
Solving Sudoku Puzzle by Evolutionary Algorithm

Kedar Nath Das1, Sumit Bhatia2, Shubin Puri3, Kusum Deep4
1kedar.iitr@gmail.com, 2sumit@cse.psu.edu, 3shubhin@gmail.com, 4kusumdeep@gmail.com

1Department of Mathematics, NIT Silchar, Assam, India

2Department of Computer Science and Engineering, The Pennsylvania State University, USA
3Department of Chemical Engineering, 4Department of Mathematics, IIT Roorkee, India

Abstract: ‘Sudoku’ means ‘Single number’. ‘Sudoku Puzzle’ is an interesting and popular Japanese game, where the

non-givens need to be filled by a single number (from 1 to 9) provided no repetition occur in the corresponding rows,

columns and sub-squares. Solving a Sudoku puzzle is challenging due to its easy rules and difficult inherent

phenomenon. Although a number of approaches exist for solving a given Sudoku puzzle, it becomes a challenge among

the researchers to solve it by using evolutionary algorithms. In this paper, a Retrievable Genetic Algorithm is proposed

to solve a given Sudoku puzzle. A new fitness function is designed with puzzle-character-dependent constraints. The

Genetic Algorithm is made “Retrievable”, since the population is reinitialized after a certain number of generations in

order to escape from the premature convergence or from being trapped in the local minima. A set of 9 sample puzzles

of different difficulty label have been considered for comparison. The superiority of Ret-GA is ensured from the

comparative results and discussions.

1. Introduction

‘Sudoku Puzzle’ is a number game pioneered by the great Swiss mathematician Leonhard Euler in

the year 1783. The word ‘Sudoku’ comes from Japan and consists of the Japanese characters Su

(meaning 'number') and Doku (meaning 'single'). Today, it is one of the most popular puzzles

attracting young and old alike. Due to its addictive and challenging nature, it has spread like a

wildfire throughout the globe and it has attracted the attention of many researchers who are trying

to design algorithms to solve it by applying varied approaches. The traditional method

(deterministic approaches) became popular to solve such puzzles. Recently researchers put their

efforts to design robust heuristic approaches like simulated annealing [1] and Genetic Algorithms

[2], hybrid Genetic Algorithm [3], geometry particle swam optimization [4] to solve Sudoku

puzzles. Haynes et al. [5] defined a new mutation technique called ‘exponential moving average’ to

solve Sudoku puzzles.

Sudoku is a 9 X 9 square that is divided into nine, 3 X 3 sub squares. In the beginning, there are

some static numbers (called givens) in the puzzle. The game is to fill all non-givens such that each

row, column and sub square contains each integer from 1 to 9 once and only once. The difficulty

level of the Sudoku puzzle is determined not only by the number of givens [6], but also it

dependents on about 20 factors [7].

Figure 1 is an example of a Sudoku puzzle and Figure 2 represents its solution. The static numbers

given in Fig. 1 retain their positions and values in the solution. In the solution, each row, column

and sub square of solution (Figure 2) contains integers from 1 to 9 once and only once. The Sudoku

can be modeled as a combinatorial optimization problem. It is NP-hard since the total number of

unique 9 X 9 Sudoko that can be generated are 6,670,903,752,021,072,936,960 (~6.67×1021) [8],

where each has a unique solutions.

The objective of this paper is to present a new Retrievable Genetic Algorithm based on a new

model of the fitness function for solving a Sudoku puzzle. Sudoku of varied difficulty levels are

solved. The results are compared with the results given in [2].

mailto:kedar.iitr@gmail.com
mailto:sumit@cse.psu.edu
mailto:shubhin@gmail.com
mailto:kusumdeep@gmail.com

Fig. 1 A Sudoku puzzle Fig. 2 Solution

This paper is organized as follows. In section 2, a review of literature on solving the Sudoku using

Genetic Algorithms is presented. In section 3, the proposed Retrievable Genetic Algorithm is

stated. In section 4, the numerical results on various difficulty levels of the puzzle are discussed and

analyzed. Finally, the conclusions are drawn in section 5.

