
Vector Data Viewer for Distribution Glance

1. Introduction
  Researchers  use  various  vector  data  for  analyzing  scientific  or  engineering  problems,  and
sometimes these data are used to distinguish several targets. The discriminant and cluster analyses,
for  example,  are  most  commonly  used  for  distinguishing  vector  data.  In  both  these  analyses,
stochastic behaviors of data are important targets in several situations. Consider a case in which the
Mahalanobis distance is used; approximations of local distributions are not easy if the data follow a
multi-modal distribution. In this paper, we explain how our system visualizes the distribution of
vector  data.  The  purpose  of  the  proposed  system  is  to  understand  the  distribution  of
multidimensional data; this may help us understand, for example, the difficulty in distinguishing
two categories and in selecting a delicate discriminant method.
  We used various numerical data and low-dimensional vector data in our previous studies ([1],[2],
[3]). In the current study, we considered multidimensional vector data. Assume that the dimension is
up to ten, which is not considerably high. In the proposed system, the data are expressed using
several two-dimensional (2-D) scatter plots. These are orthogonal projection images, that is, images
are translated using orthogonal projections, change in axes scale, and parallel shifts.  We must select
two directions to create a projected image. First, the system creates a standard image, for which the
axes are the primary and secondary components. Moreover, the system randomly selects an axis. If
one direction is selected as a display axis, the other axis is randomly defined. The system also
approximates  the distribution density for  each  selected  point.  In  this  study,  we considered  two
approximation methods for density approximation. One method is a simple count of points in a
constant radius ball, and the other is the reciprocal value of average distance in a k -neighborhood.
The k -neighborhood of point p⃗  is a point family consisting of k -nearest points. This method is a
comparatively simple model like a distance-based model ([4], [5]) and has the merit of being easy
to use.
  The  k -  neighborhood  (a  neighborhood  defined  using  k-distance)  was  originally  defined  to
analyze local outliers ([6]), and the k -distance was defined in [6] to analyze the local outlier factor
(LOF). The aim of our analysis is to find outliers by using the density degree of a data-set; this
degree value is called LOF. Our study uses the concept of  k -distance. The  k - neighborhood is
determined as the  k -th nearest points group. Therefore, if there is an isolated small group, we
cannot  find  other  group  elements  through  a  neighborhood  search.  Then,  we  consider  new
neighborhood considering direction from a center. The details are described in Section 4.3.
  We should grasp neighborhood distance information to approximate densities. Let n  be the data
size, then  n (n−1)/2  is the distance calculation if the computation time cannot be reduced. We
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considered a 2-D partition by using the primary and secondary components, and every point was
placed into some partition block. Next, we calculated distances of points near blocks.
  In engineering, it is important to analyze vector data to consider a problem, and for a university
student, it  is important for understanding multidimensional statistical concepts or properties, for
example, to obtain a rough grasp of the distribution of raw data. In such situations, if the dimension
is  not  less  than  two,  we  would  not  be  able  to  grasp  raw  data  distribution.  Even  in  a  three-
dimensional (3-D) case, we often change our view points in viewing a 3-D scatter plot. We need
certain functions to change such view points. Thus, we propose a standard way to select certain
view points, and an easy method to change them. As such we would be able to grasp the distribution
of vector data.

2. System Outline
  The purpose of the proposed system is to help grasp the data distribution easily. We have two view
modes: direction and separation. The direction view is a mode to grasp the data distribution with
respect to one direction, whereas the separation view infers to the linear separation by a hyperplane.
In this section, we explain how we control them by using our system.

2.1 Data Format
  Here, we consider multidimensional vector data and assume that the dimensions range from three
to ten. There is no merit in using our system for one-dimensional (1-D) or two-dimensional (2-D)
data. In theory, there are no upper bounds; however, if the number of dimensions is very high, it
may be too complex to understand using our system. Two types of data with the same dimension
can be input in the system, and each data set is given by a text file written in our format. Figure 2.1
displays a part of the data file used.

