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Abstract

In this paper, we discuss two problems found from Chinese college entrance eram
practice problems [§]. We see how original problems in 2D, stated in an exam static
and somewhat uninspired setting, can be extended to other interesting cases in 2D and
more challenging corresponding problems in 3D for students to explore with the help of a
Dynamic Geometry Software (DGS) and a Computer Algebra System (CAS). We use a
DGS to construct the locus or locus surface geometrically, and use a CAS to verify our
locus or locus surface analytically. We shall see with the innovative use of technologi-
cal tools, mathematics can be made more fun, accessible, challenging and applicable to
broader group of students. Finally, we attempt to make these problems relevant to real-
life applications, we invite readers to investigate how these problems can be interpreted
differently.

1 Introduction

Ever since the document of Innovation on Mathematics Curriculum and Textbooks in China was
released in 2006, technological tools have been adopted for explorations in many high schools in
China. However, because college entrance examinations still play crucial components for stu-
dents’ future success, students and parents wonder how activities involving exploration could
help students improve their exam grades. They are concerned that the nature of the assess-
ment methods that students face in many countries does not reward exploration. However, we
cannot ignore the fact that innovation and understanding do not come from drills or rote-type
learning, but from exploration. The author believes that we should recognize the importance
of stimulating the discussion of mathematics and its applications through timely use of techno-
logical tools (see [7] or [9]). In this paper, we present two problems that were found in college
entrance exam practice problems from China ([8/). To make these problems more accessible,
interesting and challenging at times, we propose using a DGS to construct the potential curve



for a locus geometrically. While students may be able to solve locus equations by hand when
the problems are simpler, they will soon discover that finding the algebraic equation for a locus
by hand is virtually impossible when problems become more complicated. Consequently, they
see the need of a DGS for construction purposes and a CAS to validate whether the algebraic
equation for the locus matches with the plot that was obtained from the DGS. We shall see that
the problems discussed in 2D can be extended to respective 3D scenarios when students have
knowledge of multivariable calculus. The locus problems can be linked to real-life problems.
The author states some possibilities and invites readers to imagine more applications on their
own.

1.1 Original and Extended Scenarios

The original statement of the problem is stated as follows: Given a unit circle centered at (0,0)
and a fized point at A = (2,0). Let Q) be a moving point on the unit circle C. Find the locus
M which is the intersection between the angle bisector QOA and line segment QQA. This is an
easy exercise to verify that the locus M will be a circle, which we leave it as an exercise to
the readers. It is natural to imagine when DGS and CAS tools are available for students to
explore in a class, then quickly they may ask ‘what if’ scenarios. For example, we consider the
following case:

Example 1 Given an ellipse C' of [x(t),y(t)] = [acos(t),bsin(t)] and a fized point A = (p,q).
Let @ be a moving point on the ellipse. Find the locus M which is the intersection between the
bisector QOA and line segment QA.

Students may use their favorite DGS to construct the trace the locus M without too much
trouble, which we use GInMA ([4/) below to demonstrate one possibility of the locus in red
color of Figure 1 below.

Figure 1 Locus, bisection and an
ellipse

We note that a DGS allows users to drag the moving point () and see how the corresponding
locus M moves accordingly. Similarly, we can also make the point A to be movable and see
how the locus changes accordingly (See Figure 2(a) and 2(b)). Being able to visualize and
manipulate a dynamic graph constructed from a DGS will allow students to comprehend the
original question quickly and make additional observations from what if scenarios. The next



step students can do is to see if they can apply their math knowledge to derive the equation
analytically for the locus and verify if what they see from DGS earlier is reasonable. We shall
see below that the locus can be found with a little help from geometry and familiarity with

parametric equations.

First, we construct a line passing through M and is parallel to OQ),

and label the intersection between such line and OA as B. It follows from the Angle Bisector
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tion for the locus M can be seen directly from Eq.

