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Abstract

New computational tools become available at every faster rates. A fundamental ques-
tion asks how such tools can help achieve clearly defined learning objectives. This article
argues, in a sequence of examples, that computing technologies can much support the
implementation of modern pedagogy. The focus is on enhancing a learner centered envi-
ronment. Of critical importance is that the learner takes the key role of asking further
questions, to take ownership of the discovery experience. We highlight the special role of
asking inverse questions with examples ranging from math circles to vector calculus.

1 Introduction

The invention and development of computing tools for mathematical tasks goes back well over
4000 years to precursors of the abacus. What has dramatically changed more recently is the
pace at which new tools appear. Some 300 years ago the slide rule was invented. Hand-held
calculators with arcane interfaces and syntaxes, and personal computers with huge packages
such as MATLAB, now have to compete with ever more intuitive apps that are ubiquitous on
smart-phones. Some programs and applications still have steep learning curves. But the latest
generation of students has very different attitudes towards, and experiences with, installing
new apps just as needed, quickly learning how to use them to address their problems. Well
designed apps can go viral in an instant, bad ones are quickly forgotten. Many teachers lag far
behind – just think of why not allowing smart phones during final exams?

Our focus here is not on specific computational tools. Indeed our examples largely use
spreadsheets, and basic computer algebra systems, just because they were most readily avail-
able. It should be easy to adapt any of these to similar platforms. Instead, this article is
concerned with what we can and want to use technology for when learning mathematics. The
central tenet is to exploit computing technologies to foster student-centered learning environ-
ments, in some adaptations of inquiry based learning pedagogies. Before jumping into the fray,
briefly recall some of many other uses of technology for mathematics learning that we will not
address here. Flash-cards for rote learning of definitions (vocabulary), and similar, have long
transitioned from cardboard to electronic form. Online homework and tests have long become
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the standard for drill exercises for both practice and assessment. It used to be that online
collaboration in mathematics was much hampered by the difficulty to transmit and convey
mathematical symbolic notation and diagrams. Rapidly evolving communication technologies
much facilitate this, too. At this place we like to share a little javascript that much enhances
communication in class, by randomly selecting and calling on students, so that everyone gets
a fair share, rather than a class dominated by the same few students. In our highly interactive
classrooms, this script has a black black-ground so that projectors need not be turned down
when using the board for other purposes.

<HTML><BODY BGCOLOR=BLACK>

<button onclick="randName()">Select a student</button>

<FONT COLOR=YELLOW SIZE=+2><B><P ID="demo"></P></B></FONT>

<SCRIPT>

function randName() {

var students = Array("=Ann","=Bob","=Charmayne","=Yee-Yang");

var n = Math.floor(Math.random()*students.length);

document.getElementById("demo").innerHTML = [n+1 + students[n]];}

</SCRIPT>

</BODY></HTML>

Back to our central theme: How to best use computing technology to enhance a student-
centered learning environment? A key objective is that the students take ever more of a leading
role as being the ones who ask the questions. Starting with one common problem, the plan
is that this is just a seed for a string of questions that delve ever deeper. Questions lead
to experiments and conjectures, further tests, proof where appropriate, and new questions.
Some problem solving strategies may become formalized algorithms. In this context computing
technology is first used for quickly checking many examples, generating large data sets which
then generate and test conjectures, and open new questions.

The following sections discuss in more detail the concept of inquiry based learning, and
the role of inverse questions, and how computing technology can much enhance such learning
environment. The examples and settings range from a math circle for elementary teachers to
vector calculus.

2 Inquiry based learning using technology

There is no universally accepted definition of inquiry based learning. Yet most users agree that
a key component is that students are to take the lead role in asking (research) questions in
the process. For a working definition or description we refer to the Academy of Inquiry Based
Learning [1]. For longstanding guidelines calling for such student experiences see [8].

The following example is taken from a math teachers circle that intended to demonstrate
inquiry based learning to elementary teachers. Math circles have become very popular in
recent years as means to provide school age students (and teachers!) with extra-curricular
math activities. For more details visit the National Association of Math Circles [7]. Math
Circles are also well suited for doing teaching experiments that instructors may not be able to
try in their regular classrooms.

The setting was a math festival which featured an rectangular array of stations (tables) in a
large gymnasium, each station offering different math activities. A simple question was asked:
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Figure 1: How many different paths from A to B? From C to D?

