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Abstract

Given an orthogonal matrix Q, we can choose a diagonal matrix D with diagonal
entries such that I + QD is nonsingular and then that the Cayley transform $(QD) =
I + QD)(I − QD)−1 is well defined. Evan O’Dorney has proven the existence of the
diagonal matrix D with diagonal entries ±1 ( called a signature matrix) to make sure
every entry of $(QD) is less than or equal to 1 in absolute value. The remaining question
is how to compute D directly. In this paper, we present a method for computing the
signature matrix D based upon Gröbner basis and Real-Root-Classification in the case of
n = 2. Our approach is helpful to develop the interest of learning computer algebra and
using computer algebra systems in researching.

1 Introduction

The Cayley transform $ of a real square matrix A ∈Mn(R) is defined as

$(A) = (I − A)(I + A)−1 = (I + A)−1(I − A),

where I is the identity matrix, provided that I + A is nonsingular. The Cayley transform
maps skew-symmetric matrices to orthogonal matrices and vice versa, see [4, 7] for the details.
W.Kahan in [7] shows that for any matrix A ∈Mn(R) there is at least one diagonal matrix D
with diagonal entries ±1, called a signature matrix, such that I + AD is nonsingular. Further-
more, given an orthogonal matrix Q, Evan O’Dorney in [4] proves the existence of a signature
matrix D such that every entry of $(QD) is less than or equal to 1 in absolute value. For
example, let

Q =

[
0 −1
1 0

]
,

we can choose

D =

[
−1 0
0 −1

]
,



such that I +QD is nonsingular and every entry of $(QD) is less than or equal to 1 in absolute
value. The remaining question is how to find the above signature matrix D directly. In this
paper, we present a method for computing D when n = 2 based upon using Gröbner basis which
was introduced and developed by Buchberger in [1] and Real-Root-Classification introduced and
developed by Bican Xia and Lu Yang in [2, 3, 5, 6].Our method is helpful to enhance the interest
of learning computer algebra and using computer algebra systems in researching.

2 Structuring the signature D ∈M2(R)
Let

Q =

[
x1 x2
x3 x4

]
,

D =

[
u1 0
0 u2

]
,

$(QD) =

[
z1 z2
z3 z4

]
,

where xi, zi, uj ∈ R for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2.
Consider $(QD) = (I + QD)(I − QD)−1 and QQT = QTQ = I. Simplifying the above

matrix equations, we get the following polynomial equations,

p1 = u1x1z1 + u1x3z2 + u1x1 + z1− 1 = 0,

p2 = u2x2z1 + u2x4z2 + u2x2 + z2 = 0,

p3 = u1x1z3 + u1x3z4 + u1x3 + z3 = 0,

p4 = u2x2z3 + u2x4z4 + u2x4 + z4− 1 = 0,

p5 = x1x3 + x2x4 = 0,

p6 = x1x2 + x3x4 = 0,

p7 = x1x1 + x2x2− 1 = 0,

p8 = x3x3 + x4x4− 1 = 0,

p9 = x1x1 + x3x3− 1 = 0,

p10 = x2x2 + x4x4− 1 = 0,

p11 = u1u1− 1 = 0,

p12 = u2u2− 1 = 0.

2.1 Computing the Gröbner Basis

The above polynomial equations can be simplified by using Maple’s Gröbner package, and the
syntax is as follows:

>with(Groebner):

>Basis([p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,z1,z4],

plex(z2,z3,z1,z4,x1,x2,x3,x4,u1,u2));

[u2^2-1,u1^2-1,x3^2+x4^2-1,u1*u2*x3+x2,-u1*u2*x4+x1,

z4,z1,u1*u2*x3+u2*z3+x4*z3,-u1*u2*x4+x3*z3+u1,z2+z3].



A new equations with the same solution is as follows.

f1 = u22 − 1 = 0,

f2 = u12 − 1 = 0,

f3 = x32 + x42 − 1 = 0,

f4 = u1u2x3 + x2 = 0,

f5 = −u1u2x4 + x1 = 0,

f6 = u1u2x3 + u2z3 + x4z3 = 0,

f7 = −u1u2x4 + x3z3 + u1 = 0,

z1 = z4 = 0, z2 = −z3.

2.2 Solving the Semi-algebraic System

In order to solve completely the above real algebraic system, we need to apply a Maple func-
tion, RealRootClassification which is based upon the early Maple’s DISCOVERER package
developed by Bican Xia and Lu Yang in [2, 3, 6].The function is an essential tool for study-
ing the real solutions of parametric polynomial systems, see the overview of the subpackage
RegularChains[SemiAlgebraicSetTools] in Maple 13 or more later for the details.

Here, we first start Maple and load some relative internal packages as follows. Based on the
above result, the matrix D can be structured as follows.

> with(RegularChains):

> with(ParametricSystemTools):

> with(SemiAlgebraicSetTools):

> R:= PolynomialRing([u1,u2,,x1,x2,x3,x4,z1,z2,z3,z4]):

> infolevel[RegularChains]:= 1:

> RealRootClassification([f1, f2, f3, f4, f5, f6, f7], [], [], [],

[u1, u2, x1, x2, x3, z3], [x4], 1 .. n,R);

The result gives the range of x4.

FINAL RESULT:

The system has given number of real solution(s) IF AND ONLY IF

[R[1]<0,0<R[2]]

where

R[1]=x4-1

R[2]=x4+1

PROVIDED THAT

x4-1<0

x4+1<0

x4 = ±1 will be consider later. We are going to add the condition [R1 < 0, 0 < R2] in the next
command.



