,(B2+2)/2))))

Figure 4: An illustration of a strategy to choose the best secretary

If 𝑘𝑘 = 1 , we choose the first candidate; if 𝑘𝑘 = 𝑛𝑛 , we select the last candidate. Otherwise, the
selected candidate is randomly distributed on {𝑘𝑘,𝑘𝑘 + 1, … ,𝑛𝑛}. We will refer to this strategy as
strategy 𝑘𝑘, and the probability of success 𝑝𝑝𝑛𝑛(𝑘𝑘) of using strategy 𝑘𝑘 with 𝑛𝑛 candidates for small 𝑛𝑛
can be computed.

It can be shown that it is optimal to wait until
1
𝑒𝑒

 (about 37%) of the applicants have been
interviewed (for large 𝑛𝑛) and then select the first candidate that is better than all of the previous
candidates (for details, see [5]). If no such candidate exists, then the last candidate is chosen. The
probability of finding the best secretary is also about 0.37.

An Excel worksheet can be set up to simulate the process of employing this strategy and to work
out the experimental probability of success. As an example, let 𝑛𝑛 = 10 and assume we reject the
first, say, three candidates. In the first part of the simulation, we set up the candidates by randomly
assigning values to each of the 10 candidates. In order to reduce the chance of having ties, the
values assigned are randomly chosen integers from the interval [1, 10000]. Figure 5 below shows
how this part can be set up.

Figure 5: Setting up the Secretary Problem simulation

In the example shown, in Row 5, Cells B5 to K5 store the values of the candidates obtained
randomly through the use of the formula randbetween(1,10000) in the first trial of our
simulation. The maximum value of these values is found using the formula max(B5:K5), and
stored in Cell L5. This represents the value of the best candidate in this instance. These formulae
can be copied down the respective columns up to the number of simulation trials desired.

Reject first 𝑘𝑘 − 1
Choose the first candidate who
is better than the rest so far

𝑘𝑘

𝑘𝑘 − 1 1 𝑛𝑛
Candidate Candidate Candidate Candidate

A B C D E F G H I J K L

1

2
3
4
5

7
8
9

6

=randbetween(1,10000)

=max(B5:K5)

Next, we set up a corresponding table to find the best candidate after rejecting the first, say, three
candidates. This is illustrated in Figure 6 below.

Figure 6: Implementing simulated runs of the strategy for solving the Secretary Problem

In the worksheet shown in Figure 6, the entire Column M indicates that Candidate 3 and those
before are rejected. The rows are assigned formulae in the following manner.

Cell N5 contains the formula, “=IF(MAX(M5:M5)=0,IF(E5>=MAX(B5:D5),E5,0),0)”, which
means that if the value of Candidate 4 (in Cell E5) is higher than the maximum value of the
previous 3 candidates, then the value is placed in Cell E5; otherwise, the value 0 is entered. This
would mean that Candidate 4 is chosen. As another example, for Candidate 9 (whose value is
stored in Cell J5), we enter formula “=IF(MAX(M5:R5)=0,IF(J5>=MAX(B5:I5),J5,0),0)”. This
means that all the candidates before Candidate 9 are not chosen, and if the value of Candidate 9 is
larger than the highest value of the previous 8 candidates, then the value is placed in Cell S5;
otherwise enter 0.

In Column U, from Row 5 onwards, for each row, we check if the maximum of the values stored in
Columns N to T is the same as the maximum for that simulated run. If so, a value “1” is entered
and if not, “0” is entered. We can then count the number of “1”, which will be the number of times
the best candidate was successfully picked. We store this value in Cell U2, as shown.

Figure 7 depicts part of a worksheet with 1000 simulated runs.

