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Abstract:  ‘Sudoku’ means ‘Single number’. ‘Sudoku Puzzle’ is an interesting and popular Japanese game, where the 

non-givens need to be filled by a single number (from 1 to 9) provided no repetition occur in the corresponding rows, 

columns and sub-squares. Solving a Sudoku puzzle is challenging due to its easy rules and difficult inherent 

phenomenon. Although a number of approaches exist for solving a given Sudoku puzzle, it becomes a challenge among 

the researchers to solve it by using evolutionary algorithms. In this paper, a Retrievable Genetic Algorithm is proposed 

to solve a given Sudoku puzzle. A new fitness function is designed with puzzle-character-dependent constraints. The 

Genetic Algorithm is made “Retrievable”, since the population is reinitialized after a certain number of generations in 

order to escape from the premature convergence or from being trapped in the local minima. A set of 9 sample puzzles 

of different difficulty label have been considered for comparison. The superiority of Ret-GA is ensured from the 

comparative results and discussions. 

      

1.  Introduction 
      

‘Sudoku Puzzle’ is a number game pioneered by the great Swiss mathematician Leonhard Euler in 

the year 1783. The word ‘Sudoku’ comes from Japan and consists of the Japanese characters Su 

(meaning 'number') and Doku (meaning 'single').  Today, it is one of the most popular puzzles 

attracting young and old alike. Due to its addictive and challenging nature, it has spread like a 

wildfire throughout the globe and it has attracted the attention of many researchers who are trying 

to design algorithms to solve it by applying varied approaches. The traditional method 

(deterministic approaches) became popular to solve such puzzles. Recently researchers put their 

efforts to design robust heuristic approaches like simulated annealing [1] and Genetic Algorithms 

[2], hybrid Genetic Algorithm [3], geometry particle swam optimization [4] to solve Sudoku 

puzzles. Haynes et al. [5] defined a new mutation technique called ‘exponential moving average’ to 

solve Sudoku puzzles. 

Sudoku is a 9 X 9 square that is divided into nine, 3 X 3 sub squares. In the beginning, there are 

some static numbers (called givens) in the puzzle. The game is to fill all non-givens such that each 

row, column and sub square contains each integer from 1 to 9 once and only once. The difficulty 

level of the Sudoku puzzle is determined not only by the number of givens [6], but also it 

dependents on about 20 factors [7]. 

Figure 1 is an example of a Sudoku puzzle and Figure 2 represents its solution. The static numbers 

given in Fig. 1 retain their positions and values in the solution. In the solution, each row, column 

and sub square of solution (Figure 2) contains integers from 1 to 9 once and only once. The Sudoku 

can be modeled as a combinatorial optimization problem. It is NP-hard since the total number of 

unique 9 X 9 Sudoko that can be generated are 6,670,903,752,021,072,936,960 (~6.67×1021) [8], 

where each has a unique solutions.  

The objective of this paper is to present a new Retrievable Genetic Algorithm based on a new 

model of the fitness function for solving a Sudoku puzzle. Sudoku of varied difficulty levels are 

solved. The results are compared with the results given in [2]. 
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Fig. 1 A Sudoku puzzle              Fig. 2 Solution 

 

This paper is organized as follows. In section 2, a review of literature on solving the Sudoku using 

Genetic Algorithms is presented. In section 3, the proposed Retrievable Genetic Algorithm is 

stated. In section 4, the numerical results on various difficulty levels of the puzzle are discussed and 

analyzed. Finally, the conclusions are drawn in section 5. 

 

2.  Literature Review 
Genetic algorithm (GA) has been one of the population based paradigms pioneered by John 

Holland in 1975. Based on genetic process of biological organisms, GA works surprising well in 

determining the global (near) optimal solution. GA has been successfully used in solving 

combinatorial problems. Sudoku puzzle is combinatorial optimization problem [9]. It is similar to 

the ancient magic square problem (Latin square), where different sizes of squares must be filled, so 

that the sum of each column and each row are equal. This magic square problem has been solved by 

GAs [10, 11]. Generating threshold matrix for halftoning [12] grayscale images is also a related 

problem. Threshold matrices have been optimized by GAs as in [11, 13-16]. In [17] GA is used to 

generate Sudokus internally. It is claimed that the generated Sudokus are very hard to solve by their 

GA. Unfortunately there is no details available saying how the GA works internally. Moraglio et. 

al. [18] designed a product Geometric Crossover incorporating the distance of the search space 

treated as metric space, to solve Sudoku puzzles and concluded that on Medium and Hard 

problems, the new geometric crossovers perform significantly better than hill-climbers and 

mutation alone. Timo Mantere and Janne Koljonen [16] worked on solving, rating and generating 

Sudoku puzzles. 

