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Abstract

Students are always asking for applications of mathematics. But more often than not,
textbooks are filled with “applications” which are unimaginative, contrived, unrealistic,
and uninteresting. However, there are of course numerous areas in which mathematics
can be, and is, deployed to great effect. The purpose of this article is to introduce
one such area: Lindenmayer systems, which beautifully joins mathematics and graphics,
and investigate some of the mathematics—in particular their fractal dimension—and also
the beauty of some of the graphics. We claim that the simplicity of the systems, and
the complexity of their outputs, make for a simple way to introduce complexity—and
modelling of the natural world—into a mathematics course, especially a course on finite
mathematics, geometry, or computational mathematics.

1 Introduction
Lindenmayer systems, or more simply L-systems were initially developed by the biologist Aristid
Lindenmayer in 1968 as a way of describing the growth of organisms. The initial object of study
was a cynobacterial algae Anabaena Catenula which forms long strands like strings of pearls.
The technique developed by Lindenmayer was found to be extraordinarily flexible and powerful,
and was shown to be able to model plants of all sorts, as well as fractals. Although L-systems
have been studied and used now for nearly 50 years, there are still many unsolved problems
about their behaviour, and new uses for them are still being found [5, 7, 13].

2 Brief descriptions

Term rewriting
Simply put, an L-system is a method of creating strings of characters, according to a list of
rules which describe how certain characters in the string are replaced by other characters. For
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example, we can construct strings consisting of 0’s and 1’s, starting with the string “0” and
replacing characters according to the rules

0 −→ 1
1 −→ 01

The important point is that in any string, all characters are replaced simultaneously; that is, in
parallel; so that all 0’s are replaced with 1’s, and all 1’s are replaced with 01’s. This produces
the following sequence of strings, where n denotes the generation:

n Strings
0 0
1 1
2 01
3 101
4 01101
5 10101101
6 0110110101101

To show this in more detail, consider the generations 5 and 6, starting with all the characters
in generation 5:

Characters: 1 0 1 0 1 1 0 1
Result of rules: 01 1 01 1 01 01 1 01

A system such as this is known as a “term-rewriting system”. Note that even with this simple
system we can perform some mathematics; for example, to count the numbers an of 0’s and bn

of 1’s in each generation. Considering the rules above, we have

an+1 = bn, bn+1 = an + bn

which can be written as a single equation in bn as

bn+2 = an+1 + bn+1 =⇒ bn+2 = bn+1 + bn

and this is the generating formula for the Fibonacci numbers Fn. With F0 = 0 and F1 = 1 it
follows that bn = Fn, an = Fn+1 and so the total length of the string at generation n is Fn+2.

Turtle graphics
In order to turn such a string into graphics, the tool of choice is turtle graphics. This has
its antecedents in the computer language Logo, pioneered by Seymour Papert at MIT in the
late 1960’s [9]. The “turtle” can move around, drawing as it goes (or moving without drawing,
or even erasing); the importance of turtle graphics is that all commands are defined from the
perspective of the turtle. For example, with the turtle starting facing up, the following Logo



commands will draw a square on an angle:
Command: clearscreen right 30 repeat 4 [forward 100 right 90]

Explanation: Clear the screen and
return the turtle to
its home position

Turn right 30 de-
grees

Move forward a distance of 100 and turn
right 90 degrees. Repeat these two in-
structions four times.

Outcome:

In some modern implementation of Logo, or of turtle graphics, the turtle is denoted by an
arrowhead, as here, which shows its current position and direction.

A fractal example
To show how L-systems, turtles, and graphics mix, we shall look at Koch’s “quadratic curve”,
where a line is transformed into a square wave shape:

This is continued recursively; the new shape may be considered to have eight line segments
each one-quarter the length of the original line, and each of these is transformed, and so on.
Using the symbols:

F: move forward one step
+: turn left 90 degrees
-: turn right 90 degrees

the line transformation can be written as the L-system rule:

F −→ F + F− F− FF + F + F− F

Since there is no current modern implementation of Logo available for all platforms, we shall
develop this using the turtle graphics library of Python. Note that there are in fact several
excellent L-systems implementations in Python [3], but we shall adopt Buchberger’s “black-
box, white-box” approach [4] and build up some simple procedures from scratch. This allows
a much deeper understanding of the workings of L-systems. Python’s turtle graphics library is
full featured, and programs written in Logo (or any other turtle graphics implementation) can
be translated into Python with little effort.
def kochq(level, size):

if (level==0):
t.fd(size)

else:



kochq(level-1, size/4); t.lt(90)
kochq(level-1, size/4); t.rt(90)
kochq(level-1, size/4); t.rt(90)
kochq(level-1, size/4)
kochq(level-1, size/4); t.lt(90)
kochq(level-1, size/4); t.lt(90)
kochq(level-1, size/4); t.rt(90)
kochq(level-1, size/4)

If this transformation is applied to each side of a square, the result is called “Koch’s quadratic
snowflake”, and the results at different levels are shown in Figure 1.

n = 2, 3, 4 n = 6

Figure 1: The Koch quadratic snowflake

As n → ∞, the figure becomes a fractal, in that it is self-similar at all magnifications: in
a sense it has an infinite complexity. Note that at each generation the length of the curve is
doubled, so the final result has infinite length but bounds a finite area. L-systems can be used
to draw a very large variety of fractal shapes, as well as space-filling curves [10].

