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Abstract

In this paper, we show that the Bell number B(n) counts the total number of zeros of
certain polynomial set over the finite field F2. An alternative method for computing B(n)
is presented by using Gröbner bases. The new method makes a theoretical contribution
to discuss the partitions of [n] in Combinatorics by using Computer Algebra without
considering the complexity. Given a zero of the polynomial set, we also give an approach
to determine the type of the corresponding partition by computing the characteristic
polynomial. Our method is also helpful to enhance the interest of learning Computer
Algebra and using computer algebra systems in teaching and studying.

1 Introduction

There is a simple bijection between the equivalence relations ∼ on a set S and the partitions
of S, viz., the equivalence classes of ∼ form a partition of S. We denote by Πn the set of all
partitions of the n-set [n] := {1, 2, . . . , n}. The total number of partitions of an n-set is called
a Bell number and is denoted B(n). Thus the cardinality of Πn is B(n). The following is a
basic formula concerning B(n) in Combinatorics,

B(n+ 1) =
n∑
i=0

(
n

i

)
B(i), n ≥ 0.

See [3, 6] for more on B(n).
Let F2 = {0, 1} be the finite field with 2 elements and denote Fn2

2 the n2-dimensional affine
space, which consists of all vectors of length n2 with entries in F2:

a = (a1,1, . . . , a1,n, a2,1, . . . , a2,n, . . . , an,1, . . . , an,n).

For convenience, we identify the vector a ∈ Fn2

2 with the matrix A = (ai,j) ∈Mn(F2).
Let F2[xi,j | 1 ≤ i, j ≤ n] (or F2[(xi,j)n×n]) denote the ring of polynomials in n2 variables

xi,j over F2. It is sometimes convenient to write f ∈ F2[(xi,j)n×n] as f((xi,j)), and f(A) , f(a)
if A = (ai,j) ∈ Fn2

2 .
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A polynomial set is a finite set P of nonzero polynomials in F2[(xi,j)n×n]. The set of all zeros
of P in Fn2

2 is defined as

ZeroF2(P) , {A = (ai,j) ∈ Fn2

2 | f(A) = f((ai,j)) = 0, ∀f ∈ P}.

In this paper, we construct a polynomial set Pn over F2 in order to discuss the partitions
Πn by the symbolic method. Using Gröbner basis, the Bell number B(n) can be obtained by
considering a quotient algebra determined by Pn. When one compute the Gröbner basis with
respect to a special term ordering, all B(k) (2 ≤ k ≤ n) can be obtained at the same time.
Furthermore, given a zero of Pn, we also present an approach to determine the type of the
corresponding partition by computing the characteristic polynomial.

The complexity of our approach to compute the Bell number is mainly depended on com-
puting Gröbner bases. It is not good in complexity compared with the above formula in
Combinatorics.

The virtue of our approach is to make a theoretical contribution to discuss the partitions
of [n] in Combinatorics by using Computer Algebra. It is also helpful to motivate the interest
of learning Computer Algebra and using computer algebra systems in teaching and studying.

2 Main Results

The following polynomial set constructed in F2[(xi,j)n×n] plays a crucial role in this paper,

Pn = {xi,i + 1; xj,k(xi,j + xi,k); (xj,k + 1)xi,jxi,k; xi,j + xj,i; 1 ≤ i < j < k ≤ n}.

One can implement the following Maple procedure for finding Pn.

PS:=proc(n)

local i,j,k,x,S1,S2,S3,P;

S1:={seq(x[k,k]+1,k=1..n)};

S2 := ‘minus‘(‘mod‘({seq(seq(x[i,j]+x[j,i],i=1..n),j=1..n)},2),{0});

S3:={};

for k to n do for j to k-1 do

S3:=‘union‘(S3,{seq(x[j,k]*(x[i,j]+x[i,k]),i=1..j-1)})

end do

end do

for k to n do for j to k-1 do

S3:=‘union‘(S3,{seq(x[i,j]*x[i,k]*(1+x[j,k]),i=1..j-1)})

end do

end do

P:=‘union‘(S1,S2,S3);

eval(P)

end proc;

Theorem 1 The total number of zeros of Pn is B(n), i.e., B(n) = |ZeroF2(Pn)|.