Figure 7: Sample worksheet with 377 counts of success in 1000 trials

… L M N O P Q R S T U
1
2
3
4
5

7
6

…
 …

 …
 …
 …

…

…

…

=IF(MAX(M5:M5)=0,IF(E5>=MAX(B5:D5),E5,0),0)
 =IF(MAX(N5:T5)=L5,1,0)

=IF(MAX(M5:R5)=0,IF(J5>=MAX(B5:I5),J5,0),0)
 =COUNTIF((U5:U1004),1)

Example 3: Modelling Swarm Behaviour (Particle Swarm Optimisation)
In an attempt to construct a model to simulate the behaviour of bird flocking or fish schooling,
James Kennedy and Russell Eberhart developed an optimisation technique called Particle Swarm
Optimisation or PSO in short [8]. PSO is similar to other computational techniqus such as Genetic
Algorithm (GA), and models behaviour of swarms of “particles” flying through the space of
potential solutions in search of some optimal solution.

The concept of the swarm behaviour can be explained as follows. We imagine a flock of birds
flying over a certain area looking for food. We assume, quite reasonably, that the one closest to the
food source, in its excitement, would chirp the loudest and in doing so, would attract the other
birds’ attention. The other birds would then tend to move towards the direction where they hear the
loudest chirp, and would in turn chirp louder as they get nearer (or think they get near) the food
source. This pattern of movement iterates and continues until the food source is reached.

To simulate this behaviour, each bird is assumed to be a “particle” with the following attributes.

• a position (in the form of coordinates) in the problem space
• a velocity (as a vector)
• a personal best value, “pbest” (e.g. in terms of distance to the global best value)

In addition, globally, variables are set up to keep track of the following.

• a target value
• global best value, “gbest” (i.e. best values of personal best values of all particles)
• iteration count and condition to halt iterations

Therefore, each particle 𝑖𝑖 has a position at time 𝑡𝑡 denoted by 𝑥𝑥𝑖𝑖(𝑡𝑡), and a velocity denoted by 𝑣𝑣𝑖𝑖(𝑡𝑡).
Each particle 𝑖𝑖 would also have its own “personal best value” denoted by 𝑝𝑝𝑖𝑖(𝑡𝑡), and the entire
swarm has a global best value denoted by 𝑔𝑔(𝑡𝑡). We note except for 𝑡𝑡, all the variables are vector
quantities. For computational purpose, we shall assume discrete time steps, and therefore, the next
position of particle 𝑖𝑖 is denoted by 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1). In PSO, 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) is obtained by taking into account
the current velocity of the particle (inertia component), the personal best value (cognitive
component) and the global best value (social component). The diagram in Figure 8 illustrates how
𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) is obtained.

Figure 8: Diagram illustrating how 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) is obtained.

In other words, the position of particle 𝑖𝑖 at the (𝑡𝑡 + 1) time step is computed by adding to the
position vector 𝑥𝑥𝑖𝑖(𝑡𝑡) a velocity vector 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1), which in turn is obtained by a weighted sum of

𝑥𝑥𝑖𝑖(𝑡𝑡)

𝑝𝑝𝑖𝑖(𝑡𝑡)

𝑣𝑣𝑖𝑖(𝑡𝑡)
𝑔𝑔(𝑡𝑡) 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)

𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)

𝑔𝑔(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)

the vectors 𝑣𝑣𝑖𝑖(𝑡𝑡) , 𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡) and 𝑔𝑔(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡). For simplicity, as a model for PSO, for each
particle 𝑖𝑖, following equations govern its position over the problem space.

𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝑎𝑎𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑏𝑏�𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)� + 𝑐𝑐�𝑔𝑔(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)� … (1)

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) … (2)
The PSO algorithm can be summarised as a flowchart shown in Figure 9 below.

Figure 9: Flowchart showing the PSO algorithm

To illustrate this, consider the problem of locating the minimum (or maximum) of a single-variate
function, such as 𝑓𝑓(𝑥𝑥) = 0.1𝑥𝑥2 − 0.5𝑥𝑥 + 2. In this case, the minimum occurs at 𝑥𝑥 = 2.5, which is
the target position, and the target value is 𝑓𝑓(2.5) = 1.375.
We set up an Excel spreadsheet as shown in Figure 10 below.