2. Literature Review
Genetic algorithm (GA) has been one of the population based paradigms pioneered by John

Holland in 1975. Based on genetic process of biological organisms, GA works surprising well in

determining the global (near) optimal solution. GA has been successfully used in solving

combinatorial problems. Sudoku puzzle is combinatorial optimization problem [9]. It is similar to

the ancient magic square problem (Latin square), where different sizes of squares must be filled, so

that the sum of each column and each row are equal. This magic square problem has been solved by

GAs [10, 11]. Generating threshold matrix for halftoning [12] grayscale images is also a related

problem. Threshold matrices have been optimized by GAs as in [11, 13-16]. In [17] GA is used to

generate Sudokus internally. It is claimed that the generated Sudokus are very hard to solve by their

GA. Unfortunately there is no details available saying how the GA works internally. Moraglio et.

al. [18] designed a product Geometric Crossover incorporating the distance of the search space

treated as metric space, to solve Sudoku puzzles and concluded that on Medium and Hard

problems, the new geometric crossovers perform significantly better than hill-climbers and

mutation alone. Timo Mantere and Janne Koljonen [16] worked on solving, rating and generating

Sudoku puzzles.

 Mantere and Koljonen [2] proposed a method to generate Sudoku puzzles and to solve a given

puzzle. In their paper, Sudoku is treated as a constrained satisfaction problem. Mainly, there are

three constrains as follows.

i. The sum of each row/column /sub-square entries must be 45.

ii. The product of each row/column/sub-square entries must be 9!.

iii. No entries should be repeated in each row / column / sub-square.

They modified the constrained optimization problem into an unconstrained one and used GA to

solve it. Their proposed the objective function is to Minimize

                1*50*10 332211 








































  

j

j

i

i

j

j

i

i

i j

ji xgxgxgxgxgxgxf

where, for row-wise operation i ,

       ii

j

jii

j

jii xxgandxxgxxg  


}9,8,7,6,5,4,3,2,1{!9,45 3

9

1

,2

9

1

,1

 Similarly, for column-wise operation j , the terms  xg j1
,  xg j2

 and  xg j3
 are defined. It is worth to

note here that the three terms present in the right of equation (1) involves the constraints mentioned

above in (i), (ii) and (iii) respectively. The first term of equation (1) requires that each row and

column sum should be equal to 45. The second term requires that each row and column product

should be !9 . The third term requires that each row and column must contain each integer from 1 to

9 exactly once. There all leads to minimize  xf .

The static numbers (givens) are not changed throughout the entire computation. Authors claimed

that their software can generate the Sudoku puzzles of different difficulty levels and can solve the

puzzles up to some extent. The results reported by the authors clearly indicate the potential of

Genetic Algorithms to solve Sudoku puzzles. However, their algorithm works very well for puzzles

of lower difficulty level but its efficiency decreases rapidly with increasing difficulty level. Further,

it was reported that this fitness function may not be the best for Sudoku puzzles.

In the present work, we have used an entirely new fitness function incorporating puzzle-character-

dependent constraints. Further, as evolution often proceeds in punctuated equilibrium, the fitness

value ceased to improve after certain number of generations. Also, it was observed that all the

chromosomes tend to converge to a point very close to the desired solution. It may be possible that

after a very large number of generations we may obtain the exact solution but in order to reduce

computational time we introduced a random restart mechanism where after a certain number of

generations (which depends on the difficulty level of the puzzle) the population is again

reinitialized.

