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Abstract 
Over the years, many once-common traditional topics and techniques have largely disappeared 
from the everyday mathematics cosmos. Surprisingly, exploring now-forgotten mathematics 
through the creative use of spreadsheets can provide new, challenging, and interesting teaching 
and learning experiences. The projects considered here provide glimpses of historical ideas, while 
showing the underlying mathematics of algorithms that is now often hidden within powerful 
computational tools. We present interactive models of such varied topics as counting systems, 
calculating procedures and devices, graphing techniques, and algorithms that incorporate both 
animated graphics and effective visual presentations using the spreadsheet display itself. 
Examples are drawn from such diverse undergraduate areas as geometry, calculus, linear 
algebra, differential equations, numerical analysis, group theory, probability, and statistics. 

While the foundations of mathematics have generally remained unchanged over the years, the 
applications, algorithms, techniques, curricula, breadth, and foci of mathematics and mathematics 
education have undergone dramatic and rapid changes and expansion. In the process, the 
development of technology has left many previously key topics of the curriculum either 
languishing or forgotten. At the same time, we now can use the new technologies to re-examine old 
ideas, thus both preserving some of our mathematical history, and giving us new ways to develop 
our modeling skills. In this paper we use the electronic spreadsheet, epitomized by Microsoft 
Excel, to take a fresh look at a variety of the old ideas, techniques, and algorithms of mathematics. 
Some of our examples still remain in the curriculum in various guises, but others disappeared long 
ago. Nonetheless, each of these can serve to whet our appreciation of the mathematics involved.  

Our examples fall into two categories. First, we present modern models of older computations or 
algorithms in which we primarily try to employ the most basic mathematics operations, that are 
similar to those done by hand. Other examples illustrate ways to use Excel’s graphics to create 
visualizations of traditional concepts.  

We anticipate that our examples will demonstrate a broad range of approaches that we can use to 
study historical mathematics, and will help teachers in designing spreadsheet models as they create 
their own classroom illustrations. The author will provide the underlying Excel files to those 
requesting them. We use Excel 2010 to create our examples. 

1. Counting and Arithmetic

In this initial section we look at ways to use Excel creatively to examine two of the historical 
building blocks of mathematics, counting and basic arithmetic.  

Base 3 Counting. The counting system most familiar to us uses base 10, while computer 
operations typically employ base 2. To illustrate the nature of using a specific base in counting, for 
our first example in Figure 1, we employ base 3, using Excel graphics to illustrate the grouping 
process as we count 1, 2, 3, …, N. We employ a spin button to animate our model. We begin with a 
few snapshots of the model’s output. With each click of the button, we increase the count, N, by 1 
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and show one more green dot in the range 1,2,3, …, 27 = 33. In addition, we indicate groups of 3 by 
blue rectangles, groups of three 3’s by red ones, and groups of 27 by a black one.  

            
 

Figure 1. Base 3 Counting Idea and Model Output 
 
We create the locations for the dots and rectangles in four series of (x,y) values, using Cell Y1 

for the value of our counter, N. We then use =IF() functions to form four corresponding series in 
creating an xy-graph of the appropriate objects for those points corresponding to k ≤ N. We animate 
our graphic display by using a spin button to vary N. The Row 1 formulas in Figure 2 generate the 
digits in the binary expansion of N. 

 

   
 

Figure 2. Base 3 Formulas 
 
Binary Counting. We created the previous model as a means of visualizing the concept of 

computing in a given small base. There are many other ways to perform the computations 
themselves (see [11]). In Figure 3 we show one way to generate the binary (base 2) expansion as a 
text expression through the use of concatenation.  

We enter the value of n, here n = 37, in Cell B1, use the =MOD() function in Cell B2 to find the 
final digit in the binary expansion, as the remainder when n is divided by 2 and form its text 
equivalent in Cell B3. We create the resulting integer part of the quotient in Cell C1 and the next 
digit in Cell C2. We use concatenation in Cell C3 to attach that next digit to the front of then the 
previous ones. Finally, we copy the formulas in Column C to the right to complete the rows.  
 

           
 

Figure 3. Binary Counting 
 

We also can create a graph like the one in Figure 4 to illustrate the process of Figure 3 while 
showing the resulting digits of the binary expansion. 
 

