
Mathematics, secrets and smartphones

Rub́ı Ipiña and José A Vallejo
linarubi.campos,jvallejo@fc.uaslp.mx

Faculty of Sciences
State University of San Luis Potośı

Lat Av Salvador Nava s/n CP 78290 San Luis Potośı (SLP)
México

Abstract

We present the basics of a course on number theory and cryptography with a hands-on
approach, using the capabilities of modern-day smartphones to implement the computa-
tional algorithms in (almost) real time, with the aid of the free software Maxima available
in Android™ platforms1.

1 Introduction

The sentence ‘Mathematics is the queen of the sciences and number theory is the queen of
Mathematics’ is attributed to Gauss [12]. Once the pinnacle of pure mathematics, even praised
for its lack of applications2, number theory plays now a prominent role in such areas as cryp-
tography or theoretical physics. Therefore, its inclusion in any scientific curriculum seems both
desirable and justifiable.

One of the advantages of number theory from the pedagogical point of view, is that a
course on it can be taught at a variety of levels, ranging from the most elementary to the most
advanced. Moreover, it can be used to put emphasis on applications (say, in a computer science
[13] or physics [3] degree). An additional benefit, which has the utmost importance for us, is
that it allows to use modern technologies as an efficient tool in our teaching. There are lots of
papers discussing the convenience of using calculators, computers and other devices (what is
collectively denoted ‘mobile learning’) in the classroom, and we do not intend here to deepen
into this topic (a good review is given in [10]), just suffice to say that, in our experience, the
students become more participating and interested in a course based on the use of computers
and software. Moreover, if the topics cover material related to modern technology and allow

1Maxima is a Computer Algebra System licensed under the GNU General Public License. Android is a
trademark of Google Inc.

2In this regard, it is commonplace to cite G. H. Hardy [1], although he was particularly referring to the
applicability of Mathematics in the military industry, and explicitly stating a bound in time:

‘No one has yet discovered any warlike purpose to be served by the theory of numbers or
relativity, and it seems unlikely that anyone will do so for many years’.



them to understand the way this technology works, the mathematics behind it, then such a
course becomes a gratifying experience and a motivation for further study.

If we ask a classroom of first-year university students what their favorite gadget is, the
most probable answer will be the smartphone. Any topic related to them, touched upon in a
lecture, quickly becomes a trending topic (to use modern parlance) among students, and the
corresponding course immediately receives the #interesting hashtag. Students have not had
enough time to overcome their high school tics, and they still show this urge for classifying
anything into their own schemes. We can use this state of affairs to attract them to the more
prosaic maths, and this paper describes our proposal along the lines described above, that is, a
course on basic number theory with applications to cryptography based on the use of the free
software Maxima in Android devices.

Nihil novum sub sole: There is nothing new under the sun, and this work owes a lot to
the nice book by A. McAndrew [7]. To our knowledge, this is a pioneering text, in that it
conjugates an elementary (but highly non-trivial) approach with the use of free software to
study cryptography. When we faced the task of selecting a good textbook for the course, this
was the obvious choice. However, it uses Sagemath (previously SAGE [8]), whose installation
in a computer requires above 1.5Gb of space, and, although it can be used on-line from a
smartphone [9], needs a stable internet connection. This fact renders it unusable in our case, so
we decided to use Maxima [4] instead, with the Android port Maxima on Android (MoA) [5],
which can be fully installed in any smartphone (it only requires 45Mb of internal storage plus
60Mb of additional storage that can be placed in a external card) and used off-line. Fortunately,
the book is written in such a way that there is no problem in adapting its contents to Maxima
or any other CAS. Nevertheless, for the sake of originality, we include here some examples not
present in [7] (or, as in the case of the Elgamal cryptosystem, in a very different way). Another
text that has proven useful is Stinson’s [11].

The next sections describe in some detail the prerequisites (both technological and mathe-
matical) to develop the course, the main topics covered, and some examples of implementation
in Maxima. The screenshots show examples that were written in a low-end Samsung Galaxy
Core2 (Android 4.4.2), during the Spring semester of 2016, in an optional course entitled ‘Top-
ics on Applied Mathematics’, given to students of Applied Mathematics in the State University
of San Luis Potośı (México). Some data in the screenshots are different from those in the text
because of this (of course, each time a function generating (pseudo)random numbers is run, the
results are different).