3. The proposed Retrievable Genetic Algorithm
In this section a new GA algorithm is proposed and is called as “Retrievable GA (Ret-GA)”. The

motivation behind this proposal is, in Mantere and Koljonen [2] there are mainly three instances

those need to be improved. First, while solving Sudoku game, authors started with an initial

population, where they take care of non-repetition of the numbers in each sub-square. But this

mechanism hinders the randomness concept of GA mechanism. Thus, the initial population needs

to be generated randomly to reduce the time. Of course, there may be some repetitions initially

(refer the next paragraph). Secondly, as the crossover operator is being used with probability 1 in

the population, it may not able to maintain the diversity in the population and the number of

function evaluations increases. Therefore, in the proposed method, few individuals are not allowed

to participate in the crossover process. This can be controlled with considering a high probability of

crossover (refer the ‘crossover’ section). Thirdly, while using the mutation operator, authors use the

swap mutation, 3-swap mutation and insertion mutation with a probability ratio of 0.5:0.3:0.2. It

kills time but in return, it has no much effect in the solution quality. To overcome this, a bit-wise

mutation is being applied with a small probability (refer the ‘mutation’ section).

Initial Population and Selection

The algorithm proceeds with the generation of initial population which consists of 10*N

individuals, where N is the order of the given Sudoku puzzle. The population size 10*N is

recommended after observing the performance of Ret-GA by varying it value in the range 2*N to

30*N. Each individual is an N X N array. The entries corresponding to the non-givens in the

Sudoku puzzle are assigned randomly generated values from 1 to N. This step is important because

GA yields robust optimal solution due to its randomness characteristics and it approaches the

solution by excluding the unfit individuals. Hence, the random characteristic is being utilized

starting from the initial population itself unlike [2]. As a result the proposed algorithm randomly

explores the larger search space and selects the better individuals for each consecutive generation.

Crossover

Select 2 conjugative individuals from the population with a crossover probability 0.8

(experimentally verified). Apply Uniform Crossover to them. The mechanism for such Crossover is

to choose the crossover sites as much as possible, in between each pair of rows. Now interchange

the rows alternatively throughout. In Figure 3, an example of crossover is given between two

individuals. The dotted lines represent the possible crossover sites. The bi-headed arrows indicate

the rows to interchange, which need to be performed alternatively.

Fig. 3 Row-wise Uniform Crossover.

Mutation

In mutation, a new approach is followed where the non-givens flip their positions bit wise. Each of

the non-given entry is replaced by a randomly generated number (from 1 to N) with a probability of

0.2, which has been fine-tuned and recommended after an extensive experimentation. For example,

in Figure 4, to mutate the position ‘9’, we need to discard it first and then will be filled by a number

randomly generated from 1 to 9. It may be noted that just after the mutation few repeated entries

may be appeared in the corresponding row.

Fig. 4 Bit-wise Mutation

Elitism

While conducting the experiments, neither complete nor partial elitism was found to be efficient.

Hence, we followed an approach in between these two. The population before crossover and after

mutation were combined together to form a population of size 20*N (Double Size). Arrange the

individuals in the ascending order of their fitness values. To maintain the diversity in the

population, the alternate individuals are then selected for the next generation and the cycle

continues with the population of the original size 10*N. This step is called as ‘alternate elitism’.

Remove repetition

In order to ensure faster convergence, we employ a strategy to utilize the givens of the Sudoku

puzzle. We call this operation as “Remove Repetition”, in which any repetition of a given is

replaced by a randomly selected number from the set ({1, 2, 3, 4, 5, 6, 7, 8, 9} – Gi), where Gi is the

set of numbers present in the ith row or column under consideration (see Figure 5). The operation

is first performed on each row and then on each column. During column wise operation some of the

givens may be repeated in a row but such instances were found to be very few, hence the overall

fitness of the individuals improves. It should be noted that repetition of non-givens is not removed

by this process. This technique is applied after generating initial population, after crossover and

after mutation.