Figure 10: Worksheet for implementing PSO on Excel

Start

End

Set all
parameter

values

Initialise all
particle

positions

Compute pbest for
all particles

Compute gbest

Update velocity
for all particles

Update position of
all particles

Display value and
position of gbest

Stopping
condition
reached?

Yes

No

This is a simple example where the problem space is the set, {𝑥𝑥: 𝑥𝑥 ∈ ℝ}. Geometrically, this means
the swarm of particles could search along 𝑥𝑥-axis for the minimum value of 𝑓𝑓(𝑥𝑥). In this case, we
consider a swarm of 10 particles, and the values of the parameters 𝑎𝑎 , 𝑏𝑏 and 𝑐𝑐 are arbitrarily
assigned and stored in Cells B3, B4 and B5 as shown. The value of the global best and its position
at each time step are stored in Cells B12 and B13 respectively. The current and next positions of
each particle are stored in Columns C and D, and their function values in Columns F and G
respectively. For each particle, we calculate the velocity and record the value in Column E, and
work out its personal best position and value, and store these in Columns H and I, as shown.

In this set-up, we need two buttons, “Start” and “Step” which are controlled by VBA code. Button
“Start” initialises the swarm and sets up the worksheet, while “Step” calculates and updates the
values one time step at a time. The positions of the particles can be visualised using the usual chart
function in Excel. Details of the VBA code for the two buttons are found in Appendix A.

Figure 11 shows a sample output of the simulation. As can be seen, the swarm of 10 particles are
initially randomly distributed at time step, 𝑡𝑡 = 0. At 𝑡𝑡 = 10, 20, … , 50, a pattern in the swarm
distribution seems to emerge. After about 100 steps, the swarm of 10 particles congregate around
the position 𝑥𝑥 = 2.50, which is the global best position.

time-step, 𝑡𝑡 Distribution of 10 swarm particles at time-step 𝑡𝑡

0

10

20

30

40

50

100

Figure 11: Sample simulation output of PSO technique, showing the swarm particles
converging towards the optimal point 𝑥𝑥 = 2.50 as the iteration progresses.

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

Discussion
The examples discussed above demonstrate the usefulness and power of simulation as a way to
model or solve problems in mathematics. In addition, these simulations can be conveniently
implemented on a commonly used and readily available electronic spreadsheet. While it is possible
to code these programs in other computing languages or platforms such as Python or MATLAB,
the fact remains many mathematics teachers and learners may not possess these computing skills.
On the other hand, for mathematics teachers, an electronic spreadsheet such as Excel has become a
ubiquitous tool for mathematical investigation in the past few decades, and many teachers and
mathematics learners have become very familiar with the use of spreadsheets.

In all the three examples above, further extensions and modifications to automate simulation
process can be made through the use of Excel controls and VBA code. In the Chaos Game, we
could create a button control so that when clicked, it runs a simulation of, say, 500 rolls of the dice.
This would eliminate the need to press the function key F9 each time for one roll, and make the
simulation more efficient. Similarly, for the Secretary Problem, the entire implementation can be
made simpler and more efficient if one uses a control button powered by VBA code to set up the
model, and calculate the experimental probability of success based on the strategy discussed. The
PSO implementation discussed has already made use of VBA code. However, it can be further
modified, for instance, to run 100 steps at a time, or even to run until a certain condition is reached.

Although it appears to make sense to improve efficiency through the use of VBA codes in these
examples, doing so may sometimes turn the simulation model into a “blackbox”. While this could
be what industrial and applied mathematicians would do in practice, it may not be instructive to a
mathematics learner. In a mathematics classroom, it is sometimes necessary to break things down
into their rudimentary components so that learners of mathematical modelling may be given the
opportunity to visualise the entire process of constructing the simulation model.