A brief remark about the usage of MoA: it is possible to write a script containing the
functions defined by the user, and to store it in the /sdcard/Download folder, as a single text
file ending in .txt. Then, starting the MoA session with something like load(myscript.txt),
will make these functions available directly from MoA, without having to write them each time.
That is: You can write your scripts as if they were .mac files, with the only proviso that they
have the .txt suffix, and are stored in /sdcard/Download (and no other place). This is the
method we have followed to take the screenshots, in order to show more clearly the final results.

This work is partially based on the first author’s B. Sc. Thesis.



2 Prerequisites and structure of the course

As stated in the introduction, a course on number theory applied to cryptography can be taught
at a variety of levels, and we have chosen to maintain ourselves at the most elementary one.
We hope that this choice, along with the strong use of the CAS Maxima, will achieve two goals:
(1) to show, even to first-year university students, that Mathematics are useful in everyday life,
(2) to develop their computational skills through the use of software. Additionally, we would
hope to catch their attention and interest by showing them how they can use their smartphone
in an unexpected way (by the way, this is also a good method for avoiding having them curled
upon their phones for other tasks, such as messaging or checking their Facebook accounts).
According to our choice, the prerequisites of the course are kept to a bare minimum: just some
working knowledge of basic arithmetic and the elementary logic and set theory, methods of
proof by contradiction and induction will suffice.
The contents are quite standard and the ordering follows basically that of McAndrews’s book,
with some exceptions. The main reason for that is that we cover much less material. We
start with a review of basic arithmetic (Euclid’s algorithm, gcd and lcm, prime numbers and
their properties, etc.). Then we move to modular arithmetic; this topic is developed in greater
detail, as it is crucial for the rest of the course. The text that we have found to be more suitable
for the mathematics in this course is [2], its pace is appropriate for the students to follow it,
the explanations are clear detailed enough, and it comes with lots of worked examples (it also
includes solutions to selected exercises at the end).
We think that applications should be presented as soon as possible. Right after talking about
modular arithmetic, we present the first example of cryptography: the Caesar cipher. It can
be implemented in less than 5 minutes in MoA, and we propose our students ti exchange coded
messages between them, thus leading to the deciphering process, which is implemented trivially.
Also, it is very early to write a program for brute- force cracking the messages encrypted this
way, and this brings some fun to the classroom. The students learn very quickly that the more
modern encrypted communication protocols used in programs such as whatsapp or Snapchat are
just refinements of this basic ideaa, and that their security depends crucially on their strength
against brute-force attacks.
Another applications of modular arithmetic –not related to cryptography– is the ISBN code.
We can not help to include a cursory description of coding theory; the notions of alphabet,
codewords blocks, syndromes,etc., are reviewed, and it is shown that the ISBN is a linear block
code of block length 10 over Z11. We also show how it is possible, in some cases, to use the
syndrome to correct errors in this code.
Returning to mathematics, we reach the core of the course: linear congruences , the Chinese
remainder theorem, and the theorems of Fermat an Euler. The application in this case is
the Miller-Rabin test, including a proof that the test fails in showing that a given number is
composite with a probability 1

4
, students are asked to write their own version of the algorithm,

and then to compare it with the one included in Maxima (this is the great and true advantage
of using free software). It is surprising that some students write a program which is as efficient
as Maximas’s one!.
Another smartphone-lab in this part, consists in checking that the number ϕ(n)/n (where
ϕ is Euler’s totient function) approximates the probability that a positive integer chosen at
random, be coprime with p1, . . . , pk, where n = pe11 · · · pekk in the prime factorization of n. These
mini-projects are used to learn some Maxima coding. In this example, one could write first a



program that selects m random numbers between 1 and 100m:

(%i1) numgen(m):=block([s,N],

N:100*m,

for j:1 thru m do s[j]:random(N),

makelist(s[j],j,1,m)

)$

(%i2) numgen(10);

(%o2) [612,302,734,585,204,391,429,985,298,403]

The syntax is self-explanatory (another great advantage of Maxima). For a list of such numbers,
we can complete the fraction of those coprime with n:

