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Abstract

We live in a world submerged with more information than ever before. We express
information or data mathematically and it is growing faster than ever. If the data is
imperfect, out of context or otherwise contaminated, it can lead to decisions that could
undermine the competitiveness of an enterprise or damage the personal lives of individ-
uals. Therefore, knowledge representation plays an important role in dealing with many
aspects of problem solving. In order to obtain complete information systems, we use a
mathematical tool, namely, Rough Set Theory (RST), which was introduced by Pawlak
in 1982 as a way to deal with data analysis based on approximation methods in informa-
tion systems. RST is a novel approach to cope with imperfect data analysis as well. In
essence, the theory extends the classical crisp set to rough set by defining lower and upper
approximations for any subset of a nonempty finite universe. The theory presupposes that
with every object of the universe some information is associate with certain relationship.
It has many applications in a number of different areas, such as engineering, environment,
banking, medicine, bioinformatics, pattern recognition, data mining, machine learning
and others. RST is intrinsically a study of equivalence relations on the universe. We
intend to use some advanced computing technologies to implement the computations and
find several properties of the characteristics of objects. We will show some advanced com-
puting method that can solve our problems effectively. We also extend the results from
one universe to two universes.



1 Introduction

The study or management of information systems is an important topic in today’s Big Data era.
Both complete information system and incomplete information system (IIS) are rich research
subjects. An IIS is a system with partially known data or unknown data, which may be
considered as missing data. In other words, an IIS is a system whose attribute values for
objects may be unknown or missing. This kind of system can be regarded as a set-valued
system. Some of its attribute values may be subsets of an attribute domain. Our objective is
to find rules, relationships and classifications of such systems and to develop applications to
Big Data analysis and data mining.

Information systems can be represented in various ways. One way to do this is to consider
the representations in set theory. Two elements in a set can be related by certain rules so that
the set is partitioned into different classes. An equivalence relation gives a partition and this
can become the relational database. Binary relations are topological partitions which give sets
some kind of structures. More precisely, we consider attribute systems in which each system
can be interpreted by a set U and a subset R of the Cartesian product U × U , where U is
a non-empty set of all finite objects under consideration, and R is an equivalence relation on
U derived from certain relationships among attributes. This approach is called the rough set
approach. Rough Set theory (RST) originated from Pawlaks seminal work [6]. It has been
conceived as a pathway to conceptualize, analyze and classify various types of data and has
been developed as a tool to classify objects which are only roughly described.

The available information provides a partial discrimination among them, although they are
considered as different objects. Distinct objects could happen to have the same or similar
description, as far as a set of attributes is considered. The theory extends the classical crisp
set to a rough (or approximate) set by defining lower and upper approximations for any subset
of a non-empty universe. It is based on the concept that every object of the universe is
associated with some information (data or knowledge). In other words, RST can be considered
in the context of granular computing. It provides tools that make use of granules in the
process of some given task. Granules are collections formed in the process of a semantically
meaningful classifications of elements based on their indistinguishability, similarity, proximity
or functionality. In RST, a granulation is obtained by identifying an indiscernibility or similarity
relation over the universe of discourse. Therefore, each class of the relation is an elementary
granule.

Objects characterized by the same information are considered indiscernible. Thus, an ele-
mentary set can be any set of all indiscernible entities, and it forms the basic granule of knowl-
edge [3, 4, 5]. Information granulation is a collection of granules, with a granule being a clump
of points which are drawn toward an object. Each object is associated with a family of clumps.
An unstructured collection of clumps has some mathematical meaning in a crisp world having
to do with the notion of neighborhood system. Basically, a neighborhood system assigns each
object a family of subsets. Such subsets, called neighborhoods, represent the notion of ’near’.
Therefore, one can define open sets, closed sets, the interior and closure of any subsets as we
do in the content of topology or set theory. If all clumps are non-empty, then the neighborhood
system is a covering. If there is at most one clump per object, then the neighborhood system
is defined by a binary relation, and is called a binary neighborhood system. If we assume the
binary relation is an equivalence relation, the neighborhood system is a rough set system. If we
assume a neighborhood system satisfies certain axioms, then the neighborhood system defines



a topological space; such neighborhood system is called a topological neighborhood system.
Research efforts to advance the classical rough set model have been made by generalizing the

Pawlaks approximation space, particularly by exploring the use of a more general binary relation
[2]. Such a generalization is usually called an approximation space. We were able to provide
a clear and more general framework of lower and upper covering approximations [11]. We not
only provide a duality property, but also obtain optimal lower and upper approximations of a
covering of an approximation space. Therefore, we basically provide a clear understanding of a
given universe. In addition, we developed several properties of the so called total pure reflexive
binary neighborhood systems. We generalize our methodology to obtain variable precision
of generalized rough sets. More precisely, reductions of redundant attributes in imprecise
information systems, decision-making, data analysis, knowledge presentation, image processing,
pattern recognition, data preprocessing, modeling complex system and many other applications
can use our framework in the generalized rough set theory. The idea is to introduce a set of
data, then we use our covering approximation techniques to find accuracy, classification, and
reduction attributes of a given information system to pursue our objectives for incomplete
information systems.