  The first line is a comment line, which starts with "//." The second line defines the data dimension,
and the third line defines the maximum data size. The lines below these definitions describe one
vector datum. If the number of lines exceeds the value of "num," the system inputs the  first "num"
data and ignores the rest. If the number is less than "num," "num" is replaced by the input number.

2.2 Configuration File
  Some parameters can be set or reset by using the configuration file. The following table lists the
parameters in the configuration file.

// Sample data
dim=3
num=1000
-0.327759,3.725040,4.911717
2.394533,-0.603544,-1.137942
-0.931709,4.462387,1.214458
1.404485,0.010095,4.717296
1.502153,4.592601,-0.388975

Figure 2.1 Format of data file



Parameter Expression Comment

dim dim=d  ｄ must be the same as dim in data file.

range range[n]=(-2.0, 2.0)   n=0,1,. .. , d−1  

color color[n]=(255,0,0,)   n=0,1

dot size dot size=2.0  line width and dot size(pixel).

  When a data file is loaded, all parameters are defined according to the data. We can change these
values by using the configuration file if necessary. The value of "dim" must be the same as the
number of dimensions in the data file. Based on the dimension range, data values are scaled and
shifted for each coordinate. The data positions (dots), and density values are displayed in the view
area. The dot size and line width are defined using the value of "dot size," and the dot and line color
are defined using "color."

2.3 System Screenshot
  Figure 2.2 is a screenshot of the system. There are three view areas plotting vector data. There is a
text box below each view area. This text area is to set the view axes, a scale, and a center point.
The large text box at  the bottom is  for setting directions.  When the vector data are stored,  the
primary and secondary components are listed in this box. Moreover, two sets of data are stored
components of another data set and combined data set. Any directions can be set in this area, and
these can be used in setting text boxes. 

Table 2.1 Parameters in a configuration file 

 Figure 2.2  ScreenShot of the System

Figure 2.2 Screenshot of the system



2.4 Setting of Display Area
  We can set target data set, axis directions, the scale, and the center using setting text area for each
view  area.  At  most,  two  data  sets  are  stored  in  the  system.  The  target  is  "0,"  "1,"  or  "0,1."
"direction" and "sub" are axes directions; the vertical axis is "direction." The standard scale and the
center  point  are  defined  in  the  system  for  each  data  axis,  and  we  can  change  them  using  a
configuration file. The point "center" defined in this text area is a 2-D point expressed by using the
given directions, and the scale is a real value product to all relative vectors from the center. 

2.5 Definition of Vectors
  Vectors used for view axes are defined in vectors' definition area. When data sets are stored, the
primary and secondary components of covariance vectors are listed in the text area. We can set
arbitrary vectors in this area. Moreover, we can select "randV[*]" to define the "sub" direction. This
is not a constant vector. When the user pushes the "Redraw" button, a random vector "randV[ ]" is
set randomly with the condition that this is orthogonal to the "direction."

2.6 Density View
  A given area is divided into 20×20  rectangles. The vector data are separated using this partition.
We calculate the average value for each divided block. When a user clicks the left mouse button, we
obtain the density value in the corresponding divided area. 
 
2.7 Outputs
  For each view area, we can save the results. The scattered graph is saved as a BMP file, and other
contents are saved as a text file. In the text file, the number of data, two axis directions, the scales,
and the range are listed.

3. Selection of View Axes
  For arbitrary vector data, the value range varies from coordinate to coordinate. Thus, we need
some basic translation before we visualize the data. In this section we explain the details.

3.1 Normalization for Each Coordinate
  Let {x⃗k}k≤N  be a sequence of d dimensional vectors, and we denote x⃗k=(xk
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Figure 3.1 Coordinates of d dimensional vectors



We define the starting range for j-th coordinate (r 1,
( j )r 2

( j ))  as follows.

r1
( j )

=m( j )
−C √s( j ) , r 2

( j )
=m( j)

+C √s( j )
 ( C=2.5  in the system).