(%i3) P(m,n):=block([tmp,N],

N:numgen(m),

for k:1 thru m do t[k]:gcd(n,N[k]),

tmp:makelist(t[k],k,1,m),

length(sublist_indices(tmp,lambda([x],x=’1)))/m

)$

Notice the use of lambda functions here. It is hard to overemphasize that using a CAS-oriented
approach (particularly one based on functional programming, such as Maxima), reinforces the
analytic skills of students. Finally, we can check that P (m,n), for large values of m, approaches
ϕ(n)/n:

Figure 1: The totient function

(%i4) P(5000,92),numer;

(%o4) 0.4718

(%i5) totient(92)/92,numer;

(%o5) 0.4782608695652174



At this point, we introduce the main examples of classical cryptography: the affine, Vigènere
and Hill ciphers. Next, we study the attacks on these systems, mainly based on n-grams
frequencies. We closely follow McAndrew here, but the case of the Hill cipher, we present a
scheme of ciphertext-only attack. As we think it is of some interest, and not so easily found in
the literature, we discuss this case in detail in section 4.

When studying the cryptanalysis of the Vigènere cipher, we introduce the basics of Shan-
non’s information theory, using the entropy of the encrypted message as a method for computing
the key length alternative to that of Kasiski.
The last part of the course deals with modern cryptography, based on public keys. As a warm-
up, we review some properties of primitive roots modulus a prime and the Diffie-Hellman-
Merkle protocol for exchanging keys, as well as quadratic residues in Zp and the Rabin pseudo-
cryptosystem. The final topics are the usual ones: El Gamal and RSA cryptosystems, and
digital signatures.

3 Encryption with Elgamal

In this section we show a full implementation in Maxima of the Elgamal cryptosystem, as
taught in the course. It is a good example of the combination of a usable system, available
technology (a smartphone, a tablet, a personal computer), and elementary mathematics. Also,
it provides some insight on the inner workings of Maxima, as we will see.

The basic mathematical notion involved in Elgamal cryptosystem is that of a primitive root
in Zp, where p is a prime number (so Zp is a field). Maxima has the command zn primroot p(x,p),
which checks whether x is a primitive root modulo p or not:

(%i1) zn_primroot_p(6,11);

(%o1) true

(%i2) zn_primroot_p(4,11);

(%o2) false

Of course, this command can be applied to compute all the primitive roots in Zp:

(%i3) zp_primroot_all(p):=sublist(makelist(j,j,1,p-1),

lambda([x],zn_primroot_p(x,p)))$

(%i4) zp_primroot_all(29);

(%o4) [2,3,8,10,11,14,15,18,19,21,26,27]

In the Elgamal cryptosystem, a large prime p is chosen, along a primitive root r in Zp. For
values of p of order of magnitude 103, these roots can b computed in a reasonable time, but for
larger values, the direct use of zn primroot p(x,p) is unfeasible. The Maxima manual offers a
workaround in this case, by first factoring the Euler totient function. Thus, if we were to work
with the prime p = 2142 + 217, we would do first

(%i5) ifs:ifactors(totient(2^142+217));

(%o5) [[2,3],[5,1],[11,1],[1301,1],[14155556315601773,1],

[688022228164201531661,1]]



Now, we can easily select those primitive roots comprised between a random number m (such
that m + 100 < p) and p, and choose one of them r, say, the first one3:

(%i6) m:random(2^142+117);

(%o6) 4867101905443159474092606701476551236071744

(%i7) sublist(makelist(i,i,m,m+100),lambda([x],zn_primroot_p(x,2^142+217,ifs)));

(%o7) [4867101905443159474092606701476551236071745,

...,

4867101905443159474092606701476551236071844]

(%i8) first(%);

(%o8) 4867101905443159474092606701476551236071745

The system’s administrator (sysadmin) makes publicly available the pair (p, r). Now, Alice
must create a public key A from (p, r) and a random number N < p chosen by her (her private
key), through the formula A = rNmod p. If Bob wants to send a message to Alice, encoded in
a number M , he must choose first a random k < p, then compute K = Akmod p, and the pair
of values M1 = rkmod p, M2 = KMmod p. He finally sends the pair (M1,M2) to Alice, who,
to decipher it, must recover K as the first step. This is done (modulo p) as

K = Ak = (rN)k = (rk)N = MN
1 .