 
 

Figure 4. Alternate Binary Model Display 
 

Counting Using Cycles. The nation of Papua New Guinea, with a population of about 7.5 
million, has over 800 distinct languages and hundreds of varied traditional counting systems. While 
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many in both categories are in danger of disappearing from the national memory, the counting 
systems seem to being lost more quickly. Thadreina Abady [1] describes the use of Excel to 
demonstrate several of these systems. She gave a presentation on her work at ATCM 2011. Here 
we give a brief indication of one of them, the Aruamu language (about 40,000 speakers). In Figure 
5 we have used a western notation for numerals. This is not a traditional notation, as most 
traditional languages were only communicated orally. Our chart is produced in Excel, using 
mathematical concepts (iteration) and concatenation. 
 

 
 

Figure 5. Aruamu Counting 
 
Extensive data on the diverse counting systems of Papua New Guinea were gathered by the late 

mathematician, Glendon Lean, and published in a 20-volume publication [10]. Lean describes the 
systems in terms of cycles, frames, and patterns as they are not true base b systems. Various 
systems usually group with 2, 5, 10, or 20 cycles. Some systems of PNG count using body parts.  

Basic Arithmetic. Nowadays, most people resort to calculators to perform even the simplest 
arithmetical calculations. In Figure 6 we review the old pencil-and-paper operations, using standard 
U. S. layouts and a digit-by-digit approach. It should be recognized that there are variations in 
presentation styles among different national cultures.  

For the operation of addition, in the following example we use a “carrying” technique. Thus, in 
last column, we add 9 + 2 + 8 to get 19. In the right digit of the answer, we generate 9 using mod 
10. To get the 1 to carry into the column to the left, we subtract the 9 from the 19, and divide by 10 
and form the resulting value (1) at top of column to left. We then repeat the process by copying the 
indicated formulas in Cells E8 and D2 to the left. Readers are encouraged to develop their own 
ways of implementing both addition and subtraction operations. 
 

      
 

Figure 6. Addition 
 

Figure 7 shows one model for multiplying an integer by a single digit number. We get the first 
digit in Cell E4 and its “carry” in Cell D1. We complete the model by copying these formulas to the 
left. Readers can develop alternative multiplication techniques, or create Excel models for division. 
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Figure 7. Multiplication I 
Multiplying by a many-digit number can be more daunting since it involves much additional 

carrying that we typically would do mentally when working by hand. We must either supply 
locations for each of these operations or build more complex formulas. The model of Figure 8 
incorporates both approaches. Details are found in the files available from the author. 

Figure 8. Multiplication II 

In Figure 9 we see the output of two other multiplication approaches. Below we provide the 
basic formulas used. 

Figure 9. Multiplication III 

G8: =SUM(G4:G7)+(H8-H9)/10, G9: =MOD(G8,10) 
U4: =($Q3*N2+V4-N4)/10, T5: =($P3*N2+U5-M5)/10,  
S6: =($O3*N2-L6+T6)/10, R7: =($N3*N2-K7+S7)/10 

Peasant Multiplication. Books on the history of mathematics [6] discuss a variety of older 
alternative techniques for multiplication. In Figure 10 we use Excel to implement one of these, 
sometimes called peasant multiplication [2], [12]. It also shows the implicit use of the binary 
representation of an integer. To multiply two integers, in Column A we repeatedly divide the first 
number by 2, dropping any remainder. At same time, in Column B we repeatedly double the second 
one. We continue until the entry in Column A reaches 1. The desired product is then the sum of the 
integers in B that correspond to the odd integers in Column A.  Note that what results is 

105·197 = (1·20 + 0·21 + 0·22 + 1·23 + 0·24 + 1·25 + 1·26) = 1·1 +1·8 + 1·32 + 1·64)·197 
=197 + 1,576 + 6,304 + 12,608 = 20,685 

and that the binary expansion of 105 is 11010012. An advantage for users of this approach was that 
they needed only to double, halve, and add integers to do multiplication. The multiplication by 1 or 