“In how many different (shortest) ways (walking between the tables) can one get from one corner
of the gym to the diametrically opposite one?”, as illustrated in figure 2. The first technology
employed consisted of paper and pencil, teachers drawing many possible routes, checking that
none were missing, eventually labeling them e.g. RRRRDD or RDRRDR (R for right and D
for down). It took them substantial time to propose a recursive way to systematically find all
routes. The key is to embed the specific 2×4 or 3×5 problem in the family of problems of m×n
grids of all possible sizes. First tabulating results by hand (with the key change of switching
vertices and faces in the grid), once the recursion formula f(m,n) = f(m− 1, n) + f(m,n− 1)
was understood, it was natural to use computing technology to get more numbers.

Figure 2: How many different paths on m× n grid?

A spreadsheet is ideally suited to implement such recursion, e.g. click the formula B2 =
A2 + B1, and fill down and right. Then enter a single 1 in the cell B2, see the left table in
figure 2. Once we had numbers it was time to look for patterns. The original defining relation
clearly related to the binomial expansion (R+D)m+n, but discussion arose whether RRRRDD
was equal or not RDRRDR, paths versus real variables.

Summing the columns (in usual Pascal triangle, the diagonals) was just the start (left table
in figure 2). To better see more fun patterns, we slightly rearranged the table, by copying
the formula B2 = A1 + B1 down and right. Summing all entries, or every other entry of the
columns yielded the expected result. But the biggest surprise was summing along the other
SW-NE diagonals (right table in figure 2). Looking for patterns, and trying to understand them
– our teachers were doing real math, see the right table in figure 2. Some noticed patterns of
even and odd numbers – we first colored these on the projector image on the white board (after
raising the screen). Again, the desire was to better see the pattern. We needed more numbers.

In the spreadsheet we changed the formula to B2 = MOD(B1+A2, 2) and used conditional
formatting to see the patterns in color, see figure 2. Now we were truly in the running, trying
to understand and predict the sizes of the triangles in the fractal patterns.



Figure 3: Start to play. More and more patterns and questions.

3 Inverse questions and parameterized families

The near ubiquitous availability of computing technology, especially with graphing capabili-
ties, has trivialized many traditional practice exercises and assessment items. This includes
evaluation of algebraic expressions and functions, solving for specific values (finding roots), or
graphing individual functions.

A natural way to address this situation is to ask inverse questions instead. Instead of asking
for the graph of a function (given by a symbolic expression), ask for a formula of a function
that is presented graphically, verbally, or as a dance choreography, see section 4.

Here a standard mathematical strategy comes into play, namely instead of considering single
objects, consider (finitely) parameterized families of objects. Instead of asking for the location
of the maximum of a function, find the values of parameters in a cubic function that will place
the maximum at a designated place.

Important is that such inverse questions are not seen by the students just as unmotivated
mean tricks. The following sections will address this issue – providing well-motivated settings
that naturally ask for such inverse questions. For dynamical systems (differential equations) a
natural such story involves controls.

The graphing technology can still be used by the learner, but instead of having an almost
trivial graphing or zooming problem, now the technology is used totest conjectures, get a feeling
for the graphical and geometric roles of the parameters, and to strategize. As a rule of thumb,
graphing problems involving one-parameter families of functions generally are straightforward
with graphing technology, using simple trial and error, or bisection methods. Three or more
parameters are generally hard to solve by random guesswork.

A simple example at the pre-calculus level serves as an illustration, see figure 3. Given three
points (xi, yi) in the plane with pairwise different first coordinates, the task is to determine a
quadratic function that interpolates these points. Serving as a counterpoint to an algebraic,
symbolic solution this task is about exploring the graphical role of the parameters. The example
compares three different parameterizations Ax2 + Bx + C, a(x − b)2 + c, and similar to the
Lagrangian interpolation formula α(x− x2)(x− x3) + β(x− x2)(x− x3) + γ(x− x2)(x− x3). It
is very easy to write a short app, or little program in most any software to facilitate this. The



Figure 4: Curve-fitting: TWIDDLE adaptation to a spreadsheet.

screen images show a simple implementation as an EXCEL spreadsheet.
One of the earliest outstanding implementations was in the program TWIDDLE of the Uni-

versity of Arizona Software [2], also http://math.arizona.edu/~dsl/software/software.

htm, running of a 360kB floppy disk in DOS. One of its best features was its kinesthetic com-
ponent: the values of the parameters were increased or decreased (by adjustable steps, powers
of 10) by repeatedly tapping on the c or SHIFT C keys, respectively, and the program then
showed overlaid families of curves. Some more recent apps replace such controls by sliders – but
this in some sense defeats the purpose of connecting the shape to numbers, numerical values
of the parameters. The EXCEL implementation here asks that the user type the parameter
values. Of course, the key observation is that the most immediate linear parameterization
is much harder to work with since changing the value of b moves the vertex of the parabola
along another parabola. The nonlinear second parameterization much more nicely identifies
the graphical meanings and roles of the parameters. The third, and fanciest, parameterization
produces the nicest pinched families of curves, with each of the parameters not changing the
function value at two of the given data points xi.