> RealRootClassification([f1,f2,f3,f4,f5,f6,f7], [], [1-x4,x4+1], [],

[u1,u2,x1,x2,x3],[z3,x4], 1 .. n,R)

FINAL RESULT

There is always given number of real solution(s)!

IF AND ONLY IF

x4 z3 - z3 + x4 + 1 = 0

x4 z3 + z3 + x4 - 1 = 0

It has two results and we are going to consider x4z32 − z32 + x4 + 1 = 0 in the next step. The
others will be considered later.

> RealRootClassification([f1,f2,f3,f4,f5,f6,f7,x4*z3^2-z3^2+x4+1], [1-x4,x4+1],

[], [], [u1,u2,x3,x2,z3], [x4,x1], 1 .. n,R);

FINAL RESULT

There is always given number of real solution(s)!

IF AND ONLY IF

x1-x4=0

x1+x4=0

PROVIDED THAT

x1 <> 0

x1 - 1 <> 0

x1 + 1 <> 0

It has two results. x1 = x4 will be put into next step.

> RealRootClassification([f1,f2,f3,f4,f5,f6,f7,x4*z3^2-z3^2+x4+1,x4-x1], [1-x4, x4+1],

[], [], [u1,u2,x4,x1,z3], [x3,x2], 1 .. n,R);

FINAL RESULT:

The system has given number of real solution(s) IF AND ONLY IF

[0<R[1], R[2]<0, (1)S[1]]

where

R[1]=x2+1

R[2]=x2-1

and

S[1]=x2+x3

PROVIDED THAT

x2 <> 0

x2 + 1 <> 0

x2 - 1 <> 0

Now we get the range of x2. u1 and u2 are as the following



> RealRootClassification([f1,f2,f3,f4,f5,f6,f7,x4*z3^2-z3^2+x4+1,x4-x1],

[1-x4,1+x4,1-x2,1+x2],[], [], [u2,x2,x3,x4,x1,z3], [u1], 1 .. n,R);

FINAL RESULT:

There is always given number of real solution(s)!

IF AND ONLY IF

u1 + 1 = 0

PROVIDED THAT

x2 <> 0

x2 + 1 <> 0

x2 - 1 <> 0

0.032 seconds

> RealRootClassification([f1,f2,f3,f4,f5,f6,f7,x4*z3^2-z3^2+x4+1,x4-x1,u1+1],

[1-x4,1+x4,1-x2,1+x2],[], [], [u1,x2,x3,x4,x1,z3], [u2], 1 .. n,R);

FINAL RESULT:

There is always given number of real solution(s)!

IF AND ONLY IF

u2 + 1 = 0

PROVIDED THAT

x2 <> 0

x2 + 1 <> 0

x2 - 1 <> 0

Under the condition of x1 = x4 and x4z32 − z32 + x4 + 1 = 0, we get u1 = −1 and u2 = −1.

D =

[
−1 0
0 −1

]
The range of x4 is determined by x4z32 − z32 + x4 + 1 = 0 and f3 = x32 + x42 + 1 = 0.

−1 < x4 6 0

Put u1, u2 into the set of equations and we get the final result:

u1 = −1, u2 = −1, z3 = ±
√

1 + x4

1− x4
, x1 = x4, x2 = −x3, x3 = ±

√
1− x42,−1 < x4 6 0

We also can use the similar process to solve the problem under the condition of x1 = −x4 and
x4z32 + z32 + x4− 1 = 0. The results are as follows:

u1 = 1, u2 = 1, z3 = ±
√

1− x4

1 + x4
, x1 = x4, x2 = −x3, x3 = ±

√
1− x42, 0 6 x4 < 1

u1 = 1, u2 = −1, z3 = ±
√

1 + x4

1− x4
, x1 = −x4, x2 = x3, x3 = ±

√
1− x42,−1 < x4 6 0

u1 = −1, u2 = 1, z3 = ±
√

1− x4

1 + x4
, x1 = −x4, x2 = −x3, x3 = ±

√
1− x42, 0 6 x4 < 1

When x4 = ±1, the following result is easy to get.



solve([f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,z1,z4],

[z1,z2,z3,z4,x1,x2,x3,x4,u1,u2]);

[[z1=0,z2=0,z3=0,z4=0,x1=1,x2=0,x3=0,x4=1,u1=1,u2=1],

[z1=0,z2=0,z3=0,z4=0,x1=-1,x2=0,x3=0,x4=1,u1=-1,u2=1],

[z1=0,z2=0,z3=0,z4=0,x1=1,x2=0,x3=0,x4=-1,u1=1,u2=-1],

[z1=0,z2=0,z3=0,z4=0,x1=-1,x2=0,x3=0,x4=-1,u1=-1,u2=-1]].

In short, we can prove that every entry of $(QD) is less than or equal to 1 in absolute value
by calculating z1, z2, z3, z4.

3 Summary

With the help of computer algebra system, we can compute the signature matrix D and show
that every entry of $(QD) is less than or equal to 1 in absolute value by using Gröbner basis
and Real-Root-Classification when n = 2. In other words, we get the main result of [4] in the
mechanical theorem proving. In practical computation, our method is difficult when n ≥ 3.
The main difficulty in our method is how to effectively compute the Gröbner basis and a
triangular decomposition of a zero-dimensional polynomial system. For instance, when we

write the orthogonal matrix Q =

[
x1 −x2
x2 x1

]
where x2

1 + x2
2 = 1, even Q =

[
1−t2

(1+t2)2
−2t

(1+t2)2

2t
(1+t2)2

1−t2

(1+t2)2

]
the number of variables is less, but the output becomes more complicated and the computation
cost is higher.
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