Notice that this does not pose any problem to Alice, who knows the private key N . The original
message can be recovered now as M = K−1M2 (operations modulo p). We now describe some
Maxima functions which implement these computations quite efficiently. We will need some
functions to code plaintext into numbers:

(%i9) text_to_numbers(s):=map(cint,charlist(s))-96$

(%i10) base27(list):=block(

sum(reverse(list)[j]*27^(j-1),j,1,length(list))

)$

In general, we could write a function such as

(%i11) dec2base(n,b):=block([remainders,tmp],

remainders:[n],

do (tmp:rest(remainders,1),

remainders:flatten(push(divide(remainders[1],b),tmp)),

if is(first(remainders)<b) then return (remainders)

)

)$

Next, a function for the sysadmin (it generates the parameters (p, r) of the cryptosystem):

(%i12) load(distrib)$

(%i13) Elgamal_parameters(n):=block([p,tmp,roots],

p:next_prime(floor(random_normal(2^n+12345,100,100)[random(100)])),

3We have slightly edited the output in order to make it more readable, so we only show the first and the last
elements of the list. The total number of elements is 30.



tmp:ifactors(totient(p)),

m:random(p-100),

roots:sublist(makelist(i,i,m,m+99),lambda([x],zn_primroot_p(x,p,tmp))),

[p,first(roots)]

)$

(%i14) parameters:Elgamal_parameters(150);

(%o14) [1427247692705959881058285969449495136382746771,

1394096003374114039955677931421556237990032283]

(%i15) p:first(parameters);

(%o15) 1427247692705959881058285969449495136382746771

(%i16) r:second(parameters);

(%o16) 1394096003374114039955677931421556237990032283

Notice that we have chosen relatively small numbers in order to respect the LATEX format
of the document. There is no problem in choosing, say, n = 1000, the time invested in the
computations in this case is about 1 second in a Pentium i5, and the numbers (p, r) will have
about 300 digits each. Now, Alice can generate her private key as (see Figure 3 (a)):

(%i17) N:random(p);

(%o17) 892360244943494260526639035353220243282830315

Public keys can be generated with the following function,

(%i18) Elgamal_publickey(p,r,N):=power_mod(r,N,p)$

(%i19) A:Elgamal_publickey(p,r,N);

(%o19) 485887141515879278922730857548485384618668787

The function used by the sender (Bob) to encrypt a message given by a string s, with the public
key A, and the parameters (p, r) (the function also asks for Bob’s private key k), see Figure 3
(b):

(%i20) Elgamal_cipher(s,A,k,p,r):=block([M,K],

M:base27(text_to_numbers(s)),

K:power_mod(A,k,p),

M1:power_mod(r,k,p),

M2:mod(K*M,p),

[M1,M2]

)$

(%i21) k:random(p);

(%o21) 272257742710230641981665814872866632782818419

(%i22) messsage:Elgamal_cipher("attackatmidnight",A,k,p,r);

(%o22) [1270761344282129541490259706287488176417871572,

1238768639738378663241909377365533126275926625]

Now, the deciphering process. The following function accepts as its arguments a list
[M1,M2], the private key N , and the parameter p:



(%i23) Elgamal_decipher(M,N,p):=block([K,tmp],

K:power_mod(M[1],N,p),

tmp:power_mod(power_mod(K,-1,p)*M[2],1,p),

simplode(map(ascii,dec2base(tmp,27)+96))

)$

(%i24) Elgamal_decipher(message,N,p);

(%o24) "attackatmidnight"

(a) (b)

Figure 2: Elgamal cryptosystem

4 Ciphertext-only attack on Hill’s cipher

Hill’s cipher, based on the use of matrices, is one of the first examples of a cryptosystem based
on non-elementary mathematics. Indeed, it is one of the most suitable cryptosystems to be
taught to students of mathematics and computer sciences in first courses, see [6]. It is very easy
to implement, illustrates well the basic operations of matrix theory and modular arithmetic,
and has several good cryptographic properties. Among them, perhaps the most important is
that it diffuses the distribution of letters in the ciphertext, so it is very robust against attacks
based on frequency analysis. Indeed, it is usual to consider that a ciphertext-only attack on
Hill’s cipher is difficult.

