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Abstract

We use CAS to provide a new algebraic approach in some optimization applications
where the objective function (to be minimized or maximized) is a quadratic polynomial.
These problems can be solved just by knowing properties of quadratics and so give context
to why we want to complete the square. Without calculus, to find the max/min of
cubics, we introduce a new straightforward algebraic method (no calculus). The use of a
Computer Algebra System, CAS, such as Maple easily deals with any messy algebra!

The key property of a function is that, near a maximum or minimum, the function
“looks like a quadratic”. This visual idea is combined with some straightforward algebra
to find this local quadratic approximation of a cubic near the maximum.

Traditional “find the maximum . . . ” problems are introduced to senior school or first
year undergraduate students in their calculus course. With our approach, these applied
problems and the Polya method of problem solving can be introduced to pre-calculus
students. We use the CAS, Maple, for algebra and visualization. We use small group
collaborative learning in the computer laboratory, so we parameterize the problem and
recommend the use of Computer Aided Assessment (such as provided by the package
MapleTA). Students engage with the visualization and algebra, are active learners with
deep learning of the concept of maximum and have fun doing so.

1 Introduction

Students of secondary school mathematics courses often struggle with both visualization (and
intuition) and algebra. Algebraic skills are often deficient for later mathematics. Year 10 and
11 students practise strange rituals such as “completing the square” with little understanding
and lots of frustration. Graphical calculators can help visualization, and CAS can perform
algebra (and provide visualization), but problems still persist.

In this paper we consider standard optimization problems which are usually studied as
applications of calculus. When the function to be maximized (or minimized) is a quadratic
polynomial then the optimaization problem can be solved by using properties of quadratics.



Figure 1: The farmer wants maximum area, A, with 1 plot or with 2 plots.

This can give students a clear reason for completing the square in an applied setting. Section
2 of this paper discusses problems with Quadratic objective functions.

In Section 3, we discuss how the quadaratic approximation to a cubic polynomial can be
obtained by some straightforward algebra; how to use this to find the location of the maximum
and visualization of the cubic “looking like” a quadratic near the maximum (or minimum).
Section 4 is a brief Cconclusion.

2 Problems with Quadratic objective functions

A time honoured (and still good) place to start is the Farmer Max Problem.

2.1 The Farmer wants maximum area for fixed length of fencing

One of the early and very traditional problems is that of a farmer fencing a plot of land along
a river to obtain a maximum area of land (with a given length of fence), see [1]. We call the
length of fencing the perimeter (since we do not consider the side formed by the river). Here,
we assume that the perimeter is 1000 m. For a diagram, see the first half of Fig. 1.

It is easy to show that the objective function (that is, the function to be maximized) is the
area, A = 2x (1000−x). This is a “symmetric” quadratic with the axis of symmetry about the
mid point of the domain. From the basic property of quadratics, the maximum (or minimum)
is the value of the objective function at the axis of symmetry (in this case, at the midpoint of
the domain). No calculus should sensibly be used here, despite this problem being the first of
the optimization problems in very many calculus textbooks.

The traditional problem of a farmer fencing one plot of land along a river to obtain a
maximum area of land (with a given length of fence) can be modified to want two (rectangular)
plots of equal size (or, more precisely, two congruent rectangles). For a diagram, see Fig. 1.

It is easy to show that the objective function (that is, the function to be maximized with two
plots) is A = 4/3x (500 − x). This gives a “symmetric” quadratic with the axis of symmetry
about the mid point of the domain. So the mathematics for this problem is not qualitatively
different from the original, traditional problem of a farmer with one plot.

Teaching Note. The farmer problem can be further modified to have three (or more) equal
sized plots. However all of these problems are qualitatively the same. Students initially meeting
quadratics might solve the two or three plots problem and enjoy the redundancy. It is easy to
change the length of fencing for different students (or, preferably for different student groups).



However for higher level students, the multiple plots (of land) could be used as an extra way
of “individualizing” problems for the small groups of students working collaboratively.

