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Abstract 

It is unavoidable that a computer program has its constraints. In a mathematics pedagogical program such as dynamic 
geometry software (DGS), the constraints may lead to deviations of mathematical representations from its intended 
mathematical concepts. If it is used properly, the deviations can open up pedagogical opportunities and hence may be 
called as discrepancy potentials of the tool. In this paper, examples of developing mathematical discussions by using 
the discrepancy potentials in two DGS tasks are discussed. It aims at elaborating the idea of discrepancy potentials in 
the design principles for effective DGS-based tasks. This paper relates to the topic “Mathematics Education using 
Information Communication Technology”.  
      
1.  Introduction 
      

Dynamic geometry software (DGS) is a useful tool for manipulation of mathematical objects. In 
the process of manipulation, experimental aspect and theoretical aspect of mathematics are 
interplayed ([1]). The interplay can have potentials to enhance understanding of mathematical 
concepts and statements. Therefore, an important pedagogy research agenda is to investigate design 
principles for effective DGS-based tasks which can optimize the potential of experimental-
theoretical interplay. One of the features of a tool-based task is that the mathematical representation 
produced by the tool (no matter it is software tool or concrete tool) can be different from the 
mathematical object itself. If we interpret a tool-based task as an experimentation of mathematical 
representation for theorizing mathematical objects, we may regard this discrepancy as a kind of 
experimental-theoretical interplay in tool-based tasks. The notion of discrepancy potential which is 
initiated by [2] and further elaborated in [3] and [4] highlights the pedagogical potentials of the 
discrepancy in tool-based tasks. It can be described as follows:  

The discrepancy potential of a tool is a pedagogical space generated by (i) feedback due to 
the nature of the tool or design of the task that possibly deviates from the intended 
mathematical concept or (ii) uncertainty created due to the nature of the tool or design of the 
task that requires the tool users to make decisions. ([3], p. 212) 

As evidenced from a tool-based mathematical task, such kind of discrepancy has potential to 
initiate meaningful mathematics discussion which could lead to deep understanding in 
mathematical concepts ([2] and [4]). In this paper, this claim will be further elaborated through two 
cases of teaching tasks by using GeoGebra (a kind of DGS). It highlights the importance of 
incorporating mathematical discussions based on the discrepancy embedded in DGS. 
 
2.  The Context  
 

The two cases discussed in this paper are initially designed by two pre-service mathematics 
teachers Jane and Peter (pseudonyms) respectively. They were end-of-term assignments of a 
mathematics pedagogy course which focuses on integrating computer technologies in mathematics 



classrooms. The pre-service teachers were asked to design a self-contained teaching capsule of a 
mathematics topic with GeoGebra activities incorporated.  In these two cases,  there were some 
technical errors in the GeoGebra files. However, the present author (their course instructor) thinks 
that these technical errors can be used to enhance deep mathematical understanding. In the 
following sections, the designs and the technical errors of these two files will be described. Then, 
the author will elaborate how he would use these technical errors to initiate mathematical 
discussions. These two cases will illustrate the idea of discrepancy potentials in DGS. 
 
3.  The Case 1: Trigonometric functions 
 

The topic of Jane’s lesson design was trigonometric functions. She created a GeoGebra file to 
guide the students understand the definition of trigonometric ratios of angles in a rectangular plane 
and explore the signs of the trigonometric ratios and the reference angles. The GeoGebra file 
contains the standard unit circle representation of trigonometric functions. The input box and the 
slider enable the students to control the value of  . As showed in figure 3.1,  )0,0(A  is the 
center of the unit circle. )0,1(B  is the intersection point of x -axis and the circle.  'B  is the 
rotated point of Point )0,1(B  by  . Point C  is the perpendicular foot of 'B  on the x -axis. The 
auxiliary triangle CAB' defines the trigonometric functions of  : )'(sin Byb   (that is, the 

y -coordinate of 'B ); )(cos Cxa  (that is, the x -coordinate of C ); and
a

b
tan . 

 

 
Figure 3.1 visual representation of the definitions of trigonometric functions by coordinates 

 
This dynamic figure provides a good visual representation of the definitions of trigonometric 

functions by coordinates. However, if we set o90  (by inputting the value to the input box or 
dragging the slider to this value), we would find that 1sin   and 0cos  which are correctly 
displayed; but tan  displays a very large number (instead of the symbol ). This phenomenon is 
caused by the rounding-off error of the software. If we set rounding as 15 significant figures, we 
will see that cos  is a very small number (instead of 0) and hence tan  is a very large number 



(Figure 3.2). At this moment, we would be able to understand the source of the mistake, namely, 
point 'B  is rotated by an angle approximately equal to o90  (but not exact). This kind of error is 
frequently found in computer software. We may call it a “discrepancy potential”. The term 
“potential” implies that the discrepancy may enhance students’ conceptual understanding if the 
teacher can make use of it to initiate meaningful mathematics discussions.  
 

 
Figure 3.2 The representation of trigonometric functions at 90 degrees 

 
In the following, we will propose how such kind of mathematics discussions can be arranged. 