Fig. 5 Remove repetition of givens

Fitness function

 It is often difficult to design a fitness function in combinatorial problems [19]. However, in

this paper, an attempt is made to design a simple fitness function for a generalized NN  Sudoku

puzzle. A simple uniqueness technique is being used to design the fitness function. It consists of

three different fitness terms, namely row-fitness, column-fitness and sub-square-fitness. These are

the only constraints taken with equal penalty, 1 each. Hence the overall fitness function is defined

as:

Fitness function = Row fitness + Column fitness + Sub-square fitness (2)

Each of the above three functions attains maximum value only when the solution is reached. In the

following lines we derive the expression for maximum overall fitness value. Each row entry is

compared with all the remaining entries to its right. If the two entries are not equal, row-fitness

value is incremented by 1 otherwise it remains same. Thus for the solution the contribution from

each row is 2/)1(NN (sum of first 1N natural numbers). Hence for N rows, it will be

  2/12 NN . Similar results hold for column and sub-square. Hence for an NN  Sudoku, the

maximum fitness value is   2/13 2 NN (which comes out to be 972 for a 9 X 9 Sudoku puzzle). To

derive the fitness function for a Sudoku puzzle at any intermediate point during simulation, we

define a function



 


otherwise

lkjiif
lkjif

,1

),(),(,0
),,,((3)

where,),(ji and),(lk refer to two positions of an NN  Sudoku puzzle.

The fitness function for the rows is defined as follows,

    




 


N

i

N

j

N

jl

lijiffitnessRow
1

1

1 1

,,, (4)

Equation (4) indicates that comparison starts from the cell (1, 1) with (1, 2), (1, 1) with (1,3),….. up

to (1,1) with (1, N); (1,2) with (1,3), (1,2) with (1,4),………. up to (1,2) with (1,N);…………..;

finally (1, N-1) with (1, N). This completes the first row, i.e. for 1i . Similarly, it moves up to N

rows.

The fitness function for the columns is defined as follows,

(a) Row-wise (b) Column-wise

   




 


N

j

N

i

N

il

jljiffitnessColumn
1

1

1 1

,,, (5)

The similar arguments hold as described above, starting from column 1 to N, by using equation (5).

The fitness function for sub-square is defined as follows,

  
 

 
 

 

 
     
 







 



 















































N

i

N

q

Nq

ztNti

Nqr

NiNi

ik

Nq

Nqs

Nq

Nqj

Nq

jl

skriflijiff itnesssquareSub
1 1

,

11

mod

1 11

1

11 1

,,,,,, (6)

where, Z is the set of all positive integers.

Equation (6) represents that first the comparison completes in the first sub-square and then it jumps

to the 2nd sub-square on right to it. Gradually it covers all the N number of sub-squares. For a clear

understanding it can be exercised for a 9X9 Sudoku puzzle, where 9N .

The moments a solution is tapped, it needs to check whether the maximum fitness value is achieved

or not (Figure 6). This process is applied separately after generating the initial population, after

crossover and after mutation. Attaining the maximum fitness plays an important role as it is being

used as one of the stopping criteria in the algorithm. However, it is observed that as the fitness

value of an individual moves towards the maximum value, many a time, it gets trapped at some

particular value. It becomes very difficult to get out of it. As a result, it provides a premature

convergence. Hence to overcome this shortcoming, the population is to be reinitialized after a reset

point in the same run and thus try to approach the solution through a different path. The reset point

for a particular type of problem is defined as the number of generations needed to wait with a

repeated fitness values during the simulation. After the reset point attained, proposed method

attempts to regenerate the initial population, only if the number of generation is not attaining the

maximum of 50000. We set different reset points for different difficulty level Sudoku puzzles.

Higher the difficulty level (or, less is the number of givens, in general), greater is the reset point.

After a series of experiments and observation, the reset point is set to 2000 if there are 27 givens or

less, 350 if there are exactly 28 or 29 givens, 300 if there are exactly 30 or 31 givens and 200 if

there are 32 givens or more. Thus our algorithm tries to retrieve the solution if it gets stuck

somewhere. Hence we call it as a Retrievable Genetic Algorithm (Ret-GA). The mechanism of Ret-

GA is depicted in Figure 6.

4. Computational Experiment

Experimental Setup

The proposed Ret-GA algorithm starts with generating a “Blueprint Matrix”. This matrix contains 0

or 1 at the place of non-given and given positions respectively. Thus Blue print matrix just acts as a

reference matrix in the background of the simulation with a warning that not to change the

positions where it contains ‘1s’. Only changes possible where there are ‘0s’.