 Mantere and Koljonen [2] proposed a method to generate Sudoku puzzles and to solve a given 

puzzle. In their paper, Sudoku is treated as a constrained satisfaction problem. Mainly, there are 

three constrains as follows. 

i. The sum of each row/column /sub-square entries must be 45. 

ii. The product of each row/column/sub-square entries must be 9!. 

iii. No entries should be repeated in each row / column / sub-square. 

 

They modified the constrained optimization problem into an unconstrained one and used GA to 

solve it. Their proposed the objective function is to Minimize 
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 Similarly, for column-wise operation j , the terms  xg j1
,  xg j2

 and  xg j3
  are defined. It is worth to 

note here that the three terms present in the right of equation (1) involves the constraints mentioned 

above in (i), (ii) and (iii) respectively. The first term of equation (1) requires that each row and 

column sum should be equal to 45. The second term requires that each row and column product 

should be !9 . The third term requires that each row and column must contain each integer from 1 to 

9 exactly once. There all leads to minimize  xf  . 

The static numbers (givens) are not changed throughout the entire computation. Authors claimed 

that their software can generate the Sudoku puzzles of different difficulty levels and can solve the 

puzzles up to some extent. The results reported by the authors clearly indicate the potential of 

Genetic Algorithms to solve Sudoku puzzles. However, their algorithm works very well for puzzles 

of lower difficulty level but its efficiency decreases rapidly with increasing difficulty level. Further, 

it was reported that this fitness function may not be the best for Sudoku puzzles.  

In the present work, we have used an entirely new fitness function incorporating puzzle-character-

dependent constraints. Further, as evolution often proceeds in punctuated equilibrium, the fitness 

value ceased to improve after certain number of generations. Also, it was observed that all the 

chromosomes tend to converge to a point very close to the desired solution. It may be possible that 

after a very large number of generations we may obtain the exact solution but in order to reduce 

computational time we introduced a random restart mechanism where after a certain number of 

generations (which depends on the difficulty level of the puzzle) the population is again 

reinitialized. 

 

3.  The proposed Retrievable Genetic Algorithm 
In this section a new GA algorithm is proposed and is called as “Retrievable GA (Ret-GA)”. The 

motivation behind this proposal is, in Mantere and Koljonen [2] there are mainly three instances 

those need to be improved. First, while solving Sudoku game, authors started with an initial 

population, where they take care of non-repetition of the numbers in each sub-square. But this 

mechanism hinders the randomness concept of GA mechanism. Thus, the initial population needs 

to be generated randomly to reduce the time. Of course, there may be some repetitions initially 

(refer the next paragraph). Secondly, as the crossover operator is being used with probability 1 in 

the population, it may not able to maintain the diversity in the population and the number of 

function evaluations increases. Therefore, in the proposed method, few individuals are not allowed 

to participate in the crossover process. This can be controlled with considering a high probability of 

crossover (refer the ‘crossover’ section). Thirdly, while using the mutation operator, authors use the 

swap mutation, 3-swap mutation and insertion mutation with a probability ratio of 0.5:0.3:0.2. It 

kills time but in return, it has no much effect in the solution quality. To overcome this, a bit-wise 

mutation is being applied with a small probability (refer the ‘mutation’ section). 

 

Initial Population and Selection 

The algorithm proceeds with the generation of initial population which consists of 10*N 

individuals, where N is the order of the given Sudoku puzzle. The population size 10*N is 

recommended after observing the performance of Ret-GA by varying it value in the range 2*N to 

30*N. Each individual is an N X N array. The entries corresponding to the non-givens in the 

Sudoku puzzle are assigned randomly generated values from 1 to N. This step is important because 

GA yields robust optimal solution due to its randomness characteristics and it approaches the 

solution by excluding the unfit individuals. Hence, the random characteristic is being utilized 

starting from the initial population itself unlike [2]. As a result the proposed algorithm randomly 

explores the larger search space and selects the better individuals for each consecutive generation. 