Proof.
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For any zero A = (ai,j) ∈ ZeroF2(Pn), it is obvious that the matrix A = (ai,j) ∈ Mn(F2)
satisfying that AT = A and

ai,i = 1, aj,k(ai,j + ai,k) = 0, (aj,k + 1)ai,jai,k = 0

for all 1 ≤ i < j < k ≤ n.
To show B(n) = |ZeroF2(Pn)|, we construct the following mapping ∆ : Πn → ZeroF2(Pn)

defined by the i, jth entry of the matrix ∆(β) is 1 if i, j are in some common block of the
partition β ∈ Πn; 0 otherwise.

In order to claim that ∆ is well-defined, let ∼β denote the equivalence relation on [n] induced
by the partition β. For convenience, let ∆(β) = A ∈Mn(F2). The reflexivity and symmetry of
∼β imply that ai,i = 1 and ai,j + aj,i = 0, respectively. The transitivity shows that ai,k = 1 if
ai,j = aj,k = 1, so aj,k(ai,j + ai,k) = 0; and aj,k = 1 if ai,j = ai,k = 1, so (aj,k + 1)ai,jai,k = 0.
Thus our claim holds.

It remains to show that ∆ is bijective. Given A ∈ ZeroF2(Pn), we define two elements
i, j ∈ [n] to be A-equivalent, denoted i ∼A j, if ai,j = 1 for 1 ≤ i, j ≤ n. Now we check that ∼A
is an equivalence relation. The reflexivity and symmetry follow from ai,i = 1 and ai,j +aj,i = 0,
respectively. The transitivity follows from aj,k(ai,j + ai,k) = 0 and (aj,k + 1)ai,jai,k = 0. Thus
∼A is an equivalence relation on [n]. The equivalence classes of ∼A yield a partition of [n].
Therefore ∆ is surjective.

Finally, suppose that we have ∆(β1) = ∆(β2). It follows from the above definition that
β1 = β2. Hence ∆ is bijective, which completes the proof.

Example 2 Let P3 = {p1, p2, p3, q1, q2, f1, f2} with

p1 = x1,1 + 1, q1 = x1,2 + x2,1, f1 = x2,3(x1,2 + x1,3),
p2 = x2,2 + 1, q2 = x1,3 + x3,1, f2 = (x2,3 + 1)x1,2x1,3.
p3 = x3,3 + 1, q3 = x2,3 + x3,2,

We list all the zeros of P3 in the following

A1 =

 1 1 1
1 1 1
1 1 1

 , A2 =

 1 0 0
0 1 1
0 1 1

 , A3 =

 1 0 1
0 1 0
1 0 1

 , A4 =

 1 0 0
0 1 0
0 0 1

 , A5 =

 1 1 0
1 1 0
0 0 1

 .
The correspondence between Ai ∈ ZeroF2(P3) and the partition βi of [3] is as follows:

A1 ←→ β1 = {{1, 2, 3}} ∈ Π3,

A2 ←→ β2 = {{1}, {2, 3}} ∈ Π3,

A3 ←→ β3 = {{1, 3}, {2}} ∈ Π3,

A4 ←→ β4 = {{1}, {2}, {3}} ∈ Π3,

A5 ←→ β5 = {{1, 2}, {3}} ∈ Π3.

We proceed to give an alternative method to count B(n) using Gröbner basis theory which
was introduced and developed by Buchberger in [1]. We first introduce some necessary notations
and known results.
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For any polynomial set P ⊆ Fq[x1, x2, . . . , xn] where Fq denotes the finite field with q ele-
ments, define JP to be the ideal generated by all elements of P and the polynomials xq1−x1, x

q
2−

x2, . . . , x
q
n − xn, i.e.,

JP =< P > + < xq1 − x1, x
q
2 − x2, . . . , xqn − xn > .