Next we define the normalized vector as follows.

x̃k
( j)

=
xk
( j )−r1

( j)

r2
( j)

−r 1
( j )

, x⃗k ' =( x̃k
( j)) j=1

d

3.2 Setting of Directions
  We use principal component analysis (PCA) for replacing direction vectors of components. Let S
be the covariance matrix of {x⃗ ' k}k≤N . Eigenvectors e⃗1 , e⃗2  correspond to the largest and second

largest eigenvalues of S. We call them primary and secondary components of S. In a case where we
have two data sets {x⃗ ' k}k≤N  and {y⃗ 'k }k≤N ' , we calculate primary and secondary components for

{x⃗ ' k}k≤N ,  {y⃗ 'k }k≤N ' ,  and  {x⃗ ' k}k≤N∪{ y⃗ ' k}k≤N .  These  vectors  are  listed  in  the  text  area

"Definition Vector." We can also set an arbitrary vector by hand in this text area.

3.3 Setting of Random Vectors
  Let v⃗  be a direction vector defined in the text area, and "sub" is defined as "randV[* v ];" we set
the other axis using a random number. Let G be a d −1  dimensional Gaussian random vector, and

the distributions of all coordinates are  N(0,1), independent of each other. Thus,  
G
∣G∣

 is a random

vector  uniformly  distributed  on  the  d −2  centered  sphere  with  radius  1.  Next,  congruent
transformation from  ℝd −2  to  hyperplane  {⃗x : x⃗⋅⃗v=0}  realizes  a uniformly distributed random
vector orthogonal to v⃗  and ∣⃗x∣=1 .

4. Density Approximation
  Let N  be the total number of vector data, and each vector is defined as p⃗k∈ℝdim ( 1≤k≤N ),

and the approximated density values are defined as d k . Next, the mean density value for the view

point is calculated using the method in Section 2.6. The system has two quantification functions for
local density. In this section, we explain these two calculation methods for the density value of point
p⃗k .

4.1 Dual Partition
  For  approximating  densities,  we  use  the  Euclidean  distance.  Without  having  a  concept  for
reducing  the  computation  time,  we  calculated  N (N −1)/2  distances  to  create  a  complete
neighborhood  system.  We  then  prepared  a  2-D  partition  and  every  point  was  set  into  the
corresponding divided area. By using this partition, we reduced the calculation steps. 
  For  given  vector  data  {pk}k≤N ,  we  set  covariance  matrix  S .  The  primary  and  secondary

components are the eigenvectors e⃗1  and e⃗2  corresponding to the largest and second largest eigen

values  of  S ,  respectively.  We  then  divided  the  projection {(e⃗1⋅p⃗k , e⃗2⋅p⃗k )}k≤N  into  D×D

rectangular  areas  (we  used  D=10 in  the  system).  In  addition,  we  defined  the  two  sequences
{x i}i≤D  and {y j}j≤D  satisfying

                # { p⃗k : p⃗k⋅e⃗1∈I i
(1)}=

N
D

, (i=1,2,... , D , I i
(1)=[ xi−1 , xi ])



                # { p⃗k : p⃗k⋅e⃗2∈ I j
(2)}=

N
D

, ( j=1,2,. .. , D , I j
(2)=[ y j−1 , y j ])

  We set  the values  of  {xi}i≤D  and  {y j}j≤D  by using sorted sequences of  {e⃗1⋅p⃗k}k≤N  and

{e⃗2⋅p⃗k }k≤N , respectively. Thus, the number of set # { p⃗k : p⃗k⋅e⃗
∗

2∈ I j
(∗)}  can slightly differ from 

N
D

if  there are several  p⃗k  with the same p⃗k⋅e⃗
∗  value. 

We considerd dividing area P i , j , for i , j  ( i , j≤D ) as follows:

P i , j={⃗x∈ℝdim : x⃗⋅⃗e1∈I i
(1) , x⃗⋅⃗e2∈I j

(2)}

  Thus, every p⃗k  is set to some P i , j . In the following two subsections, we explain the reduction

methods for the construction of neighborhoods using this partition.

4.2 Standard Local Counts
  Let r 0  be the neighborhood radius, which is defined in the configuration file (see Section 2.1).