1

2

3

4

5

6

7

8

A B C D E F G H

9 5 2 6
x 2 7 4 6
5 7 1 5 6

3 8 1 0 4
6 6 6 8 2

1 9 0 5 2
2 6 1 5 8 3 9 6
1 1 2 1 0 0

1

2

3

4

5

6

7

8

9

A B C D E F G H

8 5 9 2
x 6 4 7 8

64 40 72 16
56 35 63 14

32 20 36 8
48 30 54 12

5 55 76 145 158 119 87 16
5 5 6 5 8 9 7 6

Multiplication - 1 1

2

3

4

5

6

7

8

9

J K L M N O P Q R S T U V W X

8 5 9 2
x 6 4 7 8
6 8 7 3 6 6 4 7 1

6 0 1 4 4 6 4 6 1
3 4 3 6 8 3 2 3 0

5 1 5 5 2 5 3 5 1
5 5 6 5 8 9 7 6
0 0 1 1 1 1 0 0

Multiplication - 2

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

91



0 in Column D can also be done using a basic logic approach, e.g. D5: =IF(C5=1,B5,0). Further 
computational schemes to implement in a spreadsheet any be found in [11]. 

Figure 10. Peasant Multiplication 

2. Earlier Computation Tools and Methods

Within the brief period of the last two generations, many of the ways in which we carried out 
computations in the past have disappeared as markedly improved and powerful computational tools 
have been developed. Here we take a look at how we can use Excel to simulate some of the past 
procedures, devices, and procedures. 

Logarithms. In earlier times, the multiplication and division of large numbers presented 
difficulties. Mathematicians sought to find more efficient ways to do such computations. One 
involved the use of logarithms. If we can write the numbers a and b as powers of 10, say a = 10c 
and b = 10d, then multiplying b by a would become a matter of adding exponents: ab = 
10c10d=10c+d. The exponents of 10 are called base 10 logarithms. Thus if a = 10c, then c = log10(a). 
Eventually the values of logarithms and their inverses (called antilogarithms) were computed and 
appeared in printed tables. These tables were still in common use 50 years ago. We summarize the 
use of logarithms for multiplication in the Excel display of Figure 11.  

Figure 11. Base 10 Logarithm Concept 

Figure 12 shows a layout using the built-in =LOG10() function. We can also use this function to 
create a typical table of logarithms and then use table lookup functions – employing extrapolation 
and decimal and rounding conventions – to more fully demonstrate the old methods. Using Excel 
and logs to carry out division, exponentiation, and finding roots also provide good exercises. 
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x 539 → x 10 539 → 2.7316
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Figure 12. Base 10 Logarithms in Excel 
Slide Rule. A subsequent step in using logarithms came through the use of a slide rule. The idea 

of a slide rule is shown below. If we have two sticks measured in equal subdivisions from 0.0 to 
1.0, then we find 0.3 + 0.2 = 0.5 as shown in Figure 13. If we think of the values, c, as logarithms 
and place the corresponding values 10c on the sticks, then our stick adding process finds 2.00×1.58 
= 100.3· 100.2 = 100.3+0.2 = 100.5 = 3.16. 

Figure 13. Multiplying using Logarithms 

This procedure is the basis of the slide rule that was used by students, engineers, and scientists 
until the development of calculators and computers. Perhaps their major drawback was that they 
could produce only 3 significant digits of accuracy. Nonetheless, this topic can become an eye-
catching artifact to use in the classroom.  

An associated file provides an Excel simulation version, as illustrated in Figure 14. We use 
scroll bars to move the center piece and the cross-hair slider. 

Figure 14. Animated Slide Rule 

Napier’s Rods. The mathematician John Napier developed many logarithm concepts [6]. He 
also created another physical means to carry out multiplication problems using addition as shown in 
Figure 15. He used rods, or bones, consisting of the single digit multiples of the digits (the 6-rod is 
at the left), and used them to carry out multiplication (at the right).  

Unlike Napier, we include 0 in our model. By arranging the rods as shown, we can read off the 
multiples of one of the numbers and then add them. The need to carry can complicate the resulting 
design, either by using additional columns (hidden here) or by employing more complex formulas. 

Figure 16 shows the spreadsheet layout, and the methods of obtaining products from the display. 
We use the Format, Borders and the Merge and Center features of Excel in creating our design.  

