
Parallel and Distributed Boolean Gröbner Bases
Computation in SageMath

Akira Nagai
nagai.akira@lab.ntt.co.jp

NTT Secure Platform Laboratories
Japan

Yosuke Sato
ysato@rs.kagu.tus.ac.jp

Tokyo University of Science
Japan

Abstract

We introduce a parallel and distributed computation method of Boolean Gröbner
bases, which are implemented in the computer algebra system SageMath using the Poly-
BoRi library. We present an easy way to parallelize Boolean Gröbner bases computation
using a decorator for parallel computation supported in SageMath, we also present a
way of distributed computation using a multiprocessing module in Python. Our software
achieves satisfactory speed-up comparing to our sequential implementation in SageMath.

1 Introduction

A residue class ring B[X1, . . . , Xn]/⟨X2
1 +X1, . . . , X

2
n +Xn⟩ over a Boolean ring B is called a

Boolean polynomial ring. A Gröbner basis in a Boolean polynomial ring is called a Boolean
Gröbner basis, which is first introduced in [10] together with its computation algorithm. The
Galois field F2 is the simplest Boolean ring. Since it is actually a field, a Boolean Gröbner
basis in the Boolean polynomial ring F2[X1, . . . , Xn]/⟨X2

1 +X1, . . . , X
2
n+Xn⟩ can be computed

with no novel theoretical advances. We can easily compute such a Boolean Gröbner basis in
most computer algebra systems with a facility to compute Gröbner bases in a polynomial ring
over F2. When the Boolean ring B is a power set algebra, a Boolean Gröbner basis is of great
importance for solving certain types of combinatorial problems.

By the technique introduced in [7], we can now compute Boolean Gröbner bases of an
arbitrary finite power set algebra by the computation of Boolean Gröbner bases of a polynomial
ring over F2. This method is implemented in the computer algebra system Risa/Asir [4]. It is
further optimized in [7] for developing a much faster program in the computer algebra system
SageMath using the PolyBoRi library [8]. The experimental data presented in [8] suggest
that SageMath is faster and more optimal software to compute Boolean Gröbner bases than
other computer algebra systems such as Risa/Asir, Singlar, Mathematica or Maple. Even by
sequential computation, the program introduced in [8] achieves tremendous speed-up comparing
to their previous implementation in Risa/Asir of [4]. It enables us to have a first-ever real time
solver of Sudoku puzzles by the computation of Gröbner bases. For solving one Sudoku puzzle,
we need to compute at most 10 Boolean Gröbner bases. Our sequential program can handle



them in a few seconds, we do not need any parallel computation of Boolean Gröbner bases for
solving one Sudoku puzzle.

In order to compute a s-rank of a Sudoku puzzle which is a purely mathematical index
introduced in [5] to present its level of difficulty, we need to compute much more Boolean
Gröbner bases. For some Sudoku puzzles, a sequential program needs computation time beyond
several minutes. We need parallel and distributed computation of Boolean Gröbner bases. In
this paper we use the word “parallel computation” for parallel computation by one computer
with a multi-core processor, “distributed computation” for distributed computation by several
computers connected on the Internet. So, “parallel and distributed computation” means parallel
computation using several connected computers.

In this paper we introduce our parallel and distributed computation method of Boolean
Gröbner bases of a Boolean polynomial ring over a power set algebra, which is implemented in
the computer algebra system SageMath using the PolyBoRi library [1]. We parallelize a Boolean
Gröbner bases program introduced in [8]. Note that a parallel computation program of Boolean
Gröbner bases of a power set algebra is already implemented in [12, 11] using a parallel logic
programming language KLIC. Unfortunately, their program does not achieve enough speed-up,
our program achieves satisfactory speed-up.

The paper is organized as follows. In Section 2 and 3, we give a quick review of a Boolean
ring of a power set algebra and the computation method of Boolean Gröbner bases of a power set
algebra introduced in [7]. In Section 4 and 5, we describe parallel computation and distributed
computation of Boolean Gröbner bases. Section 6 contains some data we have obtained through
our computation experiments using our program.
The reader is referred to [14] for a comprehensive description of Boolean polynomial rings and
Boolean Gröbner bases, also to [5] for more detailed description of the application of Boolean
Gröbner bases to Sudoku puzzles.