In the Ret-GA, the population size is kept fixed to 90 (i.e. 10*N, where N=9). Uniform crossover

and bitwise mutation have been incorporated at a probability of 0.8 and 0.2, respectively.

 A test bed of 9 Sudoku puzzles are picked up from [2] except their 1st (new) puzzle, where

there are no givens. Out of these 9, there are 5, which they considered from the newspaper [20],

marked with difficulty rating 1-5 star, where there are symmetric givens. Rest 4 problems are taken

from newspaper [21], marked with difficulty rating: Easy, Challenging, Difficult and Super

difficult. These puzzles contain 23 to 26 nonsymmetrical givens. These are called as Sample Sudoku

Puzzles. Each problem undergoes 100 runs. The stopping criterion for a run is either the optimum

value (972) is reached or the maximum generation (fixed to 50,000) is attained.

Results and Discussion

In 100 different runs, a run is said to be success, if it finds the optimum value 972. In table-1, GA

represents the GA used in [2]. The number of times the run is a success one, is reported in Table-1.

Similarly, the minimum, maximum and average number of function evaluations from both GA and

Ret-GA are recorded in table-1. The last two columns represent the median and standard deviation

of the required function evaluations of the successful runs only.

By Table 1 it can be noted that in all the sample problems success rate is better in Ret-GA than that

of GA, where in the puzzles 1-star and Easy, they are equal to 100%. Out of all successful runs in

100 complete runs, the minimum and maximum generations obtained for each puzzle is reported.

Fig. 6 Schematic representation of the proposed Ret-GA

The average number of generations required for the successful runs are also mentioned. To better

understand the comparison for minimum, maximum and average number of generations, we plot

graphs in Figure 7 (a), (b) and (c) respectively, for all 9 puzzles. From Figure 7 it is clear that in all

the first 6 puzzles Ret-GA is better than GA with respect to the minimum, maximum and average

number of iterations. Ret-GA takes less number of generations to solve Challenging and Difficult

problems in the sense of minimum and maximum number of generations, but GA beats Ret-GA in

average. Only in the super difficult problem, Ret-GA takes less number of iterations with respect to

minimum, maximum and average. However, it should be noted that even Ret-GA takes more

number of generations to solve Supper difficult problems, but in return it provides higher success

rate and lower SD than GA. Moreover, corresponding to each and all nine sample Sudoku puzzles,

the SD by Ret-GA is less than that of GA. Therefore as a whole, Ret-GA performs better than GA

in most of the cases.

It is found that the average number of function evaluations for the puzzles rating Challenging,

Difficult and Super Difficult; the minimum number of function evaluations for Super Difficult

puzzles, are smaller in case of GA. Thus it is a difficult task to arrive to a concrete conclusion.

Hence, a second method of analysis is considered as described below.

Table 1. Performance of GA Vs. Ret-GA for different difficulty levels of sample Sudoku Puzzles

Standard Deviation

Ret-GA

159.95

1728.25

3906.40

11285.80

12832.50

55.70

19153.54

11940.66

11198.42

GA

3500.98

11834.68

24846.46

22429.12

22732.25

942.23

23058.94

12506.72

17053.33

Median

Ret-GA

98

1441

2755

6966

9393

52

27786

33760

36318

GA

917

7034

14827

22297

17365

417

17755

26162

6722

Average

Ret-GA

159.24

1864.94

4338.30

10716.73

13569.76

70.34

25932.87

40466.13

42354.86

GA

2466.60

11226.80

22346.40

22611.30

23288.00

768.60

25333.30

20534.30

14392.00

Maximum

Ret-GA

1100

7459

21595

42382

48336

305

41769

45676

49832

GA

23993

56484

94792

68253

68991

6035

89070

46814

47352

Minimum

Ret-GA

39

99

152

198

117

27

357

3699

21424

GA

184

733

678

381

756

101

1771

18999

3022

Count

Ret-GA

100

100

100

100

100

100

94

16

9

GA

100

69

46

26

23

100

30

4

6

G
ivens

33

30

28

28

30

36

25

23

22

L
evel

1 Star

2 Star

3 Star

4 Star

5 Star

Easy

Challenging

Difficult

Super

Difficult

(a) Minimum number of generations

required.