2.2 Completing the square

Completing the square is usually introduced to school students in Year 10 as part of algebra: for
example, in Chapter 5–Quadratic equations of the textbook ICE–EM Mathematics Secondary
4A, see [6]. This textbook is one of a series and has an eminent team of authors. However we
wait until Chapter 7–The parabola for sketching of parabolas, translations of parabolas and
applications to finding the minimum or maximum (including the familiar Farmer Max prob-
lem). In schools in Victoria, students have had, for a couple of decades, at least a graphical
calculator, CAS calculator or laptop with CAS software. We recommend the use of visualiza-
tion to motivate completion of the square. Plotting several monic quadratic polynomials (that
is, quadratics where the coefficient of x2 is 1) and their translations can provide good intuition
and motivation for completing the square and connect the algebra with the geometry of the
vertex and axis of symmetry. Generalization to the general quadratic is then simple.

2.2.1 Norman Window problem

For our First Year undergraduate students, we use the Norman Window problem as an assign-
ment, see [1]. For middle school students, say Year 10 (or Year 9 enrichment), this would be
done as an example. We find that the objective function is quadratic that is not symmetric
on the domain, so the max is at the vertex which is not at the midpoint of the domain. In a
pre-calculus course, we can easily find where the max is by completing the square.

It is easy to show that the objective function (that is, the function to be maximized) is

A = r perim− 2 r2 − 1

2
πr2 .

We define the perimeter to be the average student number, gpN , of the small number of stu-
dents in each group in our collaborative teaching and learning class. We insist the exact rational
number gpN be used in the problem (that is, no floating point numbers are allowed to be used
in the algebra). For a diagram of the Norman Window, see Fig. 2.

Teaching Note. The Norman Window problem, in a pre-calculus course, requires completion
of the square. However, since π appears as part of the coefficient of r2, the algebra for the
completion of the square requires manipulation involving the symbol π. For algebraic beginners,
we recommend styarting with the modified problem where the semi-circular top is replaced by
a triangular top, see below.

Of course CAS can be used as scaffolding [7] which allows students to make progress with
higher level work even if all the lower level skills are not yet fully mastered. Maple has a
command in the student package, which is loaded by using the with( ) command. Here,
[> with(Student[Precalculus]):
[> CompleteSquare(A,r);



Figure 2: The Norman Window problem (with a given perimeter) where the maximum area,
A, is wanted. The shape of the solution, where y = r, is also displayed.

The Maple answer is (−2− π
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= 0,

that is, r =
perim

4 + π
. Since the coefficient of r in A is negative, A has a maximum there.

Note. An alternative provided by CAS
An alternative (to the above “completing the square”) for a quadratic objective function is to
use the solve( ) command from the CAS to find the two zeros since we know that the maximum
(or minimum) will be where the variable equals the average value of the zeros. Here:

[> solve(A=0,r): gives the two zeros: 0 and r =
2 perim

4 + π
. Although these solutions are not

physically achievable, the average of these zeros still gives the radius for the maximum area.
Students can be asked whether they can suggest this alternative to the standard completing

the square approach. There is a slight “cheat” here (since the completion of the square leads to
the derivation of the formula to find the zeros of a quadratic). There is valuable reinforcement
of the fundamental symmetry property of quadratics, as well as an opportunity for (another)
discussion about the fundamental connection between the completion of the square and the
“quadratic formula”! A better option here is to use factorization to obtain the zeros (see the
discussion for the Window with Equilateral Triangular Top).

2.2.2 Norman Window problem with different transmission coefficients

A Norman Windows might use stained (or leadlight) glass for the top part of the window and
clear glass in the bottom part (that is, the rectangular part). Now we could ask: what shape
gives the maximum amount of light transmitted through the window?

The amount of light passing though the glass per unit area is given by the transmission
coefficient. In this case, we only need the relative transmission coefficient as a ratio between
the top glass and the bottom glass: we denote this by tc. The amount of light (relative to all
glass being clear) is 2 r y+ 1

2
tc π r2, where tc = 1

2
, say. Now the objective function (depending



Figure 3: The Window with Equilateral Triangular Top problem (with a given perimeter) where
the maximum area, A, is wanted.

on r only) to be maximized, is the modified area (from the original Norman Window):

A = r perim− 2 r2 − πr2 +
1

2
tc πr2 .