(8) above.
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which we use MAPLE ([6]]) here, we plot the locus M together with the original ellipse when
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We pose another scenario when we replace the ellipse by a cardioid as follows:

Exercise 2 Given a cardioid C of the form [z(t),y(t)] = [(1—cos(t)) cos(t)+1, (1—cos(t)) sin(t)]
and a fized point A = (p,q). Let Q be a moving point on the cardioid. Find the locus M which
1s the intersection between the bisector QOA and line segment Q) A.

As we have mentioned earlier, we encourage students to use a DGS to explore their possible
locus before validating analytically with their favorite CAS to see if the locus seen from a DGS
matches that of the CAS. We use [/ to draw the locus when we vary the point A in Figures
3(a) and 3(b) below. We also use MAPLE [6] to plot the locus analytically when p = 3 and
g = 2 in Figure 3(c).

Figure 3(a) Locus and  Figure 3(b) Point A is Figure 3(c) Locus
a cardioid outside the cardioid generated by MAPLE

1.1.1 Possible Real Life Applications in 2D

1. Consider the Figures 2(a) or 3(b), an allied aircraft () is moving along the shape of a given
curve C, which could be an ellipse or a cardioid. The allied aircraft carrier is set up at
the point A (outside curve C'), which communicates with a command center O = (0, 0).
The enemy decides to move along (roughly) at the intersection between the angle bisector
QROA and QA to avoid being targeted. Find the possible route for the enemy.

2. A game is described as follows: We refer to Figure 3(d). A light source @), pointing
at a point O, is moving along a curve C' (could be an ellipse or cardioid as described
in Example 1 or Exercise 2). The reflected light ray is always kept at the direction of
(74, where A is a fixed point. It is known that the target M is always staying at the
intersections between the line segment of AQ and the normals of mirror sticks (the mirror
sticks are shown in line segments L or L'when point () is moved to @' in Figure 3(d)).



The game is for you to maneuver the mirror sticks so you can hit the target M.

Figure 3(d) A game and
reflections

3. Use your imagination to interpret your real-life scenarios.

1.2 Extensions to 3D scenarios

Here we describe a possibility for students to explore once they have knowledge of parametric
equations for surfaces. We shall see that the bisection theorem used in 2D is still valid in the
3D explorations. Specifically, we explore the scenarios when we replace the ellipse and cardioid

by an ellipsoid and a cardioid surface respectively. We state these two scenarios as follows:

Example 3 Given an ellipsoid S of x(0,¢) = asinpcosf, y(0,p) = bsinpsinfd and z(0,p) =
ccos p.and a fived point A = (p,q,r). We pick a moving point Q) on the ellipsoid S. Find the

locus M which is the intersection between the bisector QOA and line segment QA.

We show a scenario of the locus of M in Figure 4(a) below using [4/. We note that Eq.(8)

can be extended to find the parametric equation for the locus surface in 3D as follows:
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Through various exploration by adjusting the shape of the ellipsoid (a, b, ¢) and the fixed point
A = (p,q,r), we found an interesting non-convex locus when (a,b,c) = (3,2,1) and (p,q,r) =
(3,1,1), which are shown using /6] in Figure 4(b) and [4/ in Figure 4(c) respectively. We pose
another scenario when we replace the ellipsoid by a cardioid surface, which we leave it as an
exercise as follows:

Exercise 4 Given a cardioid surface S by rotating the 2D curve of [x(t),y(t)], where x(t) =
a(l — cost)cos(t) + a,y(t) = a(l — cost)sin(t) and t € [0,27], around the x — axis. We let A
be a fized point and pick a moving point Q on the cardioid surface S. Use a DGS or CAS to
find the locus M which is the intersection between the angle bisector QO A and the line segment
QA.[Hint: We see that the cross sections of the surface S are circles parallel to yz — plane,
whose centers are on the xr — axis with radius y(t). If we let angle ¢ be the angle between
the vector from center to the point on each cross section and the positive y — axis. Then the
parametric surface becomes [x(t),y(t) cos @, y(t) sin ], where t € [0,27] and ¢ € [0, 7)./

We use [6] to sketch the locus surface (in blue) and the original cardioid surface as follows
with A =(1,2,3) and a = 1 as follows:
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Figure 5 Locus surface
generated by MAPLE

1.2.1 Possible Real Life Applications in 3D

1. An allied aircraft () is moving along the shape of a given ellipsoid or a cardioid surface.
The allied aircraft carrier is set up at the point A, which communicates with a command
center O at the center of the ellipsoid or cardioid surface. The enemy’s aircraft decides to
move along at the intersection between the angle bisector QOA and QA to avoid being
hit. Find the possible route for the enemy.