We also put our prototype program as an open software at the following URL:

http://www.mi.kagu.tus.ac.jp/~nagai/BoolGB Sage/

2 Boolean ring of a power set algebra

In this section, we review Boolean ring of a power set algebra.

Definition 1 A commutative ring B with an identity 1 is called a Boolean ring if every element
a of B is idempotent, i.e., a2 = a.

(B,∨,∧,¬) becomes a Boolean algebra with the Boolean operations ∨,∧,¬ defined by a ∨ b =
a+ b+ a · b, a∧ b = a · b,¬a = 1+ a. Conversely, for a Boolean algebra (B,∨,∧,¬), if we define
+ and · by a+ b = (¬a∧ b)∨ (a∧¬b) and a · b = a∧ b, (B,+, ·) becomes a Boolean ring. Note
that + is nothing but an exclusive OR operator. Note also that −a = a.

Definition 2 Let S be an arbitrary set and P(S) be its power set, i.e., the family of all subsets
of S. Then, (P(S),∨,∧,¬) becomes a Boolean algebra with the operations ∨,∧,¬ as union,
intersection and the complement of S respectively. It is called a power set algebra of S.

h


Definition 3 Let B be a Boolean ring. A residue class ring B[X1, . . . , Xn]/⟨X2
1 +X1, . . . , X

2
n+

Xn⟩ modulo an ideal ⟨X2
1 +X1, . . . , X

2
n +Xn⟩ becomes a Boolean ring. It is called a Boolean

polynomial ring and denoted by B(X1, . . . , Xn), its element is called a Boolean polynomial.

Note that a Boolean polynomial of B(X1, . . . , Xn) is uniquely represented by a polynomial of
B[X1, . . . , Xn] that has at most degree 1 for each variable Xi.
In what follows, we identify a Boolean polynomial with such a representation.
Multiple variables such as X1, . . . , Xn or Y1, . . . , Ym are abbreviated to X̄ or Ȳ respectively.
Lower small roman letters such as a, b, c are usually used for elements of a Boolean ring B. The
symbol ā denotes an m-tuple of elements of B for some m.

3 Computation of Boolean Gröbner bases of a finite power

set algebra

In this section we review the computation theory of Boolean Gröbner bases.
Let S be a finite set and k be its cardinality. Then the Boolean ring B of the power set

algebra P(S) is isomorphic to the direct product Fk
2. More precisely, let S = {a1, a2, . . . , ak}

then the isomorphism θ from P(S) to Fk
2 is defined by θ(A) = (e1, e2, . . . , ek) for each A ⊆ S,

where ei = 1 if ai ∈ A and ei = 0 if ai ̸∈ A for each i = 1, . . . , k.
For an element v ∈ Fk

2, πi(v) denotes the i-th component of v. This projection is naturally
extended to a Boolean polynomial of Fk

2(X̄). The following theorem reduces the computation
of a Boolean Gröbner basis of a Boolean polynomial ring Fk

2(X̄) to the computation of Boolean
Gröbner bases of F2(X̄).

Theorem 4 In a Boolean polynomial ring Fk
2(X̄), let G be a finite set of Boolean closed

polynomials. Then, G is a (reduced) Boolean Gröbner basis of an ideal I in Fk
2(X̄) if and only

if πi(G) = {πi(g)|g ∈ G} \ {0} is a (reduced) Gröbner basis of the ideal πi(I) = {πi(f)|f ∈ I}
in F2(X̄) for each i = 1, . . . , k.

For each i = 1, . . . , k, define a map ϕi from F2 to Fk
2 by ϕi(0) = (0, . . . , 0) and ϕi(1) = (e1, . . . , ek)

where ei = 1 and ej = 0 for any j such that j ̸= i. It is also naturally extended to a map from
F2(X̄) to Fk

2(X̄).

Algorithm: Boolean GB
input: F a finite subset of Fk

2(X̄) and a term order > on T (X̄)
output: G a reduced Boolean Gröbner basis of ⟨F ⟩ w.r.t. >
For each i = 1, . . . , k compute the reduced Boolean Gröbner basis Gi of the ideal ⟨πi(F )⟩ in
F2(X̄). Set G = ∪k

i=1ϕi(Gi).

Example 5 Let B = F2 × F2. In a polynomial ring B(X), (1, 0)X, (0, 1)X and (1, 1)X are
both reduced Gröbner bases of the same ideal.

In order to have a unique Gröbner basis, we need the following manipulation.