A very successful extended project that we have used many times in calculus classes asks
students to write their names as parameterized (broken) curves. We had many students make
amazing efforts to write their names in cursive, using very creative parameterized families of
functions. In its easiest implementation, one may simply ask to spell a four letter word that
includes at least one of each of the following: horizontal, slanted, and vertical line segments, and
some curved arc, see figure 3. Motivated by a pen-plotter or welding robot, the time intervals
for the different parts may not overlap. The welding robot story may suggest that pieces are
reparameterized by arc-length. Of course, the computer graphing technology is utilized for
many adjustments of the parameters to catch mistakes, and to make the curves even prettier.
Grading is trivial, as the perfect picture is evidence for a correct formula that works! Which
student would want her or his name look ugly? Pride and beauty are very powerful motivators
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Figure 5: From curves to formulas: Spell your name.

for outstanding efforts. Our project usually asks to also plot the speed, components of the
acceleration, and curvature along the broken curves. As an extension, students are invited to
compose the curve with a parameterized surface, e.g. resulting in some message advertised on
a blimp, as shown in the sample picture in figure 3.

4 Inverse questions and control: Falling cat

In first year calculus the parameters, that inverse questions typically ask for, are (finite sets
of) static numbers. In vector calculus and differential equations, often the natural parameters
are functions. As we said before, it is important to provide students with reasonable scenarios
that motivate such questions. Otherwise they might just be regarded as mean questions by an
instructor who makes things unreasonably harder.

A typical setting involves line integrals: With common computing technology it is rather
trivial to evaluate an integral when given the integrand and the curve. It is difficult to assess
a student’s understanding from such assignments. Our preferred twist is to give the integrand
and desired value of the integral. In general, such problem has infinitely many solutions, and
one may add additional constraints to the task. But the students will demand a nice story for
this. This is what this example is about.

Mathematical models for falling cats have a long history, dating back at least to Stokes and
Maxwell in the 1800s. As can be seen in many popular videos on-line, cats have an uncanny
ability to quickly turn around when falling so that they land on their feet. Of course, a key
constraint is that if a cat starts with zero angular momentum, then this zero angular momentum
is preserved throughout the fall. How then does the cat turn around? The answer, of course,
must rely on the cat not being a rigid body. It is not enough to model the cat as two connected
rigid bodies, like front and back, that can twist relative to each other: as one end rotates one
way, the other rotates the other way so that at all times the angular momenta cancel. But, of
course, the cat does not land twisted. Several related models and mechanisms are discussed
in the collection [3] which deals with various geometric aspects of nonholonomic mechanical
systems. An advanced model is analyzed in [6]. But here we will analyze one of the simplest
systems that explains the underlying geometry, called a planar skater in [5], and, by others,
planar robot.

This study is suitable as an extended project in a multi-variable and vector calculus class
that has access to standard computing technology. Its character as an inherently inverse ques-



tion with many possible solutions makes it particularly suitable for student driven explorations,
while teaching line integrals (and controlled dynamical systems).

As basic model we consider a chain of three planar rigid bodies (“links”) that are connected
by actuated rotary joints. Think of the ted Swiss-army-knife-like cartoon in figure 4. Or, in
more practical terms, think of sitting on a barstool, feet off the ground, desiring to rotate
without touching anything. The central red rigid body represents the torso (with head and legs
that are not moving with respect to each other). Connected to this at the shoulders are the
arms that represent the outside rigid bodies (yellow and blue). Due to conservation of total
angular momentum, when one arm is moved, the rest of the assembly will move in the opposite
direction. The goal is to design rotary (sideways, forward, backwards) motions at the shoulders
(assumed to move the arms in a horizontal plane) that come back to the initial configuration,
yet leave the whole assembly (body) rotated.

One of the first tasks is to make dancing choreographies into curves in the (θ1, θ2)-plane
(or on the torus) of the angles at the shoulders (joints). E.f student were asked to stand up
and move their arms according to the curve tracing out the edges of the square the square
(0, 0) −→ (π

2
, 0) −→ (π

2
, π
2
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2
) −→ (0, 0). This is a very different motion than the one

defined by the diamond (0, 0) −→ (π
4
, π
4
) −→ (0, π

2
) −→ (−π

4
, π
4
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student performs a dance and the others draw the curve in the (θ1, θ2)-plane, and then describe
is in algebraic symbols as a piecewise continuous curve. We want to think of this curve (or
motion) as the control input which shall reorient the whole assembly in a desired way.

Figure 6: Interactive MATLAB animation of a planar robot.