2. A game is described as follows: A light source @), pointing at a point O = (0,0,0), is
moving along a surface S (it could be an ellipsoid or a cardioid surface as described in
Example 3 or Exercise 4). The reflected light ray is always kept at the direction of O—fl,
where A is a fixed point in the space. It is known that the target M is always staying at



the intersections between the line segment of AQ) and the normals of mirror planes when
(@ is moving along S. The game is for you to maneuver the mirror planes so that the
target M can be hit.

3. Use your imagination to interpret your real-life scenarios.

2 Exploration 2

We next show how the following original locus problem, originated from a practice problem for
college entrance in China, actually serves one way of constructing an ellipse from two given
circles.

2.1 Original and Extended Statements

Example 5 We are given two concentric circles centered at O = (0,0) with radii of 1 and 2
respectively. We are given a moving point A on the unit circle. We construct the line OA to
intersect at a point B on the outer circle. We then construct the line l; passing through B
and is parallel to y — axis. Finally, we construct the line ls passing through the point A and is
parallel to x — axis. Find the locus for the point P that is the intersection between [ and ls.

Figure 6 Generating an
ellipse from two concentric
circles

Although finding the locus is quite elementary with simple knowledge from trigonometry,
this problem actually serves a good purpose of understanding how the parametric equation for
an ellipse is being formed. If we assume the radii of inner and outer circles to be b and a
respectively. It is quite simple from [3] (Figures 7(a) and 7(b)) that the locus of the desired
ellipse will be of the form of [acost, bsint].It is interesting to note from [3] that ‘For extreme
accuracy it’s probably the best method. It’s convenient for use on a drafting board with T-square



and triangles’.

Figure 7(a) Constructions Figure 7(b) Locus derived
of an ellipse from the construction

It is natural to ask now what the locus would be if we replace the outer circle by an ellipse.

Example 6 We are given a circle C with radius ro and centered at O = (0,0), and an ellipse
of the form ‘z—z + z—j =1, that is outside the given circle. Let A be a moving point on the circle.
Suppose we construct the line OA to intersect at a point B on the ellipse. We construct the line
Iy passing through B and is parallel to y — axis. Next we construct the line ly passing through
the point A and is parallel to x — axis. (a) Find the locus for the point P that is the intersection
between l; and ly. (b) Find the point B which yields the maximum area for the triangle APB.
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Figure 8 Generating the locus
from a circle and an ellipse

We note that the part (a) of this problem can be solved by hand without too much work:
We write A = (A,,A,), B = (B, By), and let OB =1, {BOC = 0, then B = (acosf,bsin#).
We see OB? = a%cos?0 + 0?sin®0 = a?cos? 0 + b*(1 — cos? ) = b? + (a? — b%) cos? . Thus
r? = b2 + (a® — b?) 152 which leads to

_ V2ab
Va + b2 — (a2 — %) cos 20

OB =r (10)
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2a2b? cos® 0
. - 2 v2ab 20 _
If we write locus P = (P,, P,), then (P,)" = (\/a2+b2—(a2—b2)c0526> cos® ) = B — (1) cos 20

and (P,)* = r2sin® 0. For part (b), the area of ABP is the absolute value of

1

5 (AP)(BP)= - (P, — A;) (B, — P,) = % (rcos@ —rocosf) (rsinf — \/rosind).  (11)

DN | —

Now we substitute r in Eq. (10) into the area of ABP and use a CAS to simplify 3 (AP) (BP)
to the following form:

2
L sin20 v2ab o (12)
4 Va?+ b2 — (a? — b?) cos 26

The locus corresponds to an ellipse is sketched in Figure 8 using [4/. If we use a CAS such
as [6] with specific numeric values of @ = 5,b = 4 and ry = %, we find the maximum area
of ABP to be 3.5631, which occurs when 6 is about 0.655308 radians or 37.5464 degrees. In
the following example, we investigate a similar locus problem but centers for two curves are at
different locations, which we stated the problem as follows:

Example 7 We are given a circle C* centered at O = (0,0) with radius 1o, and a cardioid
which resembles the shape of r = a(1 — cosf), where 6 € [0,27] enclosing the given circle C*
as shown in Figure 9(a). We are given a moving point A on the circle. Suppose we construct
the line OA to intersect at a point B on the cardioid. We construct the line l; passing through
B and is parallel to y — axis. Next we construct the line ly passing through the point A and is
parallel to x — axis. (a) Find the locus for the point P that is the intersection between l; and
ly. (b) Find the point B on the cardioid which yields the maximum area for the triangle APB.

Figure 9(a) Locus Figure 9(b) Locus
generated by [2] generated by [0]

First, we notice in Figure 9(a), the cardioid, of the shape = a(1—cos ), enclosing the circle, is
centered at the point C' and the circle C* is centered at (0, 0). If we use O = (0, 0) as the center
of the cardioid enclosing the circle, we may write the parametric equation [x(¢),y(®)] for such
cardioid as z(0) = a(1—cos ) cos(0)+OC and y(#) = a(1—cos @) sin(#) with OC' > ry. Now, we
let 0 = L BOC,p = £BCD, OB = R,0C = a. We next will express R in terms of a and angle



¢. We write locus P = (P,, P,), A = (A;,4,), and B = (B,, B,), and note P, = A, = rysinf
and P, = B,. Note the original blue cardioid can be represented by = a(1—cos ). We observe
B, = Rcos = a+rcosy and B, = Rsinf = rsin ¢, which leads to

R?* = a®+2arcosy + 1’
= a?+2a(a(l — cos p)) cos p + a*(1 — cos p)?
= a” (2 — cos®p) . This implies (13)

R = av/2—cos? . (14)

In view of P, = B,, we see

Py r >

— = 14+ —cosp =1+ (1—cosyp)cosp =sin p + cos p,

a a

P, = a(sin® ¢+ cosp). (15)

Furthermore, we see

P, rsin sin ¢ (1 — cos p)

. ro.
— = sinf = —singp = = and

To R ay/2 — cos? p \/2 — cos?p
: 1_
P, = (Sm(p( COW)). (16)

2 — cos? p

The parametric representative of locus P using angle ¢ is then [P,, P,]. We plot the locus
[P, P,] together with cardioid and circle when ro = 1 and OC' = 2 in Figure 9(b) with the help
of [6]. If we make the substitution of ¢ = tan £, then we can see that t*+ 4¢3 cot  —4t> —1 = 0,
which yields

P, 2t
a 1+
The Eq. (17) gives a representative for the locus P in terms of angle 6. The sketch of the locus
corresponding to a cardioid is shown using [Z/ in Figure 9(a). We leave it as an exercise to find
the maximum area for the triangle ABP.

P,
and Zy = sin 4. (17)

2.1.1 Possible Real Life Interpretation in 2D

1. A sea rock is similar to the shape of half of a circle. An airplane is flying on the path of C
(either a bigger circle, an ellipse or a cardioid that is enclosing the circle). The airplane
decides to drop a basket tied to a vertical ladder intending to rescue people standing at
a point A on the sea rock. But because of the tides, the sea rock may be covered by
various water levels at times. The tides are assumed to be lines parallel to the sea level.
We assume those people who need to be rescued from the sea rock may need to swim to
the location where the basket is dropped. (a) Find the locus of the rescuing basket. (b)
Furthermore, it is decided that the best place the airplane should drop the basket is at
the point where the area of the triangle AB P reaches its maximum. Find the place where
the airplane should drop the basket.