Crossover 

Select 2 conjugative individuals from the population with a crossover probability 0.8 

(experimentally verified). Apply Uniform Crossover to them. The mechanism for such Crossover is 

to choose the crossover sites as much as possible, in between each pair of rows. Now interchange 

the rows alternatively throughout. In Figure 3, an example of crossover is given between two 

individuals. The dotted lines represent the possible crossover sites. The bi-headed arrows indicate 

the rows to interchange, which need to be performed alternatively. 

 

 
 

Fig. 3 Row-wise Uniform Crossover. 

 

Mutation 

In mutation, a new approach is followed where the non-givens flip their positions bit wise. Each of 

the non-given entry is replaced by a randomly generated number (from 1 to N) with a probability of 

0.2, which has been fine-tuned and recommended after an extensive experimentation. For example, 

in Figure 4, to mutate the position ‘9’, we need to discard it first and then will be filled by a number 

randomly generated from 1 to 9. It may be noted that just after the mutation few repeated entries 

may be appeared in the corresponding row. 

 

 
 

Fig. 4 Bit-wise Mutation 

 

Elitism 

While conducting the experiments, neither complete nor partial elitism was found to be efficient. 

Hence, we followed an approach in between these two. The population before crossover and after 

mutation were combined together to form a population of size 20*N (Double Size). Arrange the 

individuals in the ascending order of their fitness values. To maintain the diversity in the 

population, the alternate individuals are then selected for the next generation and the cycle 

continues with the population of the original size 10*N. This step is called as ‘alternate elitism’. 

Remove repetition  

In order to ensure faster convergence, we employ a strategy to utilize the givens of the Sudoku 

puzzle. We call this operation as “Remove Repetition”, in which any repetition of a given is 

replaced by a randomly selected number from the set ({1, 2, 3, 4, 5, 6, 7, 8, 9} – Gi), where Gi is the 

set of numbers present in the ith row or column under consideration (see Figure 5).  The operation 

is first performed on each row and then on each column. During column wise operation some of the 

givens may be repeated in a row but such instances were found to be very few, hence the overall 

fitness of the individuals improves. It should be noted that repetition of non-givens is not removed 



by this process. This technique is applied after generating initial population, after crossover and 

after mutation. 

 

 
 

 

Fig. 5 Remove repetition of givens 
 

 

Fitness function 

 It is often difficult to design a fitness function in combinatorial problems [19]. However, in 

this paper, an attempt is made to design a simple fitness function for a generalized NN   Sudoku 

puzzle. A simple uniqueness technique is being used to design the fitness function. It consists of 

three different fitness terms, namely row-fitness, column-fitness and sub-square-fitness. These are 

the only constraints taken with equal penalty, 1 each. Hence the overall fitness function is defined 

as: 

Fitness function = Row fitness + Column fitness + Sub-square fitness          (2) 

 

Each of the above three functions attains maximum value only when the solution is reached. In the 

following lines we derive the expression for maximum overall fitness value.  Each row entry is 

compared with all the remaining entries to its right. If the two entries are not equal, row-fitness 

value is incremented by 1 otherwise it remains same. Thus for the solution the contribution from 

each row is 2/)1( NN  (sum of first 1N  natural numbers). Hence for N  rows, it will be 

  2/12 NN . Similar results hold for column and sub-square. Hence for an NN   Sudoku, the 

maximum fitness value is   2/13 2 NN  (which comes out to be 972 for a 9 X 9 Sudoku puzzle). To 

derive the fitness function for a Sudoku puzzle at any intermediate point during simulation, we 

define a function                                                                                 
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where, ),( ji  and ),( lk refer to two positions of an NN   Sudoku puzzle. 

The fitness function for the rows is defined as follows, 
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Equation (4) indicates that comparison starts from the cell (1, 1) with (1, 2), (1, 1) with (1,3),….. up 

to (1,1) with (1, N); (1,2) with (1,3), (1,2) with (1,4),………. up to (1,2) with (1,N);…………..; 

finally (1, N-1) with (1, N). This completes the first row, i.e. for 1i . Similarly, it moves up to N 

rows.  

The fitness function for the columns is defined as follows, 

(a) Row-wise                                             (b) Column-wise 
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The similar arguments hold as described above, starting from column 1 to N, by using equation (5).  