For  each  k≤N ,  we  created  a  set.  For  constructing  U k ,  we  defined  the  minimum  distance

md (k ,i ' , j ' )  from p⃗k  to P i ' , j '  as follows:

md (k ,i ' , j ' )=min {∣(x , y )−(e1⋅xk , e2⋅xk )∣: xi '−1≤x≤xi ' , y j '−1≤ y≤ y j ' }  .

  We call  area  P i ' , j '  "possible  area"  satisfying  md (x ,i ' , j ' )<r0 .  We  then  constructed  the

neighborhood U k  as follows:

(1) Let P̃ i , j={pl : p l∈P i , j} , for each i , j  ( 0≤i , j≤D ).

(2) For each p⃗k , find (i , j)  such that pk∈P i , j .

(3) Add all elements p⃗∈P i , j  satisfying ∣pk− p∣<r0  to U k .

(4) Perform the same search, for P i ' , j '  if md (i ' , j ' )<r 0 .

(5) The search of P i ' , j '  is conducted in close order while a possible area exists.

  Consider the case in which dim=3  and P i , j  is an infinitely long square pole. Thus, two vectors

in P i , j  can be very far from each other. However, no neighborhood elements exist if the area is not

a possible area. In other words, we can reduce the number of calculation steps through this partition.

4.3 Density of  Four Directions k -neighborhood 
  In this  section,  we explain the density of four  directions  k -neighborhood(4DKN).  First,  we
explain 4DKN. We assume that k  is a multiple of four. Figure 4.1 shows the schematic of 4DKN.
  The origin of the coordinate graphics (Figure 4.1) is the target data point. The projected image of
data points is separated by axes from first to fourth quadrant. We constructed a neighborhood of the
target data point using four quadrants as following:

• We selected 
k
4

 nearest points from the center for each quadrant.

• The point number in a quadrant can be less than 
k
4

 if there are not enough points in this

quadrant.
• We used dual partition defined in Section 4.1 to reduce the calculation time.



                                                          k                    k=8                                    
  
  We remark that the distances between the center points and other points are calculated as higher
dimensional Euclidian space, and not the projected 2-D space. 
 
4.4 Comparisons
  In this section, we show the comparison of the proposed density and standard local counts using
random numbers. Consider a 3-D Gaussian distribution with the mean vector m⃗=(2,1,5)  and the

co-variance  matrix  S=(
2 0 0
0 3 0
0 0 1) .  Next,  by  using  random  numbers,  we  prepared  N=1000

vectors.  By using  m⃗  and  S ,   we can obtain the correct likelihood value for each point.  We
compared  these  values  with  4DKN  values  and  standard  local  counts.  We  selected  parameters
k=20  (4DKN) and r 0=0.6 (standard local counts) by considering the size of both neighborhoods.

  Figures 4.2, 4.3 and Table 4.1 show the relation and correlation between calculated variables.
Figure 4.2 shows the correlation between density and likelihood of each data point, and Figure 4.3
shows the correlation between standard local counts and likelihood of each data point. As can be
seen, both of correlations are highly positive. Table 4.1 shows that the correlation coefficient of
4DKN density at more than 0.8 is higher than the correlation coefficient of standard local counts.
Therefore, we concluded that the precision of 4DKN density is good.

Density  using
4DKN

Number of data
in r 0

Correlation coefficient 0.8 0.76

Table 4.1 A correlation between variables and likelihood

Figure 4.1 Making of    -neighborhood(             ) 



5. Conclusion
  We have created a system. We developed a software to plot vector data for a rough understanding
of their distribution. We have some functions to control view angles in the system. We analyzed
approximation  methods  for  determining  the  density  of  a  vector  distribution  by  using  local
information of vector data. In addition, we created a density viewer for vector distribution. Our
study use standard Euclidean distance, we will seek a more effective way to calculate the distance
(image-based  distance,  Mahalanobis  distance,  for  example).  Furthermore,  we  will  try  some
incorporation  of  our  system  into  matrix-based  systems  such  as  Matlab.  These  are  our  future
problems.
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