Here we will see a plausible ciphertext-only attack on a Hill’s cipher of block size 2, using
the n−grams frequency analysis as a tool. This type of attack is very easily implemented on
Maxima, but it is not fully automatic, it needs a good deal of intervention and educated guesses
from the user, so it is valuable from a pedagogical point of view.

In what follows we will consider only messages containing the English alphabet letters with
the usual correspondence between letters and classes in Z26:

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

As usual, ciphertexts will be written in capital letters.



Consider the following ciphertext, encrypted using a 2 × 2 matrix by the Hill method from
a plain text written in Spanish:

NPY LUGEBILECNRJLTIECY GV BNHDLTTDQ

Our task is to decipher it, and for this we need to find the encryption matrix

K =

(
a b
c d

)
.

The idea is the following. First, we will traverse the text, analyzing blocks of four letters in each
step and comparing them with the most usual 4−grams in Spanish, which are (in descending
order of appearance frequency): cion, dela, acio. For example, we would start with

c i o n
NP Y L

If the correspondence would be an exact one, that is, if NPY L were the encryption of cion,
then we would have (

a b
c d

)(
c
i

)
=

(
N
P

)
and

(
a b
c d

)(
o
n

)
=

(
Y
L

)
This translates into the system of equations modulo 26

2a + 8b = 13
2c + 8d = 15

14a + 13b = 24
14c + 13d = 11

,

which has no solutions. Next we move on to the next block of four letters:

c i o n
NP Y L UG

The fist and last two-letter blocks are incomplete, we complete them using bi-grams: For the
left block, we look for the most frequent bi-gram in Spanish having c as its second letter, which
is ac. Then we would be lead to consider(

a b
c d

)(
a
c

)
=

(
N
P

)
and

(
a b
c d

)(
i
o

)
=

(
Y
L

)
or, equivalently, 

2b = 13
2d = 15

8a + 14b = 24
8c + 14d = 11

,

which neither has solution. We would pass to consider the right two-letter block, using the most
frequent bi-gram having n as its first letter, which is nt, constructing the equivalent system of
linear equations in Z26 and analyzing its solutions. If we do it, we will not find any solution.



The next step is to consider the second most frequent bi-grams for both, the left and the right
blocks of two letters. In case we do not find solutions (and that is exactly what happens in
this example) we would try with the third most frequent bi-grams. But if these do not give a
solution, we would move on to the next block of four letters.
Notice that we could obtain a solution to the system of linear congruences, but one leading to
a non-sense message. For instance, moving the 4−gram four positions, we would get

i o n
UG EB

Completing the right block with nt (the most frequent bi-gram starting with n), we get
8a + 14b = 20
8c + 14d = 6
13a + 19b = 4
13c + 19d = 1

,

which has a solution a = 10, b = 18, c = 1, d = 24. Using the corresponding matrix K to
decipher the message we get

gocqqcamowqgmckuasqgaukeikiguekc

a text without meaning (even in Spanish!).
Of course, it may happen that after traversing the whole ciphertext, we still do not get a

solution. Then it is time to try with the second most frequent 4−gram, repeating the process
just described. In this case, we would try with dela. After repeating the process four times, we
arrive at

d e l a
EB I L EC

Completing the left block of two letters, we use sd, because this is the most frequent bi-gram
with d in its second place. The corresponding system is

18a + 3b = 4
18c + 3d = 1
4a + 11b = 8
4c + 11d = 11

, (1)

which has the solution a = 5, b = 6, c = 1, d = 3. Using the corresponding matrix

K =

(
5 6
1 3

)
,

we get the message
despuesdelastiniblasesperolaluz

(‘After the dark, I wait for the light’, it is a motto written in the cover of the first edition of
‘Don Quixote’, by M. de Cervantes (1616)).