The fitness function for sub-square is defined as follows, 
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where, Z  is the set of all positive integers.  

Equation (6) represents that first the comparison completes in the first sub-square and then it jumps 

to the 2nd sub-square on right to it. Gradually it covers all the N number of sub-squares. For a clear 

understanding it can be exercised for a 9X9 Sudoku puzzle, where 9N . 

The moments a solution is tapped, it needs to check whether the maximum fitness value is achieved 

or not (Figure 6). This process is applied separately after generating the initial population, after 

crossover and after mutation. Attaining the maximum fitness plays an important role as it is being 

used as one of the stopping criteria in the algorithm. However, it is observed that as the fitness 

value of an individual moves towards the maximum value, many a time, it gets trapped at some 

particular value. It becomes very difficult to get out of it. As a result, it provides a premature 

convergence. Hence to overcome this shortcoming, the population is to be reinitialized after a reset 

point in the same run and thus try to approach the solution through a different path. The reset point 

for a particular type of problem is defined as the number of generations needed to wait with a 

repeated fitness values during the simulation. After the reset point attained, proposed method 

attempts to regenerate the initial population, only if the number of generation is not attaining the 

maximum of 50000. We set different reset points for different difficulty level Sudoku puzzles. 

Higher the difficulty level (or, less is the number of givens, in general), greater is the reset point. 

After a series of experiments and observation, the reset point is set to 2000 if there are 27 givens or 

less, 350 if there are exactly 28 or 29 givens, 300 if there are exactly 30 or 31 givens and 200 if 

there are 32 givens or more. Thus our algorithm tries to retrieve the solution if it gets stuck 

somewhere. Hence we call it as a Retrievable Genetic Algorithm (Ret-GA). The mechanism of Ret-

GA is depicted in Figure 6. 

 

4.  Computational Experiment 

Experimental Setup 

The proposed Ret-GA algorithm starts with generating a “Blueprint Matrix”. This matrix contains 0 

or 1 at the place of non-given and given positions respectively. Thus Blue print matrix just acts as a 

reference matrix in the background of the simulation with a warning that not to change the 

positions where it contains ‘1s’. Only changes possible where there are ‘0s’. 

In the Ret-GA, the population size is kept fixed to 90 (i.e. 10*N, where N=9). Uniform crossover 

and bitwise mutation have been incorporated at a probability of 0.8 and 0.2, respectively. 

 A test bed of 9 Sudoku puzzles are picked up from [2] except their 1st (new) puzzle, where 

there are no givens. Out of these 9, there are 5, which they considered from the newspaper [20], 

marked with difficulty rating 1-5 star, where there are symmetric givens. Rest 4 problems are taken 

from newspaper [21], marked with difficulty rating: Easy, Challenging, Difficult and Super 

difficult. These puzzles contain 23 to 26 nonsymmetrical givens. These are called as Sample Sudoku 



Puzzles. Each problem undergoes 100 runs. The stopping criterion for a run is either the optimum 

value (972) is reached or the maximum generation (fixed to 50,000) is attained.  

Results and Discussion 

In 100 different runs, a run is said to be success, if it finds the optimum value 972. In table-1, GA 

represents the GA used in [2]. The number of times the run is a success one, is reported in Table-1. 

Similarly, the minimum, maximum and average number of function evaluations from both GA and 

Ret-GA are recorded in table-1. The last two columns represent the median and standard deviation 

of the required function evaluations of the successful runs only. 

By Table 1 it can be noted that in all the sample problems success rate is better in Ret-GA than that 

of GA, where in the puzzles 1-star and Easy, they are equal to 100%. Out of all successful runs in 

100 complete runs, the minimum and maximum generations obtained for each puzzle is reported.  