2. Use your imagination to interpret your real-life scenarios.



2.2 Extensions to 3D scenarios

In view of three cases we described in 2D. We naturally extend the corresponding scenarios to
respective 3D. Specifically, we state these scenarios as follows:

Example 8 We are given two concentric spheres centered at O = (0,0,0) with radii of a and
b (with a < b) respectively (see Figure 10 using [ below. The blue is the unit sphere and the
yellow is the sphere of radius 2. We are given a moving point A on the unit sphere. We extend
the ray OA to intersect the outer sphere at a point B. We project point B onto the plane E (in
purple), that is passing through A and is parallel to xy plane, at a point P. (In other words,
the vector AP is perpendicular to the normal vector of the plane E.) (a) Find the locus for the
point P. Find the point B that will yield the maximum area for the triangle APB.

Figure 10 Generating an
ellipsoid from two concentric
spheres

We write A = (A,,A,,A.), B = (B, By, B,), and the locus P = (P,, P,, P,). We use the
spherical coordinate system by letting the angle ¢ to be the angle between O B and the positive
z — axis, and the angle 6 to be the angle between the projection of OB onto xy-plane and the
positive x —axis. If we let a = OA and b = OB, then we see that B, = bcos ¢, B, = bsin ¢ cos 6
and B, = bsin psinf. We note that P, = A, = acosp, P, = B, = bsingpcosf and P, = B, =
bsin psin 6. It shows that the locus surface in this case is an ellipsoid of the form

p: P} P
R te =t (18)

We may interpret part (a), finding the locus surface, as one way of constructing an ellipsoid as
stated in [5]. We construct the locus surface in green as seen in Figure 10 with the help of [/).
We leave it as an exercise to find the maximum area for the triangle ABP.

Discussions:

1. We notice that it is not possible to construct an ellipsoid of the form 2—§ + g—; + i—j =1
with a # b # ¢ by using only two spheres.

2. The immediate question one may ask is if it is possible to construct an ellipsoid geomet-
rically of the form % + 4+ i—; =1 witha #b # c.

a2



3. One may also ask why the parametric equation for an ellipsoid of the form ﬁ—; + g—; + i—; =1
can be expressed as [z(0, ¢),y(0, ¢),z(0, ¢)] = [acosfsinp, bsin b sin p, c cos p],where
0 € [0,27] and ¢ € [0, 7.

Now it is natural to replace the outer sphere by an ellipsoid and see how the locus surface
may vary. In particular, we consider the following:

Exercise 9 We are given a sphere centered at O = (0,0,0) with radii of ro, and an ellipsoid
that is centered at (0,0,0) and outside the given sphere. The blue is the sphere and the yellow
is the ellipsoid). We are given the moving point A on the sphere. We extend the ray OA to
intersect the outer ellipsoid at a point B. We project point B onto the plane E (in purple),
that is passing through A and is parallel to xy plane, at a point P. (In other words, the vector
AP is perpendicular to the normal vector of the plane E.) (a) Find the locus for the point P
(b) Find the point B which yields the maximum area for the triangle APB.

We write the parametric equation for the ellipsoid as [a cos 8 sin ¢, bsin 0 sin ¢, ¢ cos p].We

let ¢ be the angle between AB and positive z — axis and 6 be the angle between the projection
of OB onto the xy-plane and the positive x — axis. Then the locus [P, P,, P,| can be written
as follows:

P, = B,=vy(0,¢) and (20)
P, = A, =rycosp. (21)

We leave it as an exercise to find the maximum area for the triangle ABP.
We explore how we can replace the outer ellipsoid by a cardioid surface below:

Example 10 We are given a sphere centered at O = (0,0) with radius of ro, and the cardioid
surface S, by rotating [x(t),y(t)] = [a(1 — cost) cost + a,a(l — cost)sint] around the x — axis.
Let A be a moving point on the sphere. We extend the ray OA to intersect the outer cardioid
surface at a point B. We project point B onto the plane E, that is passing through A and is
parallel to xy plane, at a point P. (a) Find the locus for the point P (b) Find the point B which
yields the mazximum area for the triangle APB.