2.2.3 Window with Triangular Top problem

As mentioned above, for middle school students the Norman Window problem could be done
as an example, or follow the Triangular Top problem discussed here.

Equilateral Triangle Top
The Window with Triangular Top problem is the Norman Window problem but with the top
semi-circle replaced by an equilateral triangle, see Fig. 3. The objective function, A, is:

A = 2x y +
1

2
2x
√

3x = 2x y +
√

3x2 .

Since we also know that the perimeter (which has a known value) is perim = 2 y + 6 x, we
can write y in terms of x as 1

2
perim − 3x. Thus y can be eliminated from the formula for A

to give
A =

√
3x2 − 6x2 + x perim .

This is a quadratic where the coefficient of x2 is
√

3− 6 which is negative, so this quadratic has
a maximum.

Before solving for A to be a maximum, we ask: what are the allowed values for the ONE
independent variable, x? From the diagram, x > 0 and y > 0 (in theory, 0 values might be
allowed but are clearly not practical!). Now the endpoint y = 0 corresponds to an x value of

xy0 =
1

6
perim



Figure 4: The Area, as a function of x, of the Window with Equilateral Triangular Top problem.
The dashed part is not physically allowed.

Thus the physically allowable values are 0 < x < xy0 so now a plot can be made for A(x) for
the physically allowed values of x, see Fig. 4 for a graph when perim = 10 .

Now we find the x for which A is a maximum, and we assume the given value of the perimeter
is 10 (length is assummed to be in metres). To find the maximum of the A, WITHOUT
CALCULUS, the “standard” approach is to complete the square and so find the location of the
axis of symmetry (and hence the x value for the max). So we find, by competion of the square,
that

A =
√

3x2 − 6x2 + 10x = (
√

3− 6)

(
x+

5√
3− 6

)2

− 25√
3− 6

and it is easy to see thst this is correct. Thus the axis of symmetry is at x+
5√

3− 6
= 0,

that is, x =
5√

3− 6
. Since the coefficient of x in A is negative, A has a maximum there.

Note. An alternative with or without CAS
An alternative to “completinging the square” for a quadratic objective function is to find the
location of the zeros of the quadratic. The average of these zeros is the x value that gives the
maximum A. In the Norman window problem, above, we used the solve( ) command from the
CAS to find the two zeros. However for this example (and the Norman window problem) the
constant term in the quadratic is zero. This means that factorization is trivial and so the zeros
are very easy to write down.

Here, A factorizes as A = x ((
√

3 − 6)x + 10) giving the two zeros by setting each factor
zero: x = 0 and (

√
3 − 6)x + 10 = 0. Although these solutions are not physically achievable,

the average of these zeros still gives the radius for the maximum area, see Fig. 4.

Teaching Note. In addition to the Teaching Note for the Norman Window problem, there
are three further comments. Firstly, there is an opportunity to dicsuss physical and unphysical
values of variables and the fact that unphysical values may be useful in the solution method.

Secondly, there are two pre-calculus solution methods discussed here. It is important for



Figure 5: The diagram for the Minimum Distance between a Point and a Line problem.

students to realize that multiple solution methods are often available and to consider some of
these. In practice, mathematicians try what appears to be the “best” approach, where “best”
might mean the easiest, or the most elegant, or the easiest to use with a CAS.

Thirdly, completion of the square for the Norman Window problem, above, needed algebraic
manipulation with the symbnol π. Similarly the Window with Triangular Top problem, here,
needed (simple) algebraic manipulation with a surd. The Triangular Top problem can easily
be modified to avoid irrational numbers by using a Triangular Top where half of the triangle
has integer ratios (that is, Pythagorian triples) such as 3:4:5. 4:3:5, 12:5:13 etc.

2.2.4 Minimum Distance between Point and Line problem

The original problem is “Find the point on the straight line x + 2 y = 5 which is closest to
the origin.” See Fig. 5 for a diagram. Note that parameterization for different student groups
is simple here since this line is a particular case of a x+ b y = c.