This paper is organized as follows. We provide some preliminary backgrouns in Section
2, which includes eqivalence classes, lower and upper approximations, as well as the inclusion
degree. In Section 3, knowledge representation is interpreted as decision tables. We also
introuce the variable precision model and describe its properties. In Section 4, we present
the characterization of decision classes, and a methodology to determine the discernibility
threshhold for a given decision table. In Section 5, we use advanced technology to deal with
large dataset. In Section 6, we intend to explore the results in previous sections to two universes.
We explain RST based on two universal sets, and fuzzy binary relations, as well as variable
precision generalized rough set model over two universes. We conclude with several remarks in
Section 7.

2 Preliminary

One of the fundamental tasks in RST is to understand a neighborhood system which assigns each
object a family of non-empty subsets. In topology, we use neighborhoods to define open sets
and closed sets, while a rough set concept can be illustrated by means of topological operations,
interior and closure, called approximations. As we described earlier, U is the universe and R
is an (indiscernibility) equivalence relation on U. Considering a subset, X of U , a fundamental
task in this theory is to characterize the set X relative to R. To do so, we need additional
structures and concepts in RST. The indiscernibility relation R helps us describe our lack of
knowledge about the universe U . We therefore study equivalence classes of the relation R,
called granules. Each equivalence class represents an elementary portion of knowledge we are
able to perceive due to R. However, we are not able to observe individual objects from U in
general. In what follows, we introduce these structures which are also illustrated in Figure 1.

To approximate the set X, we consider all the subsets of X and subsets containing X. More
precisely, the set of all objects which can be classified with certainty as members of X with
respect to R is called the R-lower approximation of a set X. The set of all objects which can be
classified as possible members of X with respect to R is called the R-upper approximation of a
set X with respect to R. The set of boundary region can be classified as members of the R-upper



Figure 1: Illustration of set, region, lower and upper approximations

approximation of X but not members of the R-lower approximation of X. A set X is called
rough with respect to R if and only if the boundary region of X is nonempty. Furthermore, we
consider two different subsets and how they are related in a universe as follows.

Let U be a finite and nonempty set, known as the universe of discourse. We use the symbol
“ ⊆ ” (“ ⊂ ” ) to denote set inclusion (strict set inclusion, respectively). The cardinality of a
set S ⊆ U , denoted |S|, is the number of elements in S. The power set of U is the collection of
all the subsets of U, namely, 2U = {S | S ⊆ U}.

The inclusion degree of a nonempty set X ⊆ U with a set Y ⊆ U is defined as

I(X, Y ) =
|X ∩ Y |
|X|

. (1)

The proportin of X in U is defined as Pr : 2U −→ [0, 1]:

Pr(X) =
|X|
|U |

, ∀ X ⊆ U. (2)

Consider the complete lattice [0, 1], i.e., the unit interval. Given any set S ⊆ [0, 1], we
will write sup[0,1] S or inf [0,1] S for the supremum of S in [0, 1], and infimum of S in [0, 1],
respectively. If sup[0,1] S ∈ S, then we also denote it by max S and call it the maximum of S,
and if inf [0,1] S ∈ S, then we also denote it by min S and call it the minimum of S. From the
definitions of sup[0,1] and inf [0,1], we have

sup[0,1] ∅ = 0 and inf [0,1] ∅ = 1. (3)



3 VP-models under decision tables

In what follows, we use four pieces of information to describe some events or phenomena by
applying rough set theory. In other words, the knowledge representation in the rough set model
is often structured in a decision table which is a 4-tuple (U,Q = C ∪ D, V, f), where U is a
nonempty finite universe, C is a nonempty finite set of condition attributes, D is a nonempty
finite set of decision attributes, C∩D = ∅, V =

⋃
q∈Q

Vq and Vq is a value domain of the attribute

q, and

f : U ×Q −→ V

is an information function such that f(x, q) ∈ Vq for every x ∈ U and q ∈ Q.
Every nonempty subset P of condition attributes C, or decision attributes D, generates an

equivalence relation on U , denoted by P̂ and defined as follows [8].