(b) Maximum number of generations

required.

(c) Average number of generations required.

Fig. 7 Comparison of GA and Ret-GA on Sample Sudoku Puzzles.

5. Conclusion
This paper exhibits a specialized heuristics, called “Retrievable Genetic Algorithms” for solving

Sudoku puzzle. The Retrievable GA is designed to keep in mind a new way of designing the fitness

function and the puzzle-characteristics dependent constraints. It is name as “retrievable” since it

involves a single mechanism for escaping from the premature convergence, by reinitializing the

population after a specified number of generations. Thus is helpful in maintaining the diversity in

search domain. The results obtained by the experiment lead to draw the conclusion that the

performance of the proposed Ret-GA is better in comparison to the results of existing GA. In

solving the sample puzzles, it is observed that the success rate obtained by Ret-GA is higher than

that of GA and the SD due to Ret-GA is lesser than that of GA in each problem. Hence we

conclude that Ret-GA is more reliable and more stable than GA in solving Sudoku puzzles.

Further it is worthy to note that Ret-GA could solve 1-5 star and Easy rating puzzles with 100%

success. It requires lesser number of generations as compared to existing GA. Although, Ret-GA is

not able to solve Challenging, Difficult and Supper difficult problems with 100% success, but the

success rate of Ret-GA is always higher as compared to GA. Moreover, the average number of

generations required to solve Challenging, Difficult and Supper difficult problems by Ret-GA are

lesser than that of GA.

After all, Ret-GA is a unique and novel approach to solve Sudoku puzzles. The approach may be

extended to a larger order (size) Sudoku and our next paper may find to use Ret-GA effectively for

higher dimensional puzzles. Researchers are encouraged to develop new fitness functions provides

better success rate in fewer generations for a general Sudoku puzzle.

References

[1] Lewis, R. (2007). Metaheuristics can solve Sudoku puzzles. Journal of Heuristics, Springer,

vol. 13, no. 4, pp. 387-401.

[2] Mantere, T. and Koljonen, J. (2006). Solving and rating Sudoku puzzles with Genetic

Algorithms. New Development of Artificial Intelligence and the Semantic Web, Proceeding

of the 12th Finnish Artificial Intelligence Conferences, STeP.

[3] Mantere, T. and Koljonen, J. (2007). Solving, rating and generating Sudoku puzzles with GA.

CEC 2007, IEEE Congress on Evolutionary Computation, pp. 1382 – 1389.

[4] Moraglio, A. and Togelius, J. (2007). Geometric particle swarm optimization for the sudoku

puzzle. GECCO '07 Proceedings of the 9th annual conference on Genetic and evolutionary

computation, pp. 118-125.

[5] Haynes, D., Corns, S. and Venayagamoorthy, G. K. (2012). An exponential moving average

algorithms applied to Sudoku puzzle. IEEE Congress on Evolutionary Computation, Brisbane,

Australia, June 9-14.

[6] Semeniuk, I. (2005). Stuck on you. In NewScientist 24/31. pp. 45-47.

[7] Wikipedia. (2006) Sudoku. Available via WWW: http://en.wikipidia.org/wiki/Sudoku (cited

11.09.2006).

[8] Frazer Jarvis. (2006). Sudoku enumeration problems. Frazer Jarvis's home page, Retrieved on

September 16.