This is a very attractive problem which often appears as an optimization problem in a
calculus course. However is can be solved by multiple methods, including
• Minimize Distance – using calculus
• Minimize Distance – algebraically, without calculus
• Minimize Distance – geometrically using intersecting lines
• Minimize Distance – geometrically using right angle triangles
• Minimize Distance – visually with multiple representations and animations

see [3] for a detailed discussion. Here, we only consider the second method: Minimize Distance
– algebraically, without calculus. However we strongly recommend that other methods be
introduced to students (preferably where other approachs are suggested by students).

Let D be the distance from the given point, the origin, to the line x+ 2 y = 5. The problem
is to minimise the distance, D =

√
x2 + y2. Since the distance must be positive it is easier if

we avoid the square root by solving the equivalent problem: minimise D2 = x2 + y2. It is easy
to show that minimizing D is equivalent to minimizing D2 by considering that if DM < D for
DM , D > 0 then multiply both sides of the inequality by DM to show that D2

M < D DM . Using
the original inequality again in the right hand side gives D2

M < D D and hence the result.)



In Maple, D is a ‘reserved word’ used to denote the differentiation operator. Also, with
CAS, it is not permitted to assign to a variable squared. To avoid any difficulties, we denote D2

by DSq. To write the expression for D2 in terms of one variable only, we choose to eliminate
y (since students are usually more comfortable with x as the independent variable). Thus

DSq =
5

4
x2 − 5

2
x+

25

4
=

5

4
(x2 − 2x+ 5) .

In this case, the quadratic does not have any real zeros, but completion of the square is
very simple and leads to the solution DSq = 5 as the minimum distance squared when x = 1.
Hence the solution to the original problem D =

√
5 as the minimum distance when x = 1.

3 Problems with Cubic objective functions

Leigh-Lancaster, an experienced mathematics teacher and manager of school mathematics in
Victoria (Australia) wrote “Why Cubic Polynomials?” see [8]. His first sentence reads

The study of cubic polynomials of a single real variable is typically introduced in
Year 11 as a generalization of work on linear functions and quadratic functions
across Years 7 10, and then extended to include calculus.

To provide more detail, we extract a small part of the official Study Design for Mathematical
Methods Unit 1, see [9], (normally studied in the first half of Year 11):

Functions and graphs
. . . The behaviour of functions and their graphs is explored in a variety of modelling
contexts and theoretical investigations. This area of study includes [some items
omitted in the following]:
• . . . examples of relations that are not functions and their graphs such as x = k,
x = a y2 and circles in the form (x− h)2 + (y − k)2 = r2

• graphs of power functions f(x) = xn for n ∈ N and n ∈ {−2, −1, 1
3
, 1
2
}, and

transformations of these graphs to the form y = a (x+ b)n + c where a, b, c ∈ R and
a 6= 0
• graphs of polynomial functions to degree 4 and other polynomials of higher degree
such as g(x) = (x+ 2)2 (x− 1)3 + 10

Thus cubic polynomials and applications play an important role in the school mathenmatics
curriculum by Year 11. We present a new algebraic approach (pre-calculus) to cubic polynomials
in several applied optimization problems. As a preliminary we illustrate the key idea of locating
the maximum and minimum of an example.

3.1 Finding max or min of a cubic: an example

One of the examples from [8] is the cubic polynomial

p3 = 2x3 + 4x2 − 6x+ 7



Figure 6: The graph of the cubic polynomial example on the left, with the cubic and its
Quadratic Approximation at the Minimum on the right.

which is graphed in Fig. 6. Most of focus on cubics is on finding the zeros which was one of
the great mathematical problems historically. A general formula to find the zeros of a cubic
was found, then a general formula for the quartic (a polynomial with terms up to power 4) but
eventually it was proven that no general formula to solve quintic polynomials exists.

For this case, there is only one real zero (at about -3.25). From the theory of complex
variables and the Fundamental Theorem of Algebra, we know there is also a pair of complex
conjugate zeros. Unfortunately, even for this “easy” looking problem, the solution is very messy
with terms of cubic roots of surds: the real zero is

−1

6
(658 + 6

√
8121)1/3 − 26

3 (658 + 6
√

8121)1/3
− 2/3 ≈ −3.252983649 .