As can be seen from these examples, in order to construct and implement a simulation model that is
suitable for use in the classroom, a teacher will necessarily need to have some basic technological
skills. One of the more useful technological skills is the ability to write computer code. The key
concern here is not so much about learning a new skill but in developing the computational
thinking required in constructing a simulation model. The importance of coding and link between
coding and computational thinking has grown in relevance in recent years, and emphasised by
various researchers [7]. It is therefore to one’s advantage to embrace coding, for both practical and
pedagogical reasons, if one wishes to be successful in designing and developing simulation models
for the classroom.

Finally, professional development (PD) becomes a critical element of support for teachers who
intend to plan and develop such activities in the classroom. It has been shown that a school-based
PD for mathematical modelling, with some form of mentoring for novice teachers, generally has a
higher chance of success [10], in comparison with the typical one-time workshops or training
courses. This is especially so for the case of constructing simulation models, which may require a
fair amount of knowledge and skills in coding or programming.

Conclusion
The affordances provided in a technology-enabled environment makes it possible for a classroom
teacher to design and plan mathematical modelling lessons using specific tools. In this paper, the
simulation approach in mathematical modelling is discussed within the context of teaching

simulation models in the classroom. Three simple simulations of problem situations are used as
examples of simulation models, and an electronic spreadsheet, Excel, is used as the technological
tool to implement the simulations. The examples have demonstrated that the proper and
appropriate use of even a simple technological tool can lead to meaningful mathematical modelling
activities. Nonetheless, technology cannot do everything; it is important to acknowledge that the
teacher needs to be familiar with not just the technology but also the pedagogy involved in
capitalising on the technology to be truly successful in developing mathematical modelling
activities and lessons.

Acknowledgements
The work reported in this paper was partially supported by a Research Grant (No. RS 1/16 AKC)
provided to the author by the National Institute of Education, Nanyang Technological University,
Singapore.

References
[1] Ang, K.C. (2006). Mathematical Modelling, Technology and H3 Mathematics, The

Mathematics Educator, 9(2). 33-47.

[2] Ang, K.C. (2010). Teaching and Learning Mathematical Modelling with Technology, in
Proceedings of the 15th Asian Technology Conference in Mathematics, Kuala Lumpur,
Malaysia, pp. 19-29.

[3] Blum, W. and Niss, M. (1991). Applied Mathematical Problem Solving, Modelling,
Applications, and links to Other Subjects: State, Trends and Issues in Mathematics
Instruction, Educational Studies in Mathematics, 22(1), pp. 37-68.

[4] Devaney, R. (2004). Chaos Rules!, Math Horizon, November, 11-14.
[5] Ferguson, T. S. (1989). Who Solved the Secretary Problem? Statistical Science, 4(3), 282-296.

[6] Ferrucci, B.J. and Carter, J.A. (2003). Technology-active mathematical modelling, International
Journal of Mathematical Education in Science and Technology, 34(5), 663-670.

[7] Ho, W. K., and Ang, K. C. (2015). Developing Computational Thinking Through Coding, In
Proceedings of the 20th Asian Technology Conference in Mathematics (pp. 7387). Leshan,
China: Mathematics and Technology, LCC.

[8] Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization, in Proceedings of IEEE
International Conference on Neural Networks, IV, 1942–1948.

[9] Niss, M. (1987). Applications and modelling in the mathematics curriculum – state and
trends, International Journal for Mathematics Education in Science and Technology, 18, pp.
487-505.

[10] Tan, L. S. and Ang, K. C. (2016). A School-Based Professional Development Programme for
Teachers of Mathematical Modelling in Singapore, Journal of Mathematics Teacher
Education, 19, 399-432.