Figure 11(a) A Figure 11(b) Locus
sphere, cardioidal  surface when point A Figure 11(c) Locus
surface and locus varies generated by MAPLE



As mentioned in Exercise 4, the cardioid surface can be written as [x(¢), y(t) cos ¢, y(t) sin ], where
t € [0,27] and ¢ € [0,7]. As we have seen in Example 7 that the locus for [z(t),y(t)] is

[z*(t), y* ()] = [a (Sin2 t + cos t) ,T0 (%)} . Due to symmetry, the locus surface for the
cardioid surface is [x*(t), y*(t) cos ¢, y*(t) sin ] . We plot various views of cardioid surfaces to-
gether with spheres and respective locus surfaces in Figures 11(a) and (b) using [4/. We verify

the locus surface analytically with [6] when a = 2 and 7o = 1 in Figure 11(c).

2.2.1 Possible Real Life Interpretation in 3D

1. A sea rock is similar to the shape of half of a small sphere. An airplane is flying on a
path of C, which lies on the surface of an ellipsoid or a cardioid surface. We assume
the ellipsoidal or cardioid surface is enclosing the sphere. The airplane decides to drop a
basket which tied to a vertical ladder to rescue people who are stuck in the sea rock. We
assume those people who need to be rescued from the sea rock may need to swim to the
location where the basket is dropped. But because of the tides, sea rock will be covered
by various of water level at times. The tides are planes that pass through a moving point
A on the sea rock and are parallel to the sea level). (a) Find the locus of the rescuing
basket. (b) Furthermore, it is decided that the best place the airplane should drop the
basket is at the point when the area of the triangle ABP reaches its maximum. Find the
place where the airplane should drop the basket.

2. Use your imagination to interpret your real-life scenarios.

Discussions:

We remark that some of these open ended projects in 2D and 3D are excellent choices for
students to explore. Examinations alone should not be the sole measurement of a student’s
success. It will be important to see how a math curriculum includes proper components of
exploration with the help of technological tools, where real life applications can be found. In
an article (see [1]), it is stated that ‘Taiwan plans a radical reform of its education system, one
aiming to set it apart in East Asia by playing up creativity and student initiative instead of the
rote memorization that dominates classroom learning in this part of the world.” While many
educators, researchers and parents would applaud this brave and bold initiative. However, how
do the government really implement this agenda remains to be seen. It is not how to say the
right thing but how to develop strategies to see it through. We outline necessary knowledge
for a teacher so technological tools can be integrated in a math curriculum to motivate more
students be interested in the STEM (Science, Technology, Engineering and Mathematics) area.

1. Use a DGS to simulate animations in two dimensions.
2. Encourage students to make conjectures through their observations from step 1.

Encourage students to verify their results using a CAS for 2D case.

= W

Extend students’ observations to a 3D scenarios if possible.
5. Prove corresponding results for 3D cases analytically using a CAS if possible.

6. Extend results to finite dimensions or beyond if possible.



3 Conclusions

We turned two static college entrance exam practice problems into interesting exploratory
types of problems both in 2D and 3D respectively. We notice that the required mathematical
knowledge of those extended 3D problems can be even accessible to high school students if
they are familiar with parametric equations of 3D surfaces. However, we do see the need of
developing more 3D DGS for visualizing purpose. Allowing users to drag and view figures
from different perspectives definitely assists us when we attempt to set up complex algebraic
equations.

It is common sense that teaching to the test can never promote creative thinking skills.
Furthermore, it will loose potential students who might pursue mathematics related fields in
the future. We know that, addressing the importance and timely adoption of technological tools
in teaching, learning and research can never be wrong. Therefore, we encourage ATCM com-
munities to continue creating innovative examples by adopting technological tools for teaching
and research and to influence their colleagues and communities and the decision makes in their
respective countries. We should consider selecting those examples that can be explored from
middle to high schools, university levels, or even beyond; and they should be STEM related
and link mathematics to real-world applications if possible. Access to technological tools has
motivated us to rethink how mathematics should be presented, to make it more interesting,
and to reveal its role as a cross disciplinary subject. There is no doubt that these technological
tools have helped learners to discover mathematics and to become aware of its applications.
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