Derivation and use of the general formula for the zeros of a cubic is not taught in school or
undergraduate university mathematics. The messy formula can be evaluated using CAS to any
required accuracy for applications (or we can use a numerical computation method). As noted
in [8], it is easy to construct cubics which have “nice” behaviour such as an integer real solution:
this can be found by using the remainder theorem, then long division of polynomials to find the
quadratic factor of the cubic. Then use the quadratic formula to find any other real solutions
(or indeed the complex conjugate solutions). Students practise these problems at school and
first year university and can be excused for thinking that this is a useful strategy in general (it
is not - consider the real zero above!).

However there are interesting applied optimization problems (for which the maximum or
minimum is sought) for which the objective function is a cubic polynomial. The study of these
problems is usually delayed to be part of the applications of calculus. However they could be
introduced to pre-calculus students. The key observation is that the cubic “looks like”
a quadratic near the min or max! Students notice this, but this observation is usually
ignored. We formalize this (and use arguements of “in the small” that are so important in
higher level mathematics, especially in applied mathematics and computational mathematics).

We assume that the min or max value xM of x that we want is NOT “known”, but we will
find the value(s). If x is nearly xM , then we consider values that only vary a small amount



from xM . Define x = xM+δ. As we vary δ by small values, the graph “looks like” a quadratic:
we derive this quadratic (and plot it in Fig. 6). Now, substitute x = xM + δ in the formula for
p3 to give

p3delta = 2 (xM + δ)3 + 4 (xM + δ)2 − 6xM − 6 δ + 7

= 2 δ3 + 6xM δ2 + 6xM2 δ + 2xM3 + 4 δ2 + 8 xMδ + 4xM2 − 6 δ − 6xM + 7 .

Since we are only interested in small values of δ, then terms in δ2 are much smaller than terms
in δ. Similarly, terms in δ3 are much smaller than terms in δ2, so we ignore any terms with
a power higher than 2. The function is renamed (to indicate that this is now a quadratic
approximation) and the terms are collected (in the powers of δ):

p3delta2 = (6 xM + 4) δ2 + (6xM2 + 8xM − 6) δ + 2xM3 + 4xM2 − 6xM + 7 .

This is the local (near xM) quadratic approximation. (We could provide an animation of this
as hM varies.) For xM to give a max or min, this must have the δ term zero,.Thus we solve

solve(6xM2 + 8xM − 6 = 0, xM)

using the CAS solve( ) command, or just use the quadratic formula, to give

xM = −2

3
+

1

3

√
13 , −2

3
− 1

3

√
13 ≈ 0.5351837583 ,−1.868517092 .

There are two solutions, as we expected from the plot. We can determine which is a max or
min by looking at the plot, or by whether the coefficient of the power two term is negative or
positive. Thus we evaluate 6xM + 4 at each of our solutions for xM to obtain 2

√
13 ,−2

√
13

(respectively). Thus the first solution (the positive one) is a min and the second solution (the
negative one) is a max, as expected from the plot.

The quadratic approximation at the minimum, p3delta2Min , is given by substitution of the
second solution into the general local quadratic aproximation. This looks messy but can be
simplified (using CAS makes this easy!) to give

p3delta2Min = 2
√

13 δ2 + 329/27− 52

27

√
13 .

Finally we plot the quadratic approximation at the minimum on the original plot of the
cubic: to do this we first have to rewrite the quadratic in terms of the original variable x =
xM + δ. Thus the substitution δ = x − xM is used so that the cubic and its quadratic
approximation can be plotted together, see the Fig. 6.

3.2 Maximum Volume of Open Box

A well known calculus problem, from senior school or first year university is the Open Box
problem, see [2]. A rectangular piece of cardboard (or sheet metal, say) where each corner has
a square cut away and the resulting object has the sides folded up to form the Open Box, see
Fig. 7. Find x such that the box has the maximum volume.



Figure 7: The diagram of the rectangular piece of cardboard, with sides of lengths a and b,
from which the Open Box is constructed.