We here focus on the model where the center of the middle link is at a fixed location (like a
barstool), and the assembly can freely rotate about this pivot. More resembling the original cat



problem is an analogous model that floats freely in the plane, and one considers the rotation
about its center of mass which, of course, continuously moves as the shape (angles at the
shoulders) changes.

Figure 7: Optimizing the polygonal contour one point at a time

To make a formal mathematical model, let mi and ri denote the masses and half lengths of
the links (i = 0 the central link, and i = 1, 2 the outside links). The shape and configuration
are determined by the angles θi, i = 1, 2 at the shoulders, (with θi = 0 corresponding to
fully outward extended arms), and the angle α of the central link with respect to a reference
direction. The angular momenta of the outside links rotating about the hinges (shoulders) are
Mi = βimi(2ri)

2 dθi
dt

where e.g. β = 4
3

for the case of a thin rod. To obtain the total angular
momentum, add to the sum of these the angular momenta of the middle link and the outside
links as they rotate about the center of the middle link. These momenta are M0 = β0m0r

2
0
dα
dt

with β0 = 1
3

for the case of a thin rod, andMi = βimir
2
i0
dα
dt

where the distances ri0 of the center of
mass of the outside links from the pivot depend on the shoulder angles r2i0 = r20 +r2i+2r0ricosθi.
The sum of all these 5 expressions is constant. We may solve this constraint for dα

dt
as a linear

combination of the shoulder angular velocities dθi
dt

dα

dt
= g1(θ1, θ2)

dθ1
dt

+ g2(θ1, θ2)
dθ1
dt

with

gi(θ1, θ2) = − 1 + βimir
2
i

β0m0r20 +m1(r20 + r21 + 2r0r1 cos θ1) +m2(r20 + r22 + 2r0r2 cos θ2)



Now let θ : [0, T ] 7→ (θ1(t), θ2(t)) be a piecewise smooth curve modeling the angles at the
shoulders as functions of time. Then the corresponding change in overall orientation ∆α =
α(T )− α(0) is the line integral (which is independent of the chosen time parameterization)

∆α =

∫
C

g1(θ1, θ2)dθ1 + g2(θ1, θ2)dθ2︸ ︷︷ ︸
=ω

.

Evaluating the exterior derivative (or scalar curl) (a computer algebra system comes in handy)

dω =

(
∂g2(θ1, θ2)

∂θ1
− ∂g1(θ1, θ2)

∂θ2

)
dθ1 dθ2

establishes that dω 6= 0 and therefore ω is not exact. Consequently, there is no potential
function α(θ1, θ2) that is invariant under the described motions. This is the reason why the
cat can rotate, or the planar robot, or the student on a bar-stool can rotate into any desired
position (while returning to the initial shoulder angles).

A natural next try is to draw various curves using suitable computing technology and
evaluate the corresponding line integrals. Our JAVA Vector Field Analyzer II [4] (still running
well in Firefox) is well suited for this task, see figure 4. A screenshot of an interactive MATLAB
inplementation is shown in figure 4. Not unexpected, for most closed test curves (without loss of
generality starting and ending at (θ1, θ2) = (0, 0)), the resulting change |∆α| is disappointingly
small. When we worked this as an extended project, the students were asked to provide an
algorithm to quickly generate a suitable closed curve when handed initial and final angles.

Figure 8: Optimal loop goes around the peak but misses the pit.

The key to finding highly effective curves is to use Green’s theorem which states that
∆α =

∫∫
R
dω where R is the region “inside” the closed curve C. A computer generated plot

of the scalar curl dα reveals the mystery: To catch the most volume, the curve should loop
around the peak, but miss the deep pit next to it. Some of the creative solutions proposed
by our students included one parameter families of curves that look like lollipops, with the



stick starting and ending at e.g. (θ1, θ2) = (0, 0) and not contributing anything (since it is
traversed twice in opposite directions), similar to figure 4. The circles looping around the peak
but staying clear of the pit, are parameterized by their radii. Given any ∆α, it is very fast to
numerically find a matching value for the radius.

5 Summary and conclusion

We have argued that some of the most effective uses of computing technology for learning
mathematics involves inverse questions, which in turn nicely match a desired inquiry based
learning environment. Rather than requiring a specific platform or software, we found it not
too hard to basically use whatever is readily available, what the students already know, or find
in the play store. As this generation of students routinely finds and installs all sorts of new
apps on their smartphones we expect that in the future it will be common to just find and use
ad-hoc apps that suit different purposes – as illustrated in this article.

The spreadsheets, computer algebra worksheets, MATLAB code, the JAVA Vector Field
Analyzer II, as presented in the conference talk, and used for the screen shots in this article,
will be maintained at and kept freely available at the author’s website https://math.asu.

edu/~kawski.
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