The right display illustrates the carrying obstacle that we need to consider. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0 0.1 0.2 0.3

1.00 1.26 1.58 2.00 2.52 3.16 3.98

1.00 1.26 1.58 2.00

x 2.10 xy 6.71 log x 0.322 log xy 0.827
y 3.20 log y 0.505

x y X x y X x y
8.27 -0.1 1 0 0.25 1 0 0.05
8.27 1.1 1 0 0.15 2 3.0103 0.05

3 4.7712 0.05
2 3.01 0.25 4 6.0206 0.05
2 3.01 0.15 5 6.9897 0.05

base grid base labelshair

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.10 6.71

3.20
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Figure 15. Napier’s Rods Multiplication 
 

   
 

Figure 16. Explanation of Rod Operation 
 

3. Some Algorithms of Yore 
 

Not only have modern technological devices essentially eliminated the use of once common 
computational techniques, but they also have served to reduce the importance of some previously 
widely-used algorithms. Once again, we show how we can use Excel to implement some of these 
techniques with new vitality. 

Euclid’s GCD Algorithm. Today’s software tools make finding the greatest common divisor 
(gcd) of two integers a trivial task. In Excel we have the built-in =GCD() function. Euclid’s gcd 
algorithm shows us one traditional way to obtain the result ourselves and provides us with 
additional useful information. The algorithm is based on the fact that if we have two positive 
integers a and b, with a > b, then we can divide a by b, getting a remainder r₁ ≥ 0, and write a = mb 
+ r₁, with 0 ≤ r₁ < b. In addition, if an integer n divides both a and b, then it also divides r₁. If r₁ > 
0, we replace a by b and b by r1, and repeat the process, continuing until we obtain a remainder of 
0. When we obtain 0 as the remainder, the remainder immediately prior to 0 is the desired gcd [11]. 
We carry out this process in the first four columns of Figure 17.  
 

      
 

Figure 17. Euclid’s Method for GCD 
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big little quo rem
=A1 =B1 =INT(A4/B4) =A4-B4*C4
=B4 =D4 =INT(A5/B5) =A5-B5*C5
=B5 =D5 =INT(A6/B6) =A6-B6*C6
=B6 =D6 =INT(A7/B7) =A7-B7*C7
=B7 =D7 =INT(A8/B8) =A8-B8*C8
=B8 =D8 =INT(A9/B9) =A9-B9*C9
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=B10 =D10 =INT(A11/B11) =A11-B11*C11
=B11 =D11 =INT(A12/B12) =A12-B12*C12
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Using algebra, we can work backwards through our results to find integers s and t such that 
gcd(a,b) = sa + tq. This result is used in abstract algebra. Discovering a pattern for obtaining s and t 
directly from our Excel layout makes for a challenging exercise. We have implemented this 
iteratively in our computations in Columns E:F using sn = sn–2 – sn–1qn and tn = tn–2 – tn–1qn. The gcd 
and the desired values s and t come from the row containing the last non-zero remainder.  Our 
model demonstrates a means for transferring these values via formulas. 

We can also find (possibly different) values for s and t by using Excel’s Solver as in Cells 
E1:M1 of Figure 18. We enter C1: =GCD(A1,B1), M1: =E1*A1+I1*B1. We also enter =C1-M1 
into Cell M2 as the solver goal that we wish to drive to zero. We then issue the command: Data, 
Solver, and enter M2 as the objective cell, with 0 as its value, by changing Cells E1, I1. We must 
also include constraints that require both E1 and I1 to be integers. We do not want to have a tick in 
the box for making the constrained variables positive. We then press the Solve button to obtain 
values for s and t. Note that the values of s and t are not unique. 
 

   
 

Figure 18. GCD as Linear Combination via Solver 
 

Unit Fractions. Early Egyptian mathematicians made use of unit fractions of the form 1/n, 
where n is a positive integer. It can be shown that any common fraction, m/n, where m < n, can be 
written (generally in many ways) as the sum of distinct unit fractions. In Figure 19 we look at one 
such algorithm. It falls into the general category of “greedy” algorithms, where we repeatedly 
choses the largest denominator possible.  

To see the approach, suppose that we look at the fraction 19/78. What is the largest positive 
integer n1 for which 1/n1 < 19/78? We could use trial-and-error to find n1. In doing so, we would 
find that 1/5 < 19/78, while 1/4 > 19/78. Thus, we would use n1 = 1/5 as our first unit fraction, and 
then find the largest integer, n2, for which 1/n2 < 19/78 – 1/5 = 17/390, and continue the process. 