It is easy to see that

Lemma 3 The ideal JP is zero-dimensional for any polynomial set P ⊆ Fq[x1, x2, . . . , xn].

By the ring-theoretic version of the Chinese Remainder Theorem [5], one can easily prove
the following result which can help us to obtain |ZeroF2(Pn)| without needing to compute all
zeros of Pn in Fn2

2 .

Proposition 4 Let P be a polynomial set in Fq[x1, x2, . . . , xn]. Then

|ZeroFq(P)| = dim(Fq[x1, x2, . . . , xn]/JP).

Using a Gröbner basis, one can easily find an F2-linear basis for F2[(xi,j)n×n]/JP by Macaulay’s
Basis Theorem in [5].

Proposition 5 With the above situation, let G be a Gröbner basis of JP with respect to some
monomial order. Then an Fq-linear basis of Fq[x1, x2, . . . , xn]/JP is given by the set of mono-
mials

{xk11 . . . xknn | x
k1
1 . . . xknn

G
= xk11 . . . xknn }

which is called a Macaulay’s basis of Fq[x1, x2, . . . , xn]/JP.

As an immediate consequence, let JPn =< Pn > + < x21,1−x1,1, x21,2−x1,2, . . . , x2n,n−xn,n >
in F2[xi,j | 1 ≤ i, j ≤ n], we have

Theorem 6 For any positive integer n, let G be a Gröbner basis of JPn with respect to some
monomial order. Then

B(n) = |{xk11,1xk21,2 . . . xknn,n | x
k1
1,1x

k2
1,2 . . . x

kn
n,n

G
= xk11,1x

k2
1,2 . . . x

kn
n,n}|.

We next give an illustration for B(4).

Example 7 Let P4 = {p1, . . . , p4, q1, . . . , q6, f1, . . . , f8} with

p1 = x1,1 + 1, q6 = x3,4 + x4,3,
p2 = x2,2 + 1, f1 = x2,3(x1,2 + x1,3),
p3 = x3,3 + 1, f2 = (x2,3 + 1)x1,2x1,3,
p4 = x4,4 + 1, f3 = x2,4(x1,2 + x1,4),
q1 = x1,2 + x2,1, f4 = (x2,4 + 1)x1,2x1,4,
q2 = x1,3 + x3,1, f5 = x3,4(x1,3 + x1,4),
q3 = x1,4 + x4,1, f6 = (x3,4 + 1)x1,3x1,4,
q4 = x2,3 + x3,2, f7 = x3,4(x2,3 + x2,4),
q5 = x2,4 + x4,2, f8 = (x3,4 + 1)x2,3x2,4.
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Hence
JP4 =< p1, . . . , p4, q1, . . . , q6, f1, . . . , f8, x

2
i,j − xi,j, 1 ≤ i, j ≤ 4 > .

Using Maple, we can easily compute a Gröbner basis with respect to lex order where x1,1 >
x1,2 > x2,2 > x2,1 > x1,3 > x2,3 > x3,3 > x3,2 > x3,1 > x1,4 > x2,4 > x3,4 > x4,4 > x4,3 > x4,2 >
x4,1 as follows:

G4 = {x23,4 + x3,4, x
2
2,4 + x2,4, x

2
1,4 + x1,4, x3,4x2,3 + x3,4x2,4 + x2,3 + x2,4,

x3,4 + x2,3 + x3,4x2,4 + x2,3x2,4, x
2
2,3 + x2,3, x3,4x1,3 + x3,4x1,4 + x1,3 + x1,4,

x3,4 + x1,3 + x3,4x1,4 + x1,3x1,4, x
2
1,3 + x1,3, x2,4x1,2 + x2,4x1,4 + x1,2 + x1,4,

x2,4 + x1,2 + x2,4x1,4 + x1,2x1,4, x2,3x1,2 + x2,3x1,3 + x1,2 + x1,3,

x2,3 + x1,2 + x2,3x1,3 + x1,2x1,3, x
2
1,2 + x1,2}.