[9] Lawler, E. L., Lentra, J. K., Rinnooy, A. H. G. and Shmoys D. B. (eds.). (1985). The traveling

salesman problem – A guided tour of combinatorial optimization. John Wiley & Sons, New

York.

http://www.cardiff.ac.uk/carbs/quant/rhyd/META_CAN_SOLVE_SUDOKU.pdf
http://www.sigevo.org/gecco-2007/index.html
http://en.wikipidia.org/wiki/Sudoku
http://www.afjarvis.staff.shef.ac.uk/sudoku/

[10] Ardel, D. H. (1994). TOPE and magic squares, a simple GA approach to combinatorial

optimization. In J. R. Koza (ed.). Genetic Algorithms in Stanford, Stanford bookstore,

Stanford, CA.

[11] Alander, J. T., Mantere, T. and Pyylampi, T. (1999). Digital halftoning optimization via

genetic algorithms for ink jet machine. In B.H. V. Topping (ed.), Developments in

Computational mechanics with high performance computing, CIVIL-COMP Press, Edinburg,

UK, pp. 211-216.

[12] Kang, H. R. (1999). Digital color halftoning. SPIE Optical Engineering Press, Bellingham,

Washington, & IEEE Press, New York.

[13] Alander, J. T., Mantere, T. and Pyylampi, T. (1998). Threshold matrix generation for digital

halftoning by genetic algorithm optimization. In D. P. Casasent (ed.), Intelligent Systems and

Advanced Manufacturing: Intelligent robots and Computer Vision XVII: Algorithms,

Techniques, and Active Vision, volume SPIE-3522, Boston, MA, 1-6. SPIE, Bellingham,

Washington, USA, pp.. 204-212.

[14] Kobayashi, N. and Saito, H. (1993). Halftone algorithm using genetic algorithm. In

proceeding of 4th Int. conf. on Signal Processing Applications and Technology, Vol. 1,

Newton, MA 28. Sept.-1. Oct. 1993, DSP Associates, Santa Clara, CA, Pages. 727-731.

[15] Newbern, J. and Bowe, Jr. M. (1997). Generation of Blue Noise Arrays by Genetic

Algorithms. In B.E.Rogowitz and T. N. Pappas (eds.), Human Vision and Electronic Imaging

II, San Jose, CA, 10-13 Feb, Vol. SPIE-3016, SPIE – Int. society of Optical Engineering,

Bellingham, WA, pp. 441-450.

[16] Wiley, K. (1998). Pattern evolver, an evolutionary algorithm that solves the non-intuitive

problem of black and white pixel distribution to produce tiled patterns that appear grey. The

Handbook of Genetic Algorithms, CRC Press.

[17] Gold, M. (2006). Using Genetic algorithms to come up with Sudoku puzzles. Available via

WWW: http://www.c-sharpcorner.com/UploadFile/mgold/Sudoku0923005003323AM/Sudoku.aspx?ArticleID-fba36449-

ccf3-444f-a435-a812535c45e5 (cited 11.09.2006).

[18] Moraglio, A., Toqelius, J. and Lucas, S. (2006). Product geometric Crossover for the Sudoku

puzzle. Evolutionary Computation, ECE 2006, IEEE cogress, pp. 470-476.

[19] Koljonen, J. and Alander, J. T. (2004). Solvoing the urban horse problem by backtracking

and genetic algorithm a comparison. In Proceedings of the 11th Finnish Artificial Intelligence

Conference (STeP 2004), Jarmo T. Alander, Pekka Ala-Siuru and Heikki Hyötyniemi (eds.),

Vantaa (Finland), 13rd Sep. 2004, vol. 3, pages 127136.

[20] Helsingin, S. (2006). Sudoku available via

WWW: http://www2. hs.fi/extrat/Sudoku/Sudoku.html (cited 11.01.2006).

[21] Aamulehti,(2006). Sudoku online via WWW: http://www. aamulehti.fi/Sudoku/ (cited

11.01.2006).

http://www.c-sharpcorner.com/UploadFile/mgold/Sudoku0923005003323AM/Sudoku.aspx?ArticleID-fba36449-ccf3-444f-a435-a812535c45e5
http://www.c-sharpcorner.com/UploadFile/mgold/Sudoku0923005003323AM/Sudoku.aspx?ArticleID-fba36449-ccf3-444f-a435-a812535c45e5