Here is a program for solving systems of 2 linear congruences, by Gaussian elimination:



zn_linsyst(listec,listvar,n):=

block([c,tmp,divs,L,i0,j0,cinv,A,B,a,b,d,q,mprime,u,x,y],

c:coefmatrix(listec,listvar),

tmp:list_matrix_entries(c),

for i:1 thru 4 do divs[i]:gcd(tmp[i],n),

L:makelist(divs[i],i,1,4),

if not(member(1,L)) then

return(

"There are no solutions, no coefficient is coprime with the modulus"

)

else

(

if is(equal(L[1],1)) then (i0:0,j0:0),

if is(equal(L[2],1)) then (i0:0,j0:1),

if is(equal(L[3],1)) then (i0:1,j0:0),

if is(equal(L[4],1)) then (i0:1,j0:1),

cinv:inv_mod(c[i0+1,j0+1],n),

A:c[mod(i0+1,2)+1,mod(j0+1,2)+1]-

cinv*c[mod(i0+1,2)+1,j0+1]*c[i0+1,mod(j0+1,2)+1],

B:rhs(listec[mod(i0+1,2)+1])-

inv_mod(c[i0+1,j0+1],n)*rhs(listec[i0+1])*c[mod(i0+1,2)+1,j0+1],

a:mod(A,n),

b:mod(B,n),

d:gcd(a,n),

if elementp(d,divisors(b))

then (

q:b/d,

mprime:n/d,

u:first(gcdex(a,n)),

x:mod(mod(q*u,n),mprime)

)

else

return(

"There are no solutions: in ax=b mod n, gcd(a,n) does not divide b"

),

[

listvar[mod(j0+1,2)+1] =x,

listvar[j0+1]=mod(cinv*(rhs(listec[i0+1])-c[i0+1,mod(j0+1,2)+1]*x),n)

]

)

)$

Some examples (the solution to (1)):

(%i1) zn_linsyst([18*d=2,11*d+4*c=11],[c,d],26);

(%o1) [c=1,d=3]

(%i2) zn_linsyst([18*b=4,11*b+4*a=8],[a,b],26);



(%o2) [a=5,b=6]

A function to encrypt a text string s with Hill’s cipher, using an encryption matrix K (it
can be used also to decipher, simply by using K−1 instead of K):

Hill_cipher(s,K):=block([tmp1,tmp2,tmp3,tmp4,tmp5,L1,L2,m],

m:length(K),

if is(equal(second(divide(slength(s),m)),0)) then

(

tmp4:map(cint,charlist(s))-97,

L2:length(tmp4),

tmp5:makelist(create_list(tmp4[j],j,(i-1)*m+1,m*i),i,1,L2/m),

simplode(map(ascii,

mod(flatten(

makelist(list_matrix_entries(tmp5[j].transpose(K)),j,1,length(tmp5)))

,26)

+65))

)

else

(

tmp1:smake(m-second(divide(slength(s),m)),ascii(120)),

tmp2:map(cint,charlist(concat(s,tmp1)))-97,

L1:length(tmp2),

tmp3:makelist(create_list(tmp2[j],j,(i-1)*m+1,m*i),i,1,L1/m),

simplode(map(ascii,

mod(flatten(

makelist(list_matrix_entries(tmp3[j].transpose(K)),j,1,length(tmp3)))

,26)

+65))

)

)$

The function at work:

(a) (b)

Figure 3: Hill cryptosystem



(%i3) K:matrix([5,6],[1,3]);

(%o3) matrix([5,6],[1,3])

(%i4) cleartext:"despuesdelastiniblasesperolaluz";

(%o4) "despuesdelastiniblasesperolaluz"

(%i5) Hill_cipher(cleartext,K);

(%o5) "NPYLUGEBILECNRJLTIECYGVBNHDLTTDQ"

Finally, we list a function to compute the inverse of a matrix A modulo n, to be used in the
deciphering process:

matrix_mod_inv(A,n):=block([det,mdet],

det:determinant(A),

if equal(gcd(det,n),1) then

(mdet:inv_mod(det,n),

mod(mdet*adjoint(A),n))

else

return("The matrix is not invertible mod n")