Algorithm: Stratification
input: G a reduced Boolean Gröbner basis in Fk

2(X̄)



output: G′ a stratified Boolean Gröbner basis
Let {t1, . . . , ts} be the set of all leading terms of some polynomial in G. For each i = 1 . . . , s,
let gi =

∑
LT (g)=ti,g∈G g. Set G′ = {g1, . . . , gs}.

In the above example, (1, 1)X is the stratified Gröbner basis, but the other is not. We conclude
this section with a simple example of our method.

Example 6 We show a calculation process of the Boolean Gröbner basis of the following F .

F =

{
({e1, e2}+ 1) ∗X ∗ Y + {e1} ∗X + Y + {e2}
X ∗ Y + {e1} ∗ Y +X + {e1, e2}

We compute πi(F ) as follows.

π1(F ) =

{
X + Y
X ∗ Y + Y +X + 1

π2(F ) =

{
Y + 1
X ∗ Y +X + 1

π3(F ) =

{
X ∗ Y + Y
X ∗ Y +X

We compute the reduced Boolean Gröbner basis Gi of the ideal ⟨πi(F )⟩ in F2(X,Y ).

G1 =

{
X + 1
Y + 1

G2 = {1} G3 = {X + Y }

We compute ϕi(Gi) as follows.

ϕ1(G1) =

{
{e1} ∗X + {e1}
{e1} ∗ Y + {e1}

ϕ2(G2) = {{e2}} ϕ3(G3) = {({e1, e2}+ 1) ∗ (X + Y )}

Finally, we do Stratification in order to get a stratified Boolean Gröbner basis.

G′ =


({e2}+ 1) ∗X + ({e1, e2}+ 1) ∗ Y + {e1}
{e1} ∗ Y + {e1}
{e2}

4 Parallel Boolean Gröbner bases

In this section we describe a parallelization method for Boolean Gröbner basis computation
and its implementation in SageMath. In the previous section we see that each computation of
⟨πi(F )⟩ for i = 1, . . . , k is done independently. Hence, the computation of the reduced Gröbner
basis Gi of the ideal ⟨πi(F )⟩ in F2(X̄) is also done independently. Therefore we can easily have
an algorithm for parallel Boolean Gröbner basis computation. It is also easy to implement a
parallel Boolean Gröbner basis computation by using a decorator which gives a function of a
parallel interface. This decorator represented by “@parallel” is supported in SageMath. Our
program to compute a Boolean Gröbner basis of a finite power set algebra P({s1, . . . , sk}) has
the following rather simple shape.

@parallel()

def parallel_gb(In):

　 I = ideal(In[1])



　 BG=I.groebner_basis(heuristic=False)

　 return [In[0],BG]

def parallel_bgb(Polys,Vars,Eles):

　 B = BooleanPolynomialRing(len(Vars)+len(Eles), Vars+Eles, order=’lex’)

　 BPolys=(B.ideal(Polys)).gens()

　 BVars=(B.ideal(Vars)).gens()

　 BEles=(B.ideal(Eles)).gens()

　 Polys_set=divide(BPolys,BVars,BEles)

　 Input=[[i,Polys_set[i]] for i in range(len(Polys_set))]

　 Output=list(parallel_gb(Input))

　 Bgb_set=[]

　 Bgb_set=[Bgb_set+Output[j][1][1] for i in range(len(Output))

　　 for j in range(len(Output))if Output[j][1][0]==i]

　 Ele_BPolys=mulatom(Bgb_set,BEles)

　 Bgb=stratify(Ele_BPolys,BVars)

　 return Bgb

BooleanPolynomialRing is a PolyBoRi command which defines a polynomial ring F2(X̄, s1, . . . , sk).
For the input F of Polys, divide computes πi(F ) for each i = 1, . . . , k. parallel_gb computes
a reduced Gröbner basis Gi of the ideal ⟨πi(F )⟩ in F2(X̄) for each i = 1, . . . , k in parallel. After
that, an output of parallel_gb stored in an array is sorted. mulatom is a program to compute
ϕi(Gi). Finally stratify compute the stratified Boolean Gröbner basis G′.

We give a snapshot of timing data of the following example of parallel Boolean Gröbner
basis computations. In the example, we have 40 variables x1, · · · , x40. The symbols e1, e2, · · · , e10
denote strings, so {e1}, {e2}, · · · are elements of our B.

