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Abstract: Congruence relation have been widely used in science. We use an Isabelle theorem prover to verify and specify
some lemmata in proving a certain theorem of congruence relation. This paper is about using the Isabelle theorem prover
to establish the proofs of some elementary number theoretic lemmata for modulo arithmetic.

1. Introduction

1.1. Congruence relation

In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on
an algebraic structure that is compatible with the structure [1]. Every congruence relation has a
corresponding quotient structure, whose elements are the equivalence classes (or congruence classes)
for the relation. The prototypical example of a congruence relation is congruence modulo n on the
set of integers. It is an important basic principle that A − B is a multiple of n. For A given positive
integer n, two integers A and B are called congruent modulo n, written

A ≡ B (mod n)

If the value of n is clear from the context, we write simply A ≡ B. Congruence modulo n satisfies
the following theorem:

Theorem
1. A ≡ B and C ≡ D implies A+ C ≡ B +D;
2. A ≡ B and C ≡ D implies A− C ≡ B −D;
3. A ≡ B and C ≡ D implies AC ≡ BD;

1.2. Isabelle theorem prover

The Isabelle theorem prover is an interactive theorem prover, a Higher Order Logic (HOL) the-
orem prover. It is an LCF-style theorem prover (written in Standard ML), so it is based on a small
logical core to ease logical correctness. it provides a meta-logic (a weak type theory), which is used
to encode object logics like first-order logic (FOL), higher-order logic (HOL) or Zermelo Fraenkel
set theory (ZFC) [2]. It is characterized by being able to describe proofs in a form close to natural
language. However, because there are few people to handle, the information is scarce.
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2. Verification and specification of some lemmata

We prove the above theorem by using the Isabelle theorem prover.

2.1. Proof 1 of the above theorem

At first, we define a congruence.

definition
godo :: ”int⇒ int⇒ int⇒ bool” where
”godo A B n←→ n ≤ 1 ∧ (A - B) mod n = 0”

we define first lemma (combination).

lemma ketugou 1:
fixes A :: int
and B :: int
and C :: int
and D :: int
shows”(A+C)-(B+D) = (A-B)+(C-D)”
apply simp
done

we define second lemma.

lemma le teiri 1:
fixes A :: int
and B :: int
and n :: int
shows”A mod n = 0 ∧ B mod n = 0→ (A+B) mod n = 0”
apply auto
done

We verify the above theorem 1.

theorem mod teiri1:
fixes A :: int
and B :: int
and C :: int
and D :: int
and n :: int
assumes ”n ≥ 1”
and ”godo A B n”
and ”godo C D n”
shows ”godo (A+C) (B+D) n”
using assms
apply (simp add:godo def)
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Here, the following problems occur.

goal (1 subgoal): (A - B) mod n = 0⇒ (C - D) mod n = 0
⇒ (A + C - (B + D)) mod n = 0

So, we make the lemma ketugou 1 that holds the following equation.

”(A+C)-(B+D) = (A-B)+(C-D)”

And we do the following:

apply (simp add:ketugou 1)

It is in this way renewed by the following problems.

goal (1 subgoal): (A - B) mod n = 0⇒ (C - D) mod n = 0
⇒ (A - B + (C - D)) mod n = 0

Then we do the following:

A mod n = 0 ∧ B mod n = 0→ (A+B) mod n = 0”

We can prove 1 of the above theorem.

apply (simp add:le teiri 1)
done

2.2. Proof 2 of the above theorem

we define lemma 3 and 4.

lemma ketugou 2:
fixes A :: int
and B :: int
and C :: int
and D :: int
shows”(A-C)-(B-D) = (A-B)-(C-D)”
apply simp
done

lemma le teiri 2:
fixes A :: int
and B :: int
and n :: int
shows”A mod n = 0 ∧ B mod n = 0→ (A-B) mod n = 0”
apply auto
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done

We can prove the above theorem 2.

theorem mod teiri 2:
fixes A :: int
and B :: int
and C :: int
and D :: int
and n :: int
assumes ”n ≥ 1”
and ”godo A B n”
and ”godo C D n”
shows ”godo (A-C) (B-D) n”
using assms
apply (simp add:godo def)
apply (simp add:ketugou 2)
apply (simp add:le teiri 2)
done

2.3. Proof 3 of the above theorem

we define lemma 5.

lemma le teiri 3 1:
fixes A :: int
and B :: int
and n :: int
assumes ”n ≥ 1”
shows”A mod n = 0→ A*B mod n = 0”
apply auto
done

Next, we define the distributive property.

definition
bunpai :: ”int⇒ bool” where
”bunpai M←→ (∀X. ∀Y. X*M - Y*M = (X-Y)*M)”

And we define lemma 6,7,8 and 9.

lemma koukan 1:
fixes A :: int
and B :: int
shows”A*B = B*A”
apply simp
done
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lemma bunpai 1:
fixes A :: int
and B :: int
and C :: int
assumes ”bunpai C”
shows”(C*A - C*B) = (A-B)*C”
using assms
apply (simp add:bunpai def add:koukan 1)
done

lemma le teiri3 2:
fixes A :: int
and B :: int
and C :: int
and n :: int
assumes ”bunpai C”
and ”godo A B n”
and ”n ≥ 1”
shows”A*C mod n = 0 ∧ B*C mod n = 0→ (A-B)*C mod n = 0”
using assms
apply (simp add:bunpai def add:godo def add:le teiri 3 1)
done

lemma ketugou 3:
fixes A :: int
and B :: int
and C :: int
and D :: int
assumes ”bunpai C”
and ”bunpai B”
shows”A*C - B*D = (A-B)*C+(C-D)*B”
proof (induct,simp)
have ”A*C - B*D = (A*C - B*C) + (B*C - B*D)” by simp
also have ”. . . = (A-B)*C + (C-D)*B” using assms and bunpai def and bunpai 1 by simp
finally show ”A*C - B*D = (A-B)*C+(C-D)*B” by simp
qed

We verify the above theorem 3.

theorem mod teiri 3:
fixes A :: int
and B :: int
and C :: int
and D :: int
and n :: int
assumes ”n ≥ 1”
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and ”godo A B n”
and ”godo C D n”
and ”bunpai C”
and ”bunpai B”
shows ”godo (A*C) (B*D) n”
using assms
apply (simp add:godo def add:bunpai def)

Here, the following problems occur.

(A - B) mod n = 0⇒ (C - D) mod n = 0⇒ A * C - B * C = (A - B) * C
⇒ C * B - D * B = (C - D) * B⇒ (A * C - B * D) mod n = 0

So, we make the lemma ketugou 3 that holds the following equation.

”(A*C) - (B*D) = (A-B)*C + (C-D)*B”

And we do the following:

apply (simp add:ketugou 3 add:bunpai def)

In this way it is rewrited like the following.

(A - B) mod n = 0⇒ (C - D) mod n = 0⇒ A * C - B * C = (A - B) * C
⇒ C * B - D * B = (C - D) * B⇒ ((A - B) * C + (C - D) * B) mod n = 0

Then

“A mod n = 0 ∧ B mod n = 0→ (A+B) mod n = 0”
“A mod n = 0→ A*B mod n = 0”
“A*C mod n = 0 ∧ B*C mod n = 0→ (A-B)*C mod n = 0”

We can prove the above theorem 3.

apply (simp add:le teiri 1 add:le teiri 3 1 add:le teiri 3 2)
done

3. Conclusions

We have formulated the specification of some lemmata and proof of a certain congruence relation
using the Isabelle theorem prover. In the use of Isabelle for this work, we feel that theorems in some
basic theories are not rich enough. We have to prove more theorems that are very general.
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