However, with a little thought, we can do better than trial-and-error. Since 1/5 is the largest unit 
fraction that is less than 19/78. then 5 is the smallest integer greater than or equal to 78/19. So if we 
find n = INT(78/19) + 1, that is smallest integer greater than 78/19, and 1/n will the largest unit 
integer less than 78/19. That is the basis for our algorithm, which uses the greatest integer function, 
=INT(). However, we need to consider the case when the difference is already a unit integer. For 
example if m/n = ¾, then k = ¾ –  ½ = ¼ which is a unit fraction, so we should write ¾ = ½ + ¼ 
and quit. However, if we took =INT(4/1)+1 = 5, we would continue 1/2+1/5 + ….  

Our model appears below. We also can use Excel to check that we get the correct answer. 
Designing a check to use integer arithmetic for this algorithm or for adding factions in general 
make good exercises. We can use Excel’s greatest common denominator, =GCD() and least common 
multiple =LCM() functions in the design as a check. 

 

     
 

Figure 19. Unit Fraction Model 
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356 252 4 * 356 + * 252 = 0
a b gcd solver goal 4
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356 252 4 -46 * 356 + 65 * 252 = 4
a b gcd solver goal 0
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5

A B C D

num den r fract
19 78 5 1/5
17 390 23 1/23

1 8970 8970 1/8970
0 8E+07 #DIV/0! #DIV/0!

1

2

3

4

5

A B C D

num den r fract
19 78 =IF(B2/A2=INT(B2/A2),B2/A2,INT(B2/A2)+1) ="1/"&TEXT(C2,0)
=(A2*C2-B2) =B2*C2 =IF(B3/A3=INT(B3/A3),B3/A3,INT(B3/A3)+1) ="1/"&TEXT(C3,0)
=(A3*C3-B3) =B3*C3 =IF(B4/A4=INT(B4/A4),B4/A4,INT(B4/A4)+1) ="1/"&TEXT(C4,0)
=(A4*C4-B4) =B4*C4 =IF(B5/A5=INT(B5/A5),B5/A5,INT(B5/A5)+1) ="1/"&TEXT(C5,0)
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Cramer’s Rule. In linear algebra we typically encounter both determinants and Cramer’s Rule, 
which uses determinants to solve n×n systems of linear equations. However, this method is 
unwieldly to use, especially for n > 3. Surprisingly, employing Excel’s built-in determinant 
function, =MDETERM(), we can implement Cramer’s rule for larger systems. Here we illustrate our 
procedure using 5×5 matrices. Details of Cramer’s Rule are found in a standard linear algebra book 
[9]. The rule determines each component as xn = |An|/|A| where |A| is the determinant of the 
coefficient matrix A, and |An| is the determinant of the matrix obtained by replacing the nth column 
of A by the column of constants. Cramer’s rule applies only when |A| ≠ 0. 

We present our design in Figure 20. Cell E5 contains the number, n, of one of the columns. The 
formulas for An in Columns H:L use the value of n in Cell E5. We enter =IF(A$3=$E$1,$F4,A4) in 
Cell H4 and then copy it throughout the block. In Cell B2, =MDETERM(A4:E8) computes the 
determinant |A|, while we find |An| in Cell J1: =MDETERM(H4:L8). 

Next, we use Excel’s Data Table feature in the Block O3:P8. We initially leave the top row of 
the block empty and generate the list of n values down the first column. Then in Cell P3 we enter 
the formula =J1/B1 which computes the value of the current nth solution component. Next, we use 
the mouse to highlight the block O3:P8 and issue the command: Data, What If Analysis, Data 
Table. In the ensuing dialog box we click in the Column Input Cell box, followed by clicking on 
Cell E1 to provide the value of n. When we then click the OK button, Excel repeatedly enters each 
of the values of n listed in Column O into Cell E3, recording the resulting values for |A|/|An| in the 
corresponding entries Column P. In Figure 20b we check our answers using Excel’s Matrix 
functions to find the solutions in Column Q as A–1C.  

Figure 20. Cramer’s Rule with Check 

Old Square Root Methods. Today we simply click on a button in any number of electronic 
devises in order to find the square root of a number that will be correct to many decimal places. 
Using Excel we can use simple trial-and-error to think through estimations as we indicate in Figure 
21.  