Example 7 F = {x8x40+x11x15+x13x30+x23x27, x19+x26x38, {e1}x14x40+x15x2+x1, {e7}x26+
{e10}x37+{e7}, x8x23+x11x39+x16x18, x25x27+{e4}x35, {e5}x12+x33x4+x17x6+x33, {e4}x10+
x22x24+x12x3, {e1}x27+{e6}x34, {e6}x14x2+x20x28+x27x38+x31x38+e9, {e1}x18x37+x12x16+
x1x20+x22, x4x13+x5, x10x14x32, {e6}x16x22, {e1}x22x37+{e8}x25, {e3}x10+x12x30, {e4}x15+
{e9}x22 + x25, {e5}x35 + x12 + x7, {e2}x2x29 + {e7}x21x33 + {e8}x36x9, x1 + x8 + x15 + x16 +
x22, {e3}x7 + {e3}, {e8}x28 + {e8}}

The computation is done by the computer with OS: Ubuntu 14.04 LTS 64bit, Software: Sage-
Math 7.1, CPU: Intel(R) Core(TM) i7-3970X, Clock: 3.50GHz, Number of Cores: 6, Memory:
64GB. Total computation time is 16.7 seconds using parallel Boolean Gröbner basis computa-
tion. Whereas, sequential computation time is 70 seconds.

sage: load("bgb.sage")

sage: %time B=parallel_bgb(Polys_ex6,Vars_ex6,Eles_ex6)

For the element 3 GB Computation time 2.95557999611

For the element 4 GB Computation time 4.66137695312

For the element 8 GB Computation time 4.94551992416

For the element 1 GB Computation time 7.18508601189

For the element 9 GB Computation time 9.36309504509



For the element 10 GB Computation time 10.1585040092

For the element 2 GB Computation time 11.1377859116

For the element 7 GB Computation time 11.1130139828

For the element 11 GB Computation time 11.1987161636

For the element 5 GB Computation time 13.8662071228

For the element 6 GB Computation time 14.5633881092

CPU times: user 4.82 s, sys: 153 ms, total: 4.97 s

Wall time: 16.7 s

This parallel computation is essentially same as the parallel computation introduced in [12, 11].
Though we have satisfactory speed-up for this example, there are two problems for this type
of parallel computation. One is that we can expect only n + 1-times speed-up, where n is
the number of elements. The another one is that, unless each computation has almost same
computation time, we can not expect enough speed-up. For example, if two computations need
5 minutes and other need only a few seconds then the speed-up can be only double. Therefore
the above example is a good example of the speed-up, but in general it is difficult to obtain an
equivalent speed-up to the above example.

As is described in the introduction, we need to compute at most 10 Boolean Gröbner bases
for solving one Sudoku puzzle. Since each Boolean Gröbner bases computation is done within
1 seconds, we do not need parallel computation for the solver of a Sudoku puzzle. For the
computation of the s-rank of a Sudoku puzzle, we need to compute much more Boolean Gröbner
bases. Since they are divided into many independent computations, parallel and distributed
computation of Boolean Gröbner bases is effective for its computation.

5 Distributed Boolean Gröbner bases

In this section we describe how we implemented distributed Boolean Gröbner basis computation
in SageMath. We have implemented distributed computation using “multiprocessing” module
in Python which provide the remote manager. Client code is as follows.

from multiprocessing.managers import BaseManager

class QueueManager(BaseManager):pass

QueueManager.register(’bgb_remote’)

QueueManager.register(’parallel_bgb_remote’)

def distributed_bgb(Polys,Vars,Eles,IP,Port,Parallel=False):

B = BooleanPolynomialRing(len(Vars)+len(Eles), Vars+Eles, order=’lex’)

m = QueueManager(address=(IP,Port),authkey=’abracadabra’)

m.connect()

if Parallel==True:

Bgb = (m.parallel_bgb_remote(Polys,Vars,Eles))._getvalue()

else:

Bgb = (m.bgb_remote(Polys,Vars,Eles))._getvalue()

return Bgb



Clients setup IP address and Port number of a distributed computing server. Basically, clients
set any password to “authkey” for the authentication when “BaseManager” object is used. We
fix “authkey” here for simplicity. Next, server code is as follows.

from multiprocessing.managers import BaseManager

class QueueManager(BaseManager):pass

def _bgb(polys,vars,eles):

print("bgb call ")

w=walltime()