)$

5 Conclusions

Of course, our conclusions are completely biased, but we are firmly convinced that smartphones
and tablets can be efficiently used in the classroom, even at the level of university courses.
Among the many advantages we have found, we can count the following: (1) Use can be made
of modern technology without the need for an internet connection (recall that we live in a
developing country), only local WIFI or, in the worst scenario, a mobile phone network is
needed. (2) To avoid the use of cell phones in the classroom for other purposes than learning.
(3) To catch students’ interest, they are prone to put attention on those topics they consider
‘hot’, and nothing seems hotter to post-teenagers than using their smartphone in an advanced
way. (4) No need for a computer lab, any room will do the job. The tables will not be clustered
with laptops, cables, chargers and so on. (5) The teacher can feel again what is like to be a
teenager... Just create a Whatsapp group to send there the homework and some challenges in
the form of encrypted messages, wait a couple of minutes and be prepared to learn the exciting
Neolingua of IM clients :).

Regarding the technical contents, number theory is an ideal course for introducing the
student to the basics of functional programming, developing her analytic skills and learning
some useful mathematics, used in everyday life. The availability of both, great textbooks and
software, allows the teacher to develop a variety of approaches to this topic, easily adaptable
to the pedagogical trend of the moment.

References

[1] G. H. Hardy: A Mathematician’s Apology, Cambridge University Press, 1940. There
is a freely available edition at the URL https://www.math.ualberta.ca/mss/misc/

AMathematician’sApology.pdf, the quotation here can be found in page 44.

https://www.math.ualberta.ca/mss/misc/A Mathematician's Apology.pdf
https://www.math.ualberta.ca/mss/misc/A Mathematician's Apology.pdf


[2] G. A. Jones and J. Mary Jones: Elementary number theory, Springer Verlag, 1998.

[3] M. Marcolli: Number theory in Physics. In Encyclopaedia of Mathematical Physics, Elsevier,
2006. Editors: J. P. Francoise, G. L. Naber, and T. S. Tsun.

[4] Maxima.sourceforge.net: Maxima, a Computer Algebra System. Version 5.38.0 (2016).
http://maxima.sourceforge.net.

[5] Y. Honda: Maxima on Android (Version 2.8), 2015, https://play.

google.com/store/apps/details?id=jp.yhonda&feature=search_result#?t=

W251bGwsMSwxLDEsImpwLnlob25kYSJd.

[6] A. McAndrew: Using the Hill cipher to teach cryptographic principles. International Journal
of Mathematical Education in Science and Technology 39 7 (2008) 967–969

[7] A. McAndrew: Introduction to cryptography with open-source software, CRC Press, 2011.

[8] The Sage Developers: SageMath, the Sage Mathematics Software System (Version 7.3),
2016, http://www.sagemath.org.

[9] The Sage Developers: SageMath for Android (Version 1.0.1), 2014, https://play.google.
com/store/apps/details?id=org.sagemath.droid.

[10] M. A. Skillen: Mobile Learning: Impacts on Mathematics Education, Proc. of the XX
Asian Technology Conference in Mathematics (Leshan, China), 2015. Mathematics and
Technology, LLC.

[11] D. R. Stinson: Cryptography: Theory and practice, CRC Press, 1995.

[12] W. S. von Waltershausen: Gauss zum Gedchtniss, S. Hirzel, Leipzig, 1856. A freely avail-
able edition can be found at the URL https://archive.org/details/gauss00waltgoog.
The quotation mentioned in the text is in page 64 of this edition.

[13] S. Y. Yang: Number Theory for Computing, Springer Verlag, 2002.

http://maxima.sourceforge.net
https://play.google.com/store/apps/details?id=jp.yhonda&feature=search_result#?t=W251bGwsMSwxLDEsImpwLnlob25kYSJd
https://play.google.com/store/apps/details?id=jp.yhonda&feature=search_result#?t=W251bGwsMSwxLDEsImpwLnlob25kYSJd
https://play.google.com/store/apps/details?id=jp.yhonda&feature=search_result#?t=W251bGwsMSwxLDEsImpwLnlob25kYSJd
http://www.sagemath.org
https://play.google.com/store/apps/details?id=org.sagemath.droid
https://play.google.com/store/apps/details?id=org.sagemath.droid
https://archive.org/details/gauss00waltgoog

	Introduction
	Prerequisites and structure of the course
	Encryption with Elgamal
	Ciphertext-only attack on Hill's cipher
	Conclusions