P̂ = {(x, y) ∈ U × U | ∀ q ∈ P, f(x, q) = f(y, q)}. (4)

Let P ∗ = {P1, P2, · · · , P|P ∗|} denote the partition on U induced by equivalence relation P̂ . Each
member of D∗ will be called a decision class. The decision table (U,C ∪D, V, f) is consistent
if Ĉ ⊆ D̂; otherwise, the decision table is inconsistent [7].

Considering the partition of U, for any X ⊆ U , we can define the P -lower approximation
P (X) and P -upper approximation P (X) of X, in the classical rough set model as follows [1, 13]:

P (X) = ∪{Pi ∈ P ∗ | Pi ⊆ X} = ∪{Pi ∈ P ∗ | I(Pi, X) = 1}, (5)

P (X) = ∪{Pi ∈ P ∗ | Pi ∩X 6= ∅} = ∪{Pi ∈ P ∗ | I(Pi, X) > 0}. (6)

The variable precision model (VP-model) was first introduced by Zirako [14]. The tool of
varaiable precision was later used to provide a comprehensive analysis of equivalence classes
by using infimum and supremum of inclusion degrees of equivalence classes in a given set
with smaller (or greater) values than 0.5 instead of minimum and maximum, respectively [13].
Following this idea, we let β be a parameter such that 0.5 < β ≤ 1. For Pi ∈ P ∗ and X ⊆ U ,
we define

Pi ⊆β X if and only if I(Pi, X) ≥ β, (7)

Pi ∩β X 6= ∅ if and only if I(Pi, U −X) < β. (8)

Then, we can define the P β-lower approximation P β(X) and P β-upper approximation P
β
(X)

of X, in the VP-model under the threshold β, as follows [1]:

P β(X) = ∪{Pi ∈ P ∗ | Pi ⊆β X} = ∪{Pi ∈ P ∗ | I(Pi, X) ≥ β}, (9)

P
β
(X) = ∪{Pi ∈ P ∗ | Pi ∩β X 6= ∅} = ∪{Pi ∈ P ∗ | I(Pi, X) > 1− β}. (10)

Evidently, we have

P β(∅) = P
β
(∅) = ∅ and P β(U) = P

β
(U) = U, (11)

P (X) = P 1(X) ⊆ P β(X) ⊆ P
β
(X) ⊆ P

1
(X) = P (X), (12)

P
β
(X) = U − P β(U −X). (13)

Basically, we characterize the set by a partition with respect to some parameter variables
so that this will give rise to some precisions in obtaining desired approximations in a given set.



4 Characterization of decision classes

In this section, we provide a method to choose an optimal parameter threshold for identifying
lower and upper approximations to be the same object. It helps to give a clear picture of the
nature of the sets.

As an immediate consequence of (9) and (10), we have the following [13]:

Lemma 1 Given a decision table (U,C ∪ D, V, f) and a parameter β ∈ (0.5, 1], let D∗ =
{D1, D2, · · · , D|D∗|}. For every decision class Dj ∈ D∗, we have

Cβ(Dj) ⊆ Cβ′(Dj) ⊆ C
β′

(Dj) ⊆ C
β
(Dj), ∀ β′ ∈ (0.5, β]. (14)

Ziarko [14] states that a decision class Dj ∈ D∗ is said to be β-discernable if

Cβ(Dj) = C
β
(Dj). (15)

According to Ziarko [14], a decision class which is not discernable for every β ∈ (0.5, 1] will
be called absolutely indiscernible. A decision class Dk ∈ D∗ is absolutely indiscernible iff its
absolute boundary

M(Dk) = ∪{Ci ∈ C∗ : I(Ci, Dk) = 0.5} 6= ∅. (16)

A decision class which is not absolutely indiscernible will be referred to as weakly discernable.

More precisely, a decision class Dj ∈ D∗ is weakly discernable iff Cβ(Dj) = C
β
(Dj) for some

β ∈ (0.5, 1]. The greatest value of β which makes Dj discernable is referred to as discernibility
threshold. We recall the following Lemma in determing threshold.