Appendix A

Option Explicit
Dim i, n, r As Integer
Dim a, b, c, gbest, pgbest As Double

Sub Start()
Dim x As Double
Dim mg As Range

n = Sheet1.Cells(2, 2)
a = Sheet1.Cells(3, 2)
b = Sheet1.Cells(4, 2)
c = Sheet1.Cells(5, 2)

Columns("C").ClearContents
Columns("D").ClearContents
Columns("E").ClearContents
Columns("F").ClearContents
Columns("G").ClearContents
Columns("H").ClearContents
Columns("I").ClearContents

Cells(5, 3) = "p0"
Cells(5, 4) = "p1"
Cells(5, 5) = "v"
Cells(5, 6) = "f(p0)"
Cells(5, 7) = "f(p1)"
Cells(5, 8) = "pbest"
Cells(5, 9) = "f(pbest)"

For i = 1 To n
 r = 5 + i
 Sheet1.Cells(r, 12) = 0
 Sheet1.Cells(r, 3) = Rnd() * 20 - 10
 Sheet1.Cells(r, 5) = Rnd() * 1 - 0.5
 Sheet1.Cells(r, 4) = Sheet1.Cells(r, 3) + Sheet1.Cells(r, 5)
 Sheet1.Cells(r, 6) = f(Cells(r, 3))
 Sheet1.Cells(r, 7) = f(Cells(r, 4))

 Rem find pbest
 If Sheet1.Cells(r, 6) < Sheet1.Cells(r, 7) Then
 Sheet1.Cells(r, 8) = Sheet1.Cells(r, 3)
 Sheet1.Cells(r, 9) = f(Sheet1.Cells(r, 3))
 Else
 Sheet1.Cells(r, 8) = Sheet1.Cells(r, 4)
 Sheet1.Cells(r, 9) = f(Sheet1.Cells(r, 4))
 End If
Next i

Rem initialise
 pgbest = Sheet1.Cells(6, 8)
 gbest = Sheet1.Cells(6, 9)
For i = 1 To n - 1
 r = 5 + i
 If Sheet1.Cells(r + 1, 9) < gbest Then
 gbest = Sheet1.Cells(r + 1, 9)
 pgbest = Sheet1.Cells(r + 1, 8)
 End If
Next i

Sheet1.Cells(12, 2) = gbest
Sheet1.Cells(13, 2) = pgbest
End Sub

Function f(x As Double) As Double
f = 0.1 * x * x - 0.5 * x + 2
End Function

Sub Step()
Dim mg As Range
Dim r, i, ibest As Integer
Dim v, dv, dp, dg As Double

For i = 1 To n
 r = 5 + i
 Rem find differences
 dp = Sheet1.Cells(r, 4) - Sheet1.Cells(r, 3)
 dg = pgbest - Sheet1.Cells(r, 3)
 v = Rnd() * 1 - 0.5
 Rem update last position
 Sheet1.Cells(r, 3) = Sheet1.Cells(r, 4)
 Rem generate next velocity component
 dv = a * v + b * dp + c * dg
 Sheet1.Cells(r, 5) = dv
 Sheet1.Cells(r, 4) = Sheet1.Cells(r, 3) + Sheet1.Cells(r, 5)

 Sheet1.Cells(r, 6) = f(Cells(r, 3))
 Sheet1.Cells(r, 7) = f(Cells(r, 4))

 If Sheet1.Cells(r, 6) < Sheet1.Cells(r, 7) Then
 Sheet1.Cells(r, 8) = Sheet1.Cells(r, 3)
 Sheet1.Cells(r, 9) = f(Sheet1.Cells(r, 3))
 Else
 Sheet1.Cells(r, 8) = Sheet1.Cells(r, 4)
 Sheet1.Cells(r, 9) = f(Sheet1.Cells(r, 4))
 End If

Next i

Rem initialise
 pgbest = Sheet1.Cells(6, 8)
 gbest = Sheet1.Cells(6, 9)
For i = 1 To n - 1
 r = 5 + i
 If Sheet1.Cells(r + 1, 9) < gbest Then
 gbest = Sheet1.Cells(r + 1, 9)
 pgbest = Sheet1.Cells(r + 1, 8)
 End If
Next i

Sheet1.Cells(12, 2) = gbest
Sheet1.Cells(13, 2) = pgbest
End Sub