First, with the rounding set to the default value (2 decimal places) and   set to o90 , the teacher can 

point out that it shows 31953701633123935
0

1
90tan o  and ask the students whether they think 

that it is correct. The teacher may remind the students that 



cos

sin
tan   and then prompt the 

students to think about the result when 1 is divided by 0. The latter problem is known to be a 
difficult question for school students. The teacher may ask them to multiply 0 on both sides. They 
should be able to realize the absurdity. Yet, the teacher can further discuss with the students the 
product of a very large number multiplied by 0. It may lead to discussion on the intuitive meaning 
of 0 . After that, the teacher may discuss with the students why a large number is displayed for 

o90tan .  Then, the rounding may be set to a more precise value, say 15 significant figures. As such, 
)(Cx  becomes a very small number (instead of zero) and o90tan  becomes 

number large
number small

1
 . (See figure 3.2 above.) The teacher may further discuss with the 

students the product of a small numbera large number, which would provide an intuitive idea of 
the notion of indeterminate in pre-calculus. Finally, the teacher may reset the rounding to 10 
decimal places and reset the slider of   as interval from o89  to o91  and increment as o00001.0 . 
Then, the teacher may drag the slider of   slowly and ask the students to observe how the values of 
the trigonometric ratios, )'(By and )(Cx change. It is expected that the students would realize the 



sign of tan changes at o90 , and there is a rapid increase on the magnitude of tan when   is 
moved towards o90 and then a rapid decrease on the magnitude of tan when   is moved away 

o90 (Figure 3.3).Thus, the behaviour of tangent function near o90 can be discussed. It provides a 
dynamic illustrative example to the concept of limit of a function. The above discussion extends the 
learning objective from the definitions of trigonometric functions to the behaviours of the 
functions, and hence broadens the learning area from trigonometry to calculus. This extension 
seems to be impossible without the mistake opportunity provided by the software.   
 

 
Figure 3.3 Zooming the behaviour of tangent function near 90 degrees 

 
4. Case 2: Tangent to a circle 
 
There are many properties related to tangent to a circle. Some of them are not easy to be 
understood. One of the properties is that a tangent-chord angle of a circle equals to an angle in the 
alternate segment (usually abbreviated as: theorem of angle in alternate segment). Peter constructed 
a GeoGebra figure to illustrate this property (figure 4.1). While dragging point P  along the circle, 

a (tangent-chord angle) keeps equal to b  (angle in the alternate segment). However, problem 
arises when point P  crosses point K . In that case, the orientation of the triangle is changed and 
hence a  is no longer equal to b . Indeed, this phenomenon which is a discrepancy potential 
highlights a common misconception of the students. For a tangent to the circle and a chord, there 
are two tangent-chord angles in which they are complement to each other (that is, their sum equals 
to o180 ). Students may have difficulty in identifying which tangent-chord angle corresponding to 
which angle in the alternate segment. The discrepancy due to the orientation change of the triangle 
can enhance students’ abilities in identifying the correct angle pair and deeper their understanding 
on the orientation of a geometric figure which is an important but often overlooked issue. 



 
Figure 4.1 theorem of angle in alternate segment 

 
In the following, we will propose how such kind of mathematics discussions can be arranged. 

First, the teacher can drag P  along the circle and ask the students to put attention on the values of 
a  and b . While point P moves along the circle, )( bTPK  changes whereas its value keeps 

unchanged. (This is the property of angles in the same segment of a circle.) When P  reaches a 
position where PT  passes through the center O  (that is, PT is a diameter), ∠α becomes o90 , and 
hence ob 90  . It is also noted that oa 90   (figure 4.2). It gives a proof for the 
theorem of angle in alternate segment.  

 

 
Figure 4.2 Angle in alternate segment for a right-angled triangle 



 
After explaining the proof of the theorem, the teacher can continue to drag P along the circle to 

make the discrepancy visible. After point P crosses point K , the teacher can point out that ba   
and asks the students why it happens (Figure 4.3). The teacher can ask the students why the above 
proof is not applicable. By observing the diagram, it is expected that the students can realize that 
∠α becomes a reflexive angle (that is, it is greater than o180 ) and hence the orientation of TPK is 
changed from clockwise to anti-clockwise. Thus, )( bTPK   does not correspond to the tangent-
chord angle a  any more. The teacher can further ask the students to find a relationship between 
the values of a  and b . They should be easily find that oba 180 and thus b  should 
correspond to the complementary angle of a . It is hope that this explorative activity with 
GeoGebra can help students to recognize the correct angle pair for the theorem of angle in alternate 
segment through investigating the orientation of the triangle.  
 

 
Figure 4.3 Change of orientation when point P crosses point K 

 
5. Conclusion 
 
Computer program such as DGS has its own design constraints. The constraints may lead to 
deviations from the intended mathematical concepts. These deviations have potentials to provide 
pedagogical opportunities and hence can be called as discrepancy potentials. In this paper, the 
discrepancy potentials of two DGS files are discussed. The discrepancies are due to rounding off 
errors (Example 1) and change of orientation (Example 2), which are originated from the design 
natures of the software. The discussion above illustrated how these discrepancies can be used for 
deepen our mathematical understanding and clear-up misconceptions.  
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