Lemma 2 Given a decision table (U,C ∪ D, V, f), let C∗ = {C1, C2, · · · , D|C∗|} and D∗ =
{D1, D2, · · · , D|D∗|}. If a decision class Dj ∈ D∗ is weakly discernable and its discernibility
threshold is equal to ζj. Then

ζj = min {ηj, λj},where

ηj = inf {I(Ci, Dj) | Ci ∈ C∗ & I(Ci, Dj) > 0.5}, (17)

λj = 1− sup {I(Ci, Dj) | Ci ∈ C∗ & I(Ci, Dj) < 0.5}. (18)

5 Data process

Dealing with a large dataset, one may work out the computation with a parallel and distributed
solution implemented on Apache Spark. To do this, we consider a given decision tale, (U,C ∪
D, V, f). Let m = |C∗|, n = |D∗|, and

C∗ = {C1, C2, · · · , Cm}, D∗ = {D1, D2, · · · , Dn},
M(Dj) = ∪{Ci ∈ C∗ : I(Ci, Dj) = 0.5},
H(Dj) = ∪{Ci ∈ C∗ : I(Ci, Dj) ≥ 0.5},
ηj = inf {I(Ci, Dj) | Ci ∈ C∗ & I(Ci, Dj) > 0.5},
λj = 1− sup {I(Ci, Dj) | Ci ∈ C∗ & I(Ci, Dj) < 0.5},
ζj = min {ηj, λj},
η = min {η1, η2, · · · , ηn}, λ = min {λ1, λ2, · · · , λn},
ζ = min {η, λ} = min {ζ1, ζ2, · · · , ζn}. (19)



In practice, we provide the following algorithm to obtain the optimal threshold.
Algorithm
INPUT: pathClassvector, m, n
DECLAIR: min1, min2, max
classvector - loadFromFile(pathClassvector)
broadcast(classvector)
ReduceFromSlaves

for i from 1 to m do
min1 - I1i
max - I2i
end for

EndReduce
ReduceFromSlaves(η1, η2, · · · , ηn, λ1, λ2, · · · , λn)

for j from 1 to n do
ηj
λj

end for
EndReuce
save

ζ = min {η, λ}
Terminate

6 Two universal sets

In this section, we will extend the results on one universal set to two universal sets. Let U and
W be two nonempty (may be finite or infinite) universes, and let 2U and 2W denote the power
sets of U and W , respectively. A (binary) relation R from U to W is a subset of the Cartesian
product U ×W . It’s common to use uRw to mean that the ordered pair (u,w) ∈ R. If U = W
then we simply say that the binary relation is over U .

If R is a binary relation from U to W , and u ∈ U , define

R(u) = { w ∈ W | (u,w) ∈ R}. (20)

The set is called the image of u under R.

6.1 Rough set theory based on two universal sets

Generalized definition of Pawlak’s lower and upper approximations [6] has been considered by
T.Y. Lin [3] for a relation R from U to W instead of equivalence relation as follows: For any
X ⊆ W , the lower and upper approximations, R(X) and R(X), respectively, of X under R are
defined as

R(X) = {u ∈ U | R(u) ⊆ X}, R(X) = {u ∈ U | R(u) ∩X 6= ∅}. (21)

Accordingly, we have

R(∅) = {u ∈ U | R(u) = ∅}, R(W ) = U − {u ∈ U | R(u) = ∅}, (22)



R(X) = U −R(W −X), ∀ X ⊆ W. (23)

The above identity natually gives rise to the duality between the lower and upper approxi-
mations.

6.2 Fuzzy binary relations

A relation R ⊆ U ×W can be identified with its characteristic function µR : U ×W → {0, 1}
defined as:

µR(u,w) =


1,

0,

if (u,w) ∈ R,

otherwise.
(24)

This function can be generalized to allow ordered pairs to have degrees of membership.
A fuzzy binary relation R̃ from U to W is a fuzzy subset of U ×W with the membership

function µR̃ : U ×W → [0, 1]
Denote by F(U ×W ) the collection of all fuzzy relations from U to W . For α ∈ (0, 1], the

α-cut of a fuzzy relation R̃ ∈ F(U ×W ), denoted as R̃α, is defined as

R̃α = {(u,w) ∈ U ×W | µR̃(u,w) ≥ α}. (25)

Note that the α-cut R̃α is a binary relation from U to W .
Considering (20) and (25), we natually define α-cut image of u under R̃, R̃α(u). This gives

rise to a continuous version of the characterization of the relation instead of discrete version of
the characterization.

We assume in the remainder of this paper that W is a finite universe. The inclusion error
e(Y,X) of a set Y ⊆ W in another set X ⊆ W is defined as

e(Y,X) =

{
1− |Y ∩X||Y | , if |Y | > 0,

0, if |Y | = 0,
(26)

where | · | is the set cardinality. Let ν(Y,X) = 1− e(Y,X). Then

ν(Y,X) =

{
|Y ∩X|
|Y | = I(Y,X), if |Y | > 0,

1, if |Y | = 0,
(27)

is the standard rough inclusion function on the set W [9].