The original rectangle has sides of lengths a and b with the side of each corner square that
is cut out, has side of length x. Many texts choose a = 8 and b = 5 since the solution gives
x = 1. The objective function here is the Volume of the box

V = (a− 2x) (b− 2x)x

which is a cubic. For a detailed discussion of the pre-calculus solution and the teaching and
learning of of this problem, see [2].

The original problem has its maximum for x = 1, which is simplisitic. We favour providing
the solution of problems for the small student group to follow (and learn). This is followed by a
closely related problem (perhaps the same problem but with different parameters) to be solved
and submitted for assessment. Extensive experience shows that students regard problems with
different parameters as essentially different problems, The small group collaborative learning
we favour is best conducted with “different” problems for each group to discourage the laziness
of just copying the work of others! In [2] we discuss this issue and the list of 24 different
rectangular shapes that can be used (and scaled as well) to provide “different” problems which
all have rational lengths for the original sides and for the cut out length x.

Teaching Note.
Many different assignments to mark unfortunately greatly increases the teacher’s work load.
Some form of Computer Aided Assessment, CAA, is highly recommended. In our case we
require students to use Maple and to submit their Maple file (via the internet), so we write
our own CAA procedures. Otherwise a good CAA can be used: the best commercial system is
MapleTA (where Maple is used for the mathematics, but the student does not need to know
anything about Maple). A brief discussion of CAA for this problem can be found in [2].

With the use of CAA, careful design of the question and the parameters choosen is required
to avoid pitfalls such as no solution or singularities for some parameters. However it may be im-
portant to ask for intermediate results. For example, if a particular solution method is wanted,
then just asking for the solution is not sufficient: some intermediiate results, particularly if
they are specific to the required method, should be asked for. For this problem, if the pre-
calculus method (introduced here) is required, then asking for the quadratic approximation at
the maximum would diasallow some student use of calculus and just writing down the solution.



,

Figure 8: The plot of a cylinder inscribed in a sphere, radius R = 1, with a cut out of the
sphere to enable visualization of the cylinder; and diagram of a cross section.

Further, even students who meet this problem in a calculus course do so in the senior school
or the first semester of first year university: since they study Taylor series later (usually in the
second semester of first year university), this would still be an effective strategy.

3.3 Maximum volume of a Cylinder inscribed in a Sphere

The Problem: For a cylinder inscribed in a sphere of radius 1, find the exact radius of the
cylinder which has the maximum possible volume.

Fig. 8 provides a plot of the cylinder in a unit sphere, radius R = 1, and a diagram of a
cross section where the radius of the cylinder is r and the height is 2h. Clearly, r and h are
related: from the right angled triangle, r2 + h2 = R2 so h2 = R2 − r2 and h can be eliminated.
The objective function is the Volume of the cylinder:

V = π r2 2h = 2π r2
√
R2 − r2 = 2π r2

√
1− r2

where the unit sphere has R = 1. This is a classic problem that appears in many textbooks.
For R arbitary, the problem is simply scaled, so it is common to set R = 1.

For this problem, visualization of the unit sphere with an inscribed cylinder is wanted, but
students in pre-calculus and early calculus courses have little experience with plots in 3D. We
recommend that the 3D plot is provided in the worksheet given to students.

For detailed discussion about various solution methods for this problem, see [4], where
the focus is on an experimental mathematics methodology. In particular, there is a brief
introduction to the experimental mathematics methodology and visualization with zooming-in
to get a sufficiently accurate solution to identify a (possible) exact solution which is then proven
correct by the type of algebraic method used here.

However the algebraic method discussed here can be used to find the localation of the
maximum or minimum as well as prove its correctness. The way the problem is asked, most
students immediately start to solve for r directly, as above. The square root causes some
difficulty, but it can be handled (as mentioned in [4]) by using the Binomial Theorem for power
1
2
, which is easy to prove by some simple algebra.



Figure 9: The Wine Barrel problem. A plot of a horizontal cylinder, radius r and length h,
with a cut out to enable visualization of the dipstick; and diagram of a length-wise “section”.

There is an easier way to simplify this problem by squaring both sides to eliminate the
square root (similar to the Minimum Distance between a Point and a Line problem, above).
Volume Squared of the cylinder, VSq is:

V Sq = 4π2 r4 (1− r2) .