Figure 21. Square Root Using Trial-and-Error 

However, we next look at a very complicated square root algorithm that was taught in the 
author’s high school algebra class 60 years ago. Here we provide only a brief introduction using 
Figure 22. Because of its complexity, we refer readers to an explanation provided on the Web [7]. 
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We first group the digits in the number into groups of two, both before and after a decimal point. 
Thus we would write 06 45 00 00. In our Excel displays, however, some zeroes will be dropped. 
We first find the largest integer (2) whose square (4) is less than the first group (6). We put the 2 on 
the top line and double the 2 to get 4 below the 6, subtracting to get 2. We then bring down the next 
group to produce 245. Next we double the 2 to get 4 and use trial-and-error to find the largest digit 
k (here 5) for which 25×45 = 225 that is less than or equal to 245. We then subtract and repeat the 
process. 

This is certainly a non-intuitive and very complex process. We show several steps in Figure 22 
as implemented in an Excel model. 

Figure 22. An Old Traditional Square Root Computation 

Square Roots and Newton’s Method. There is another, and now better-known, old method for 
finding square roots that is very easy to implement on a spreadsheet. Theoretically, the work could 
be done by hand, but it would involve very lengthy divisions of long decimal expansions. 

We first make a good estimate, say x0, of the square root of a real number a. If we are correct, 
then x0·x0 = a, and x0 = a/x0. However, unless we are lucky, either x0 is too large (so that a/x0 is too 
small) or x0 is too small (so that a/x0 is too large). In either case the average (i.e. the arithmetic 
mean) of the two, x0 and a/x0, should be a better approximation. So we use this as the next estimate, 
and then we keep repeating the process [2], [11]. 

In Figure 23, we enter the value for the initial estimate, x0, in Cell B3 and compute a/x0 in Cell 
C3. We then create our next approximation, x₁, in Cell B4 as (B3+C3)/2 and copy the formulas 
down their respective, noting a rapid convergence, even with a poor first approximation. 

Figure 23. Square Root Using Newton’s Method 

This algorithm is a special case of Newton’s Method [4], a classical algorithm from calculus in 
which we compute an approximation of a zero of a differentiable function y = f(x) by taking an 
initial estimate x0, and then computing subsequent estimates by xn+1 = xn – f (xn)/f′ (xn). 
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4. Visualizations of Classical Mathematics 
 
One of Excel’s great strengths for communicating mathematics lies in the manner in which we 

can create interactive and animated graphics. Here we illustrate this through examples coming from 
various fields of mathematics. 

Means. There are a great number of ways to define the mean of two numbers, a and b [6]. 
Perhaps the most familiar one is the arithmetic mean, x = (a+b)/2. As shown in Figure 24, this is 
the point that lies midway between a and b. Here x–a = b–x, so that 2x = a+b, and x = (a+b)/2. 
Another, the geometric mean, is located so that the ratios of the distance from a to x and x to b are 
equal. Thus, x/a = b/x, x2 = ab, and 𝑥𝑥 = √𝑎𝑎𝑎𝑎. Others include: harmonic: x = 2ab/(a+b); heronian: x 
= a+√𝑎𝑎𝑎𝑎+b; contraharmonic: x = (a2+b2)/(a+b); root-mean-square: x = √𝑎𝑎2 + 𝑏𝑏2; centroidal: x = 
2(a2+ab+b2)/3(a + b).  

  
 

Figure 24. Arithmetic and Geometric Means 
 
There are a variety of ways to exhibit these means, such as in the interactive Excel graph of 

Figure 25. As we vary a and b, our graph is updated automatically, showing the order indicated. To 
show mathematically that the sizes are always in the order shown is a good exercise. 

 
 

Figure 25. Relations among Means 
 
An exercise from Eves [6] uses a trapezoid to illustrate the different means. When shown in this 

way, we can visualize some of the properties that also provide us with good exercises. For example, 
the root-mean-square divides the trapezoid into two areas of equal area, and the geometric mean 
divides the trapezoid into two similar trapezoids. 
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Figure 26. Means Seen Through Trapezoids 

Cycloids. As a unit circle rolls along the x-axis, the point that originally lies on the bottom at the 
origin traces out a curve called a cycloid. This curve has generated great interest among 
mathematicians for centuries [3], [6]. There are several ways to produce this curve. One is to use 
the parametric equations of the curve. Our animated model creates a graph (Figure 27a) to helps us 
to determine the curve’s parametric equations: x = t – sint, y = 1 – cost. However, a second model 
(Figure 27b) uses Excel’s data table to create the curve. This approach is useful in constructions 
when it may be difficult to find the equations directly. In addition, our model simultaneously 
implements the trapezoidal rule [4] from calculus to show that the area under one arch of the 
cycloid is equal to the sum of the areas of 3 unit circles. We can verify this directly by using 
integration from calculus. As an exercise, we can generalize this model for a circle of radius r. We 
use a scroll bar to generate the animation. 