6.3 Variable precision generalized rough set model over two uni-
verses

Assume that W is a nonempty finite universe, and that β ∈ [0, 0.5).
Considering a relation R from U to W , motivated by [10, 12], we define its induced β-lower

approximation operator Rβ : 2W −→ 2U by

Rβ(X) = {u ∈ U | e(R(u), X) ≤ β}

= {u ∈ U | R(u) = ∅} ∪ {u ∈ U | R(u) 6= ∅, 1− |R(u) ∩X|
|R(u)|

≤ β}

= {u ∈ U | R(u) = ∅} ∪ {u ∈ U | R(u) 6= ∅, |R(u) ∩X|
|R(u)|

≥ β} (28)



and its induced β-upper approximation operator R
β

: 2W −→ 2U by

R
β
(X) = U −Rβ(W −X) = {u ∈ U | e(R(u),W −X) > β}

= {u ∈ U | R(u) 6= ∅, 1− |R(u) ∩ (W −X)|
|R(u)|

> β}

= {u ∈ U | R(u) 6= ∅, |R(u) ∩X|
|R(u)|

> β}

= {u ∈ U | R(u) 6= ∅, e(R(u), X) < 1− β}. (29)

We shall refer to rough set theory with such approximations as the variable precision generalized
rough set model (VPGRS-model) under R with threshold β.

It follows immediately from (28) and (29) that the operators Rβ and R
β

are order-preserving,
that is,

X ⊆ Y ⊆ W =⇒ Rβ(X) ⊆ Rβ(Y ) and R
β
(X) ⊆ R

β
(Y ). (30)

According to (27), we have

e(R(u), ∅) =

{
1, if R(u) 6= ∅,
0, if R(u) = ∅. (31)

This, together with (28) and (29), gives

Rβ(∅) = {u ∈ U | R(u) = ∅}, R
β
(∅) = ∅. (32)

Then, by duality, we have

Rβ(W ) = U, R
β
(W ) = U − {u ∈ U | R(u) = ∅}. (33)

Let β = 0 then it follows, from (21), (27) and (28), that

R0(X) = {u ∈ U | e(R(u), X) ≤ 0}

= {u ∈ U | R(u) = ∅} ∪ {u ∈ U | R(u) 6= ∅, 1− |R(u) ∩X|
|R(u)|

≤ 0}

= {u ∈ U | R(u) = ∅} ∪ {x ∈ U | R(u) 6= ∅, R(u) ⊆ X}
= {x ∈ U | R(x) ⊆ X} = R(X).

Then, by (23), we have R
0
(X) = U −R0(W −X) = U −R(W −X) = R(X). This gives:

Let X ⊆ W , and let R ⊆ U ×W . Then

1. R0(X) = R(X), where R(X) = {u ∈ U | R(u) ⊆ X}.

2. R
0
(X) = R(X), where R(X) = {u ∈ U | R(u) ∩X 6= ∅}.

Let W be a nonempty finite universe, R̃ be a fuzzy relation from U to W . For any X ⊆ W ,
α ∈ (0, 1], if β = 0 then

R̃α
0
(X) = R̃α(X), (34)

where R̃α
β
(X) = {u ∈ U | e(R̃α(u), X) ≤ β}.



6.4 Decision tables of two universes

From the above results, it is natural to extend our discussions to decision tables of two different
universes. We consider the following settings: We consider a decision table which is a 5-tuple
(U1, U2, Q = C∪D, V, f), where U1, U2 are nonempty finite universes, C is a nonempty finite set
of condition attributes, D is a nonempty finite set of decision attributes, C∩D = ∅, V =

⋃
q∈Q

Vq

and Vq is a value domain of the attribute q, and

f : U ×Q −→ V

is an information function such that f(x, q) ∈ Vq for every x ∈ U = U1 × U2 and q ∈ Q. It
becomes a multi-dimensional task to extend the results from previous sections to this setting
for two universes.

7 Conclusions

We use decision tables to represent the knowledge of information systems. In this paper, we
have developed an algorithm to deal with a large data set in handling the determination of the
variable precision model threshold, so that we can have a classification and characterization
of the information system. We then present decision tables over two different universes which
will be helpful to analyze more complex cases. We plan to further extend the results of a sigle
universe to two different universes. We will also use our methods to couple data and knowledge
in data mining and database in various contexts.
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