Bgb=bgb(polys,vars,eles)

wtime=walltime(w)

print ’\033[94m’+"BGB Computation time "+’\033[0m’,wtime

return Bgb

def _parallel_bgb(polys,vars,eles):

print("parallel bgb call ")

return parallel_bgb(polys,vars,eles)

if __name__ == ’__main__’:

load("bgb.sage")

QueueManager.register(’bgb_remote’, callable=_bgb)

QueueManager.register(’parallel_bgb_remote’, callable=_parallel_bgb)

m = QueueManager(address=("127.0.0.1",50000),authkey=’abracadabra’)

s = m.get_server()

s.serve_forever()

When client calls bgb_remote function, server executes _bgb function. Although there are
other implementation methods to distribute, this implementation method is very simple and
easy to deal with.

The following computation example shows how to use our program. It compute the stratified
Boolean Gröbner basis {x+ {s1}, y+ {s2}} of the ideal ⟨(1 + {s1, s2})(XY +X + Y ), {s1}X +
{s1}, {s2}Y + {s2}, XY ⟩ in a Boolean polynomial ring P({s1, s2})(x, y) w.r.t. a lex order such
that x > y.

sage: load("bgb.sage")

sage: var("x,y,s1,s2")

(x, y, s1, s2)

sage: distributed_bgb([(1+s1+s2)*(x*y+x+y),s1*x+s1,s2*y+s2,x*y],[x,y],[s1,s2],

....: "127.0.0.1",50000,Parallel=True)

[x + s1, y + s2]

Parallel computation is available as an option. In this way, we can easily use distributed Boolean
Gröbner basis computation.



6 Computation Data

In this section we give some computation data of the s-rank of Sudoku puzzles obtained by
our parallel and distributed Boolean Gröbner basis program in SageMath in order to show its
effect. The computing environment used for our experiments is summarized below.

Computer 1 and 2 Computer 3

OS Ubuntu 14.04 LTS 64bit Ubuntu 14.04 LTS 64bit
SageMath 7.1 7.1

CPU Intel(R) Core(TM) i7-3970X Intel(R) Core(TM) i7-4960X
Clock 3.50GHz 3.60GHz

Num of Cores 6 6
Memory 64GB 64GB

Table 1: The computing environment

For the computation of s-ranks, we empirically compute more than 100 Boolean Gröbner bases.
These Boolean Gröbner basis computations are independent, so we can expect reasonable speed-
up by using parallel and distributed Boolean Gröbner basis computation.

The following Table 2 contains computation time (in seconds) obtained by three types of
computation. The first one, “Sequential” is a serial computing, which means all Boolean
Gröbner basis computations are executed sequentially. The second one, “Parallel” means
Boolean Gröbner basis computations executed simultaneously by a single computer with mul-
tiple processors/cores. We run a Boolean Gröbner bases program introduced in [8] as regards
“Sequential” and “Parallel”. The third one, “Parallel and Distributed” means “Parallel” com-
putations by three computers. The first row in Table 2 is the average time (in seconds) of 10
puzzles in the Sudoku book UltraHard [2] for obtaining s-rank of a puzzle. Example A and
Example B contains the data for two puzzles among them.

Sequential Parallel Parallel and Distributed

Average 　 74.13 15.55 6.49
Example A　 184.9 37.32 14.39
Example B　 64.12 14.04 5.66

Table 2: Computation time of Srank (Sec)

2 9
5 1 6

6 3 4

1 9 2
4 5 7

8 4

7 4
5 6 2

1 2 7 3

2 9 8
3 1 6

9 5 4

6 3
3 1

9 4

9 7 8
4 5 9

6 2 5

Example A Example B



The computation time of Example A and B shows that our parallel and distributed computation
is efficient for s-rank. When a given Sudoku puzzle is not basic solvable (see [5]), for computing
its s-rank, we need computations of many Boolean Gröbner bases. For such computations, our
computing method is practical and useful.

7 Conclusions and Remarks

In this paper we have introduced parallel computation of Boolean Gröbner bases of an arbitrary
finite power set algebra. It is implemented in the computer algebra system SageMath using the
PolyBoRi library. A parallel Boolean Gröbner basis computation program is implemented with
“@parallel” decorator. We do not use any sophisticated technique of parallel programming.
Nevertheless, our method is sufficiently effective as we saw in section 4.