The following monomials constitute a Macaulay’s basis of F2[(xi,j)4×4]/JP4

1, x1,2, x1,3, x1,4, x2,3, x2,4, x3,4, x1,4x2,4x3,4, x1,2x3,4,

x1,3x2,3, x1,3x2,4, x1,4x2,3, x1,4x2,4, x1,4x3,4, x2,4x3,4.

Thus, B(4) = 15.

Using Maple, the following commands are implemented for computing B(4) in the above
example.

with(Groebner):

G4:=Basis(JP4,plex(x[1,1],x[1,2],x[1,3],x[1,4],x[2,1],x[2,3],x[2,4],x[3,1],

x[3,2],x[3,3],x[3,4],x[4,1],x[4,2],x[4,3],x[4,4]),characteristic=2):

N4:=NormalSet(G4,plex(x[1,1],x[1,2],x[1,3],x[1,4],x[2,1],x[2,3],x[2,4],x[3,1],

x[3,2],x[3,3],x[3,4],x[4,1],x[4,2],x[4,3],x[4,4])):

B4:=nops(N4[1]);

15.

Based on the next result, we can obtain all B(k) for 2 ≤ k < n when a Gröbner basis of JPn

with respect to the given lex order.

Theorem 8 For any positive integer n > 2, if MBn is the collection of a Macaulay’s basis of
F2[(xi,j)n×n]/JPn, then

B(k) = |F2[(xi,j)k×k] ∩MBn|
for 2 ≤ k < n.

Proof. Suppose that Gn is a Gröbner basis of JPn with respect to the above term ordering. It
follows from the Elimination Theorem in [2] that the following set is the Gröbner basis of JPk

Gn ∩ F2[(xi,j)k×k]

for 2 ≤ k < n. Note that all monomials of MBn is the Macaulay’s basis of F2[(xi,j)n×n]/JPn .
We have that all elements of F2[(xi,j)k×k] ∩MBn is an F2-basis of F2[(xi,j)k×k]/JPk

. Thus

B(k) = |F2[(xi,j)k×k] ∩MBn|.
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Example 9 (Continued to Example 7) We know that G4 ∩ F2[(xi,j)3×3] is a Gröbner basis of
JP4 by the Elimination Theorem. Thus we can get a Macaulay’s basis of F2[(xi,j)3×3]/JP3 as
follows,

F2[(xi,j)3×3] ∩MB4 = {1, x1,2, x1,3, x2,3, x1,3x2,3}.

This implies B(3) = 5.

The complexity of our approach to compute the Bell number mainly depends on computing
Gröbner bases. Applying the efficient algorithm for computing Gröbner bases such as F5 in [4],
B(n) can be computed when n is larger by our approach. Theorem 6 is also advantageous to
estimate for the Gröbner basis of JPn and the Macaulay’s basis of F2[(xi,j)n×n]/JPn if n is very
large using the method of Combinatorics.

3 Other Results

Now we identify the set ZeroF2(Pn) as a subset of the matrix ring Mn(F2).
Given a matrix A = (ai,j) ∈ ZeroF2(Pn), let ri denote the ith row vector of A. It is clear

that the ith position rii of ri is 1. If rii is the first position of ri equalling 1, i.e., i is the smallest
integer j with rij = 1, we record the column index j such that rij = 1, assuming they are

c1, c2, . . . , csi .

Then the submatrix whose entries are aij where i, j ∈ {c1, c2, . . . , csi} is a all-one matrix of
order si, called a block of size si.

For every such i, we can determine a block of A. Suppose there are αi blocks of size i in A,
then A is called a matrix of type 1α12α2 · · ·nαn where

∑
iαi = n and αi ≥ 0 for each i.