This problem’s objective function is a degree 6 polynomial as a function of r, but can be solved
directly by our algebraic method. This is easier because the square root has been eliminated.

We notice that V Sq depends only on r2, so we can rewrite in terms of rSq = r2 :

V Sq = 4π2 rSq2 (1− rSq) .

Thus we have a cubic objective function which is easy to solve.
However a moments reflection (before starting any calculations to find the maximum V )

indicates an easier approach. At the initial modelling stage we wrote V = π r2 2h and chose
to eliminate h since we were asked for the r which maximizes V . A better choice would be to
eliminate r to obtain

V = 2π (1− h2)h

which is a cubic objective function that is easy to solve for h, and then calculate the corre-
sponding value of r.

3.4 Kepler’s Wine Barrel problem

The Wine Barrel problem is famous; for historical and mathematical details, see [5]. Before
calculus, the volume of wine filling a horizontal cylindrical barrel was measured by using a
dipstick. The barrel had a plug hole at the midpoint of the top of the barrel: the dipstick was
inserted into the plug hole down to the bottom and an end of the barrel, see Fig. 9.



A mathematician, Kepler (in the time before calculus), realized that the dipstick measure-
ment did not properly measure the volume and so solved the problem: What is the shape of
the cylinder that maximizes the volume for a given dipstick length measurement?

From Fig. 9, it is esay to see that r2 = (d2 − h2/4)/4, so the volume of the (horizontal)
cylinder is

V = πr2 h = π
(d2 − h2/4)

4
h =

π

4
(d2 h− 1

4
h3) .

The objective function, V is a cubic in h. It is simple to leave d as a symbolic constant and
solve algebraically (as above) for h by hand or by CAS. The quadratic approximation about
the maximum is

Vdelta2 :=
π

3
√

3
d3 −

√
3 π

8
d δ2

Teaching Note.
To plot the quadratic approximation with the Volume, d needs to assigned a value, say d = 1.
A fun activity for middle school students is for student groups to solve the problem for different
given values of d. They can be asked to report their result to the class and to notice that the
ratio of h/r is aprroximately 2

√
2. They can then be asked to solve the problem again with

the value of d symbolic and hence prove that the shape (for maximum volume) is h/r = 2
√

2.

4 Conclusion

CAS such as Maple enable innovative approaches to curriculum, pedagogy and assessment at
school and university. Standard problems solved in the standard way using CAS risk being
another activity (such as lectures and computer sessions) that students find boring. Well
designed teaching and assessment is effective, efficient and even fun. The development of
these CAS based materials requires a lot of staff time, but they give high returns with staff
satisfaction, student performance and attitude. The reduced marking load using automatic
marking more than repays the development cost. We recommend more collaborative learning
by students and more collaborative development of CAS materials by academics and teachers.

This paper shows that elementary optimization problems (such as “find the maximum vol-
ume of an open box”) can introduce applications (of quadratic and cubic polynomials) and be
a rich source of mathematics if the usual (efficient) calculus method is not used. We show visu-
alization to build intuition; and several different methods using algebra to obtain the quadratic
approximation of the objective function about its maximum: hence finding the location of the
maximum and proving its correctness. This approach introduces an important topic in math-
ematics: approximation in the small. It also provides strong support for (and visualization of)
the intuitive notion that the function “looks like a parabola” near its maximum.

This approach can also be used for objective functions with terms of power of ±1
2
,−1, which

often occur in interesting applications, as well as appearing in the list of functions to be studied
in early Year 11, see the preamble in Section 3, or the reference [9]. For an indication of the
treatment of a problem with a sqrt root term, see [4]. We will provide an overview, and some
details, of our algebraic approach of several of these applied problems in a future paper.

The Maple activities described here are all web mediated, so they could be part of an online
or blended learning) course: students have different learning styles and some take advantage
of the flexible learning that the approach here supports (since attendance in the computer



lab is recommended but not required). Students enjoy the collaborative learning using Maple
and learn (surprisingly quickly) to do the calculations; use visualization; and use automatic
marking. Students are engaged, active and collaborative learners with these Maple sessions.
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