As is described in the introduction, our parallel Boolean Gröbner basis computation does
not have an enough effect on just solving one Sudoku puzzle. For solving a Sudoku puzzle
which has a size 16 × 16, however, we think parallel and distributed Boolean Gröbner basis
computations are useful. For solving a normal Sudoku puzzle of the size 9 × 9, we need about
800 Boolean polynomials with 81 variables, whereas for solving a Sudoku puzzle of the size 16
× 16, we need about 3700 Boolean polynomials with 196 variables.

We have also introduced the distributed computation of Boolean Gröbner bases. Data of our
experiments presented in section 6 show that our programs work properly and effectively. Our
parallel and distributed program in SageMath(PolyBoRi) can obtain s-rank within 10 seconds.

We can also parallelize the computation of a comprehensive Boolean Gröbner basis by us-
ing the same parallel computation presented in section 4 (see [3]). A comprehensive Boolean
Gröbner basis is an ideal tool for obtaining an elimination of an ideal of a Boolean polynomial
(see [13]). Computation of such an elimination is very important for many types of combina-
torial problems. We expect that our parallel and distributed computation method of Boolean
Gröbner bases also contributes to speed-up solving those problems.

References

[1] Brickenstein, M., Dreyer, A., 2009. A framework for Gröbner -basis computations with
Boolean polynomials. J. Symbolic Comput.44 (9), 1326-1345. PolyBoRi Polynomials over
Boolean Rings.
http://polybori.sourceforge.net/.

[2] Gohnai,K., and Cross Word editorial desk.(2008). Number Placement Puzzles(UltraHard),
(In Japanese) Kosaido Publishing Co., 2008.

[3] Inoue, S.(2009). On the Computation of Comprehensive Boolean Gröbner Bases. Pro-
ceedings of the 11th International Workshop on Computer Algebra in Scientific Comput-
ing(CASC 2009), LNCS 5743, pp 130-141, Springer-Verlag Berlin Heidelberg.

[4] Inoue, S., 2009. BGSet Boolean Groebner bases for Sets.
http://www.mi.kagu.tus.ac.jp/~inoue/BGSet/.



[5] Inoue, S and Sato, Y. A Mathematical Hierarchy of Sudoku Puzzles and its Computation
by Boolean Gröbner Bases. Proceedings of 12th International Conference, AISC2014, pp
88-98 LNAI 8884, 2014.

[6] Inoue, S and Nagai, A. On the Implementation of Boolean Gröbner Bases. Proceedings
of the 9th Asian Symposium on Computer Mathematics(ASCM2009), LNCS, pp.87-92,
Springer 2014

[7] Nagai, A and Inoue, S.(2014). An Implementation Method of Boolean Gröbner Bases and
Comprehensive Boolean Gröbner Bases on General Computer Algebra Systems. Proceed-
ings of ICMS2014, pp 531-536, Springer LNCS 8592, 2014.

[8] Nagai, A and Yosuke, S.(2015). An efficient implementation of Boolean Gröbner Bases of
a power set algebra. Proceedings of ATCM2015, pp 326-335,

[9] Noro, M. et al. (2009). A Computer Algebra System Risa/Asir.
http://www.math.kobe-u.ac.jp/Asir/asir.html.

[10] Sakai,K. and Sato, Y. and Menju, S. (1991). Boolean Gröbner bases(revised). ICOT Tech-
nical Report 613.

[11] Sato,Y.(1998). Set Constraint Solvers(KLIC Version).
http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/FUNDING/funding-98-
E.html

[12] Sato, Y and Akira, S.(1999). Parallel Computation of Boolean Gröbner Bases. Electronic
Proceedings of ATCM1999.
http://epatcm.any2any.us/10thAnniversaryCD/EP/1999/contributed papers.html

[13] Sato, Y., Nagai, A. and Inoue, S.(2008). On the computation of elimination ideals of
boolean polynomial rings. In: LNCN, vol. 5081. Springer, pp. 334-348.

[14] Sato, Y. et al.(2011). Boolean Gröbner bases. J. Symbolic Comput.46 (2011), 622-632.


	Introduction
	Boolean ring of a power set algebra
	Computation of Boolean Grö=bner bases of a finite power set algebra
	Parallel Boolean Grö=bner bases
	Distributed Boolean Grö=bner bases
	Computation Data
	Conclusions and Remarks