Figure 27. Animated Cycloid 

Gaussian Pivoting. One of the fundamental topics studied in linear algebra is finding the 
solution of a system of linear equations. One way to do this is through the use of Gaussian pivoting. 
Below we see the output of a manual solution using elementary matrices in an Excel 
implementation. It is not always apparent to students how the term “pivoting” applies. Our 
animated model illustrates this for a 2×2 system.. 

In the left of Figure 28 we see the steps in eliminating the x term from the second equation. We 
do this by subtracting the multiple of 3 of the first equation from the second. However, if we 
gradually change the 3 to 0 in small steps by using a scroll bar (or slider), then we see the red line 
pivoting around the solution point. We then use a similar technique on the second component to 
pivot the blue line. Figure 29 shows the screen display and snapshots of its changing graph. 
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Figure 28. Gaussian Pivots through Elementary Matrices 
 

       
 

     
 

Figure 29. Output of Animated Pivoting in 2×2 Systems 
 
A significant challenge will be to use a perspective drawing to create a similar visualization 

model for a 3×3 system. 
Statistical Picture Charts. Excel is an excellent tool for creating animated graphs [3,11]. These 

are especially helpful in statistics. Using the model for Figure 30 we explore the correct depiction 
of images of relative sizes. In one model we use a scroll bar to vary the radius of the red circle of 
the figure. Users can experiment to see if they can tell visually when the area of the smaller read 
image is a given percentage, say 50%, of the area of the original circle. Another uses a 3-
dimensional soft drink bottle. Similar images can be included in a map or a similar figure to 
demonstrate the relative sizes of such statistical items as sales, production, or population of various 
locales in the map.  

Examples of visual perception displays abound in statistics books and the classical book by Huff 
[8]. 

 

    
 

Figure 30. Images proportional to Data 
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Group Theory. One area that currently appears to be largely unexplored is the use of a 
spreadsheet to create visualizations for abstract algebra. Carter [5] addresses visualization in group 
theory. In Figure 31 we use the =MOD() function to create a multiplication table for the integers 
mod 6. We then use conditional formatting to show the normal subgroup {0,3} in red, with its 
cosets in green and yellow. We then represent the corresponding factor group in the same format, 
allowing us to demonstrate that the factor group is isomorphic to the integers mod 3. 

Figure 31. Group Theory 

Numerical Analysis. The field of numerical analysis is rich with algorithms that we can 
implement naturally as interactive Excel models. In Figure 32 we illustrate Euler’s Method [2], [4], 
[13], a traditional introductory means for approximating the solution of a differential equations 
initial value problem, y′ = f(x,y), y(x0) = y0. We use f(x,y) = x + y, y0 = 1. We have chosen a problem 
that we can solve analytically as y = 2ex–1–x for x ≥ 0, in order to show the method visually. 

Using the initial point w0 = x0 = 0, y0 = 1, we choose an x-step size, dx. We use the tangent line 
to the solution curve at x0 to approximate the next point as x1 = x0 + dx,  y1 ≈ w1 = y0 + f(x0,w0)dx. 
We then continually repeat the process, using wi as an approximation for yi, where xi+1 = xi + dx, 
wi+1 = wi + f(xi,wi)dx. Since the points (xi,wi) usually will not lie on the solution curve, we find that 
the approximation generally deteriorates as x increases. 

In our model we use a scroll bar to vary the number of points, n. This allows us to see how the 
approximation improves with larger n and smaller dx. Ultimately we also will realize there is a 
need to find more efficient approaches, which we also can implement in Excel.  

Figure 32. Euler’s Method in Differential Equations 

Our graph of Figure 33 shows the resulting approximations for n = 4 and n = 10. Readers are 
encouraged to create similar models for various other algorithms of numerical analysis or 
operations research. 
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Figure 33. Animated Euler’s Method Output 
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