Example 10 Given a matrix A ∈ Γ4,

A =


1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

 ,
the entries a2,2, a2,4, a4,2, a4,4 form a block of size 2 and the type of A is 12213040.

It is easy to see that two elements A,B ∈ ZeroF2(Pn) have the same type if and only if
they are conjugate in ZeroF2(Pn), i.e., there exists a permutation matrix Q ∈ Sn such that
A = QBQT , where Sn is the symmetric group.

Lemma 11 Assume that n is a fixed positive integer, then Πn and ZeroF2(Pn) are Sn-sets.

Proof. It is easy to check that the following map Φ establishes an action on Πn

Φ : Sn × Πn −→ Πn, (Q, β) −→ Q ? β ,
⋃
k

{Q(i) | i ∈ Bk},

with β =
⋃
k Bk ∈ Πn which implies that Πn is an Sn-set.

230



Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

To show that ZeroF2(Pn) is an Sn-set, we claim that QAQT ∈ ZeroF2(Pn) for any Q ∈ Sn
and A ∈ ZeroF2(Pn).

For any f((xi,j)) ∈ Pn, it is easy to see that f(Q(xi,j)Q
T ) ∈ Pn by the symmetry of Pn.

Assume that A ∈ ZeroF2(Pn), then A is a zero of f(Q(xi,j)Q
T ) since f(Q(xi,j)Q

T ) ∈ Pn. Thus
for any f((xi,j)) ∈ Pn, we have f(QAQT ) = 0, which means that QAQT ∈ ZeroF2(Pn).

Thus the following map

Ψ : Sn × ZeroF2(Pn) −→ ZeroF2(Pn), (Q,A) −→ Q ◦ A , QAQT

shows that ZeroF2(Pn) is also an Sn-set.
Furthermore we have

Proposition 12 Given an integer n > 0, we have Πn and ZeroF2(Pn) are isomorphic Sn-sets.

Proof. In the proof of Theorem 1, we know that ∆ : Πn → ZeroF2(Pn) is bijective. It remains
to show that ∆ is also an Sn-isomorphic map. For any Q ∈ Sn and β =

⋃
k Bk ∈ Πn, with the

same notations in the proof of Lemma 11, we have

∆(Q ? β) = ∆(
⋃
k

{Q(i) | i ∈ Bk}) = QAQT = Q ◦∆(A).

This completes the proof.
Let R denote the real number field. Now we establish the following map

Ψ : Mn(F2)→Mn(R)

A = (ai,j) 7→ (āi,j)

with āi,j = 1 if ai,j = 1; āi,j = 0 else.
And for a matrix C ∈Mn(R), the characteristic polynomial of C is denoted ch(C).

Theorem 13 For A ∈ ZeroF2(Pn), if

ch(Ψ(A)) = xm(x− 1)k1(x− 2)k2 · · · (x− n)kn ,

where m, ki ≥ 0, then A has exactly ki blocks of size i for i = 1, 2, . . . , n.

Proof. Given a matrix A = (ai,j) ∈ ZeroF2(Pn), Ψ(A) is conjugate to a block diagonal matrix
C by Proposition 12, i.e., there exists some Q ∈ Sn such that

C = QΨ(A)QT = diag(C1, C2, . . . , Cs),

where Ci ∈Mni
(R) is a all-one matrix.

Since ch(Ci) = xni−1(x − ni) and ch(C) = ch(C1)ch(C2) · · · ch(Cs) = ch(A), we have that
there exist exactly ki blocks of size i in C. Then the desired result follows from the fact that
Ψ(A) and C have the same type.
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Example 14 Let

A1 =


1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

 ∈ ZeroF2(P4).

It is easy to check that

ch(Ψ(A1)) = ch(Ψ(A2)) = x(x− 1)2(x− 2).

Thus both A1 and A2 have two blocks of size 1 and one block of size 2.
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