In order to extend the shapes achievable by L-systems, it will be necessary to consider
branching. Standard symbols for branching are the (square) brackets, which translate to turtle
graphics as follows:

[: take note of the turtle’s current position and direction,
]: return the turtle to the position and direction (without drawing the path).

Normally these would be implemented using a stack, so that each closing bracket pops from



the top of the stack the values which had been pushed onto it by the corresponding opening
bracket.

One very simple system is given by the rule

F −→ F[+F]F[-F]F

where as above the + and - symbols indicate a turn—in this case a branch—to the left or right
respectively. This means that the group of symbols [+F] correspond to constructing a branch
to the left. Starting with a straight line, one application of the rule will produce the shape
shown in Figure 2.

Figure 2: The branching shape defined by the rule
F −→ F[+F]F[-F]F

The rule is now applied recur-
sively to every length in the new
shape, of which in the first gener-
ation there are five, corresponding
to the five F’s in the rule. Rather
than using a stack, we can imple-
ment branching by the simple ex-
pedient of turning in the required
direction, drawing the object, then
bringing the turtle back and turning
the other way, so as to be oriented
in the initial direction.
def edgetree(level, size, angle):

if (level==0):
t.fd(size)

else:
edgetree(level-1, size/3, angle); t.lt(angle)
edgetree(level-1, size/3, angle); t.bk(size/3); t.rt(angle)
edgetree(level-1, size/3, angle); t.rt(angle)
edgetree(level-1, size/3, angle); t.bk(size/3); t.lt(angle)
edgetree(level-1, size/3, angle)

Three different generations are shown in Figure 3, with an angle of 26◦. Already this has a
lifelike look, and it’s remarkable that such simple rules can lead to such an organic form.

Edge rewriting and node rewriting
The examples so far have used edge rewriting where a single edge is replaced by scaled copies
of itself. However, another way of applying L-systems is by node rewriting, where as well as
edges we include “nodes”. A node is indicated by an X, and may be considered as a placeholder,
where something will be added in future generations. In biological terms, an X is like a bud.
For example, consider the rules

F −→ FF (1)
X −→ F[+FX][-X]F[+FX]--FX (2)



n = 2 n = 3 n = 6

Figure 3: Different generations of F−→F[+F]F[-F]F

and we start with X. To make sense of this, consider the second rule without the X’s:

F[+F][-]F[+F]--F.

This may be considered the “base” tree, and is shown in Figure 4.
We can easily use the brackets to save and retrieve the turtle’s position. What we can do

is rewrite the strings first, and then finally draw the resulting string.
rules = {’F’:’FF’, ’X’:’F[+FX][-X]F[+FX]--FX’}
ls = ’X’
for i in range(4):

ls = ’’.join(rules[s] if s in rules else s for s in ls)

This last somewhat curious command is simply a way of travelling through the current string
ls and replacing each ’X’ and ’F’ according to the rules. Having got the string, we can easily
draw it:
def draw_lsys(str,size,angle):

stk = [] # a stack to keep positions and headings , implemented as a list
L = len(str)
for i in tqdm(str,total=L): # the tqdm library adds a progress bar

if i==’F’: t.fd(size)
elif i==’+’: t.lt(angle)
elif i==’-’: t.rt(angle)
elif i==’[’:

p = t.pos()
h = t.heading()
stk.insert(0,[p,h]) # insert current position and heading at top of stack
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Figure 4: A tree created with node rewriting

elif i==’]’:
t.penup()
ph = stk.pop(0) # retrieve position and heading from top of stack
t.setpos(ph[0])
t.seth(ph[1])
t.pendown()

An example (drawn on an angle) with level 8 is shown on the right in Figure 4. Even with the un-
realistic straight line branches, this has a remarkably tree-like shape and form. Greater realism
can be obtained by changing the width of the branches, and adding a little randomization—
both beyond the scope of this article. Note that this generic technique can be used to draw the
branching weed shown in figures 2 and 3.

3 Fractal dimensions and lengths
We have used the term “fractal” without defining it, and in fact we won’t provide a formal
definition. For our purposes, a fractal will be any non-smooth shape which retains its complexity
at arbitrary magnification. One way of distinguishing a fractal is by its dimension.