 

 
 

 

 

 

Fig. 6 Schematic representation of the proposed Ret-GA 

 



The average number of generations required for the successful runs are also mentioned. To better 

understand the comparison for minimum, maximum and average number of generations, we plot 

graphs in Figure 7 (a), (b) and (c) respectively, for all 9 puzzles. From Figure 7 it is clear that in all 

the first 6 puzzles Ret-GA is better than GA with respect to the minimum, maximum and average 

number of iterations. Ret-GA takes less number of generations to solve Challenging and Difficult 

problems in the sense of minimum and maximum number of generations, but GA beats Ret-GA in 

average. Only in the super difficult problem, Ret-GA takes less number of iterations with respect to 

minimum, maximum and average. However, it should be noted that even Ret-GA takes more 

number of generations to solve Supper difficult problems, but in return it provides higher success 

rate and lower SD than GA. Moreover, corresponding to each and all nine sample Sudoku puzzles, 

the SD by Ret-GA is less than that of GA. Therefore as a whole, Ret-GA performs better than GA 

in most of the cases. 

It is found that the average number of function evaluations for the puzzles rating Challenging, 

Difficult and Super Difficult; the minimum number of function evaluations for Super Difficult 

puzzles, are smaller in case of GA. Thus it is a difficult task to arrive to a concrete conclusion. 

Hence, a second method of analysis is considered as described below. 

 

Table 1. Performance of GA Vs. Ret-GA for different difficulty levels of sample Sudoku Puzzles 

 

Standard Deviation 

Ret-GA 

159.95 

1728.25 

3906.40 

11285.80 

12832.50 

55.70 

19153.54 

11940.66 

11198.42 

GA 

3500.98 

11834.68 

24846.46 

22429.12 

22732.25 

942.23 

23058.94 

12506.72 

17053.33 

Median 

Ret-GA 

98 

1441 

2755 

6966 

9393 

52 

27786 

33760 

36318 

GA 

917 

7034 

14827 

22297 

17365 

417 

17755 

26162 

6722 

Average 

Ret-GA 

159.24 

1864.94 

4338.30 

10716.73 

13569.76 

70.34 

25932.87 

40466.13 

42354.86 

GA 

2466.60 

11226.80 

22346.40 

22611.30 

23288.00 

768.60 

25333.30 

20534.30 

14392.00 

Maximum 

Ret-GA 

1100 

7459 

21595 

42382 

48336 

305 

41769 

45676 

49832 

GA 

23993 

56484 

94792 

68253 

68991 

6035 

89070 

46814 

47352 

Minimum 

Ret-GA 

39 

99 

152 

198 

117 

27 

357 

3699 

21424 

GA 

184 

733 

678 

381 

756 

101 

1771 

18999 

3022 

Count 

Ret-GA 

100 

100 

100 

100 

100 

100 

94 

16 

9 

GA 

100 

69 

46 

26 

23 

100 

30 
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(a) Minimum number of generations 

required. 

 
(b) Maximum number of generations 

required. 

 
(c) Average number of generations required. 

Fig. 7 Comparison of GA and Ret-GA on Sample Sudoku Puzzles. 



5.  Conclusion 
This paper exhibits a specialized heuristics, called “Retrievable Genetic Algorithms” for solving 

Sudoku puzzle. The Retrievable GA is designed to keep in mind a new way of designing the fitness 

function and the puzzle-characteristics dependent constraints. It is name as “retrievable” since it 

involves a single mechanism for escaping from the premature convergence, by reinitializing the 

population after a specified number of generations. Thus is helpful in maintaining the diversity in 

search domain. The results obtained by the experiment lead to draw the conclusion that the 

performance of the proposed Ret-GA is better in comparison to the results of existing GA. In 

solving the sample puzzles, it is observed that the success rate obtained by Ret-GA is higher than 

that of GA and the SD due to Ret-GA is lesser than that of GA in each problem. Hence we 

conclude that Ret-GA is more reliable and more stable than GA in solving Sudoku puzzles.  

Further it is worthy to note that Ret-GA could solve 1-5 star and Easy rating puzzles with 100% 

success. It requires lesser number of generations as compared to existing GA. Although, Ret-GA is 

not able to solve Challenging, Difficult and Supper difficult problems with 100% success, but the 

success rate of Ret-GA is always higher as compared to GA. Moreover, the average number of 

generations required to solve Challenging, Difficult and Supper difficult problems by Ret-GA are 

lesser than that of GA.  

After all, Ret-GA is a unique and novel approach to solve Sudoku puzzles. The approach may be 

extended to a larger order (size) Sudoku and our next paper may find to use Ret-GA effectively for 

higher dimensional puzzles. Researchers are encouraged to develop new fitness functions provides 

better success rate in fewer generations for a general   Sudoku puzzle. 
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