We can define the dimension of an object as the power by which its value changes as the
linear dimension is increased by a scale factor k. For example, if the sides of a cube are
increased by k, then its volume is increased by k3, whence its dimension is 3. Consider the
Koch “quadratic snowflake” transformation described earlier. Each transformation of a line



produces eight segments each one quarter the length of the original line; in other words if each
new segment is the same length as the original line, we have the line length increasing by four
but the total length of all segments by 8. Since

8 = 43/2

it follows that the dimension of this curve is 3/2. This notion of dimension is variously known
as the Hausdorff dimension or the Hausdorff-Besicovitch dimension.

Consider again the branching tree shown in figures 2 and 3. At each iteration, the tree
is divided in length by 3, for five new segments. If the segments are the same length as the
original line, then the line is increased by a scale factor of 3, and the total length of all parts
of the tree by 5. The dimension d therefore can be computed as:

5 = 3d =⇒ d = log 5
log 3 ≈ 1.465.

A fractal can be defined as an object with a non-integer Hausdorff dimension.
The branching tree just discussed was an edge-rewriting system; it is more difficult to

compute the dimension of a node-rewriting system, such as the example shown in Figure 4, as
the self-similarity is more subtle. But we can approximate the fractal dimension by investigating
the box-counting dimension; also known as the Minkowski-Bouligand dimension. This works
by overlaying the fractal with square boxes of size length b, and counting the number of boxes
N(b) required to cover the fractal. The dimension is then defined as

lim
b→0

log(N(b))
log(1/b) .

To see why this makes sense, consider a planar figure: a square, circle for example. We would
in general expect that the number of boxes of size b required to cover the figure will be roughly
the area of the figure divided by the area of a box, so that

N(b) ≈ A

b2

with the approximation becoming more accurate as b becomes smaller. Then

log(N(b))
log(1/b) ≈

log(A/b2)
log(1/b)

= log(A) + 2 log(1/b)
log(1/b)

= A

log(1/b) + 2.

But as b→ 0, log(1/b)→∞ and so the first term vanishes, leaving 2.
We can approximate this result by considering the fractal as an image of size N×N , broken

into n2 subimages of size b2, where nb = N . The value N(b) will then be the number of
subimages intersecting the fractal. The quotient to be computed will then be

log(N(b))
log(N/b) .



Note that the denominator here is log(N/b) = log(n): this is because in a discrete situation as
here, b = 1 is the smallest possible value.

For our tree, table 1 shows the various box-counts and quotients, for decreasing values of b,
from which we infer that the dimension of the tree in Figure 4 is approximately 1.7.

b 512 256 128 64 32 16 8 4 2 1
n 2 4 8 16 32 64 128 256 512 1024

N(b) 4 16 60 178 528 1608 5152 16656 51168 132939
log(N(b))

log(n) 2.0000 2.0000 1.9690 1.8689 1.8089 1.7752 1.7616 1.7530 1.7381 1.7020

Table 1: Computing the box-counting dimension

A very good, simple, clear account of the box-counting dimension is given by Falconer [6].
For applications of dimensions of L-systems, see Alfonseca et al [1]. Further investigations of
the fractal dimension can be found in the bibliography of Prusinkiewicz and Lindenmayer [10].

One final matter is to consider the length of the strings obtained by the rewriting. We
have only touched on the simplest possible strings; strings (and especially in three dimensions)
may have many more symbols. But for example consider the tree with the rules defined in
rules (1) and (2). Suppose we define fn, xn, zn to be the numbers of F’s, X’s and other symbols
respectively at generation n. From examination of the rules, we see that

xn = 4xn−1, x0 = 1
fn = 2fn−1 + 5xn−1, f0 = 0
zn = zn−1 + 11xn−1

The first equation can be solved immediately as xn = 4n, and now the second equation can be
written as

fn = fn−1 + 5(4n−1), f0 = 0
and this can be solved by standard techniques for recurrence relations as

fn = 5
2(4n − 2n).

The last equation is
zn = zn−1 + 11(4n−1)

which can be solved as
zn = 11

3 (4n − 1).

This means that the total length of the string at generation n is

xn + fn + zn = 4n + 5
2(4n − 2n) + 11

3 (4n − 1)

= 43
6 4n − 5

22n − 11
3

= 1
6

(
4n − 15(2n)− 22

)
.

Further examples and discussions are given by Rozenberg and Artomaa [11].



4 Conclusions
Fractals are seen as a modern geometry for describing the natural world [8]. In contrast to
standard geometrical figures such as squares and circles, fractals are better able to describe the
complexity of natural shapes. Fractals have been used to model branches of trees, river systems,
blood vessels and nerves in the human body, mountain ranges, and many others. However, the
complexity of fractals has precluded their adoption in the classroom; mathematics teachers
and learners have instead used simple shapes as approximations (as in the famous “spherical
cow” joke [2]), and of course such approximations have been used to great effect. But instead of
simplifying the natural world to suit our mathematics, fractals allow us to work with the natural
world using a greater complexity. Of all fractal shapes, L-systems are amongst the simplest to
understand, to program, and to analyse. Given the importance of computer coding in modern
mathematics curricula [12], there would appear to be a strong case for the consideration of
L-systems in such curricula.
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