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Abstract

In order to solve cubic equations by Euclidean means, the standard ruler and compass
construction tools are insufficient, as was demonstrated by Pierre Wantzel in the 19th
century. However, the ancient Greek mathematicians also used another construction
method, the neusis, which was a straightedge with two marked points. We show in this
article how a neusis construction can be implemented using dynamic geometry software,
and give some examples of its use.

1 Introduction

Standard Euclidean geometry, as codified by Euclid, permits of two constructions: drawing a
straight line between two given points, and constructing a circle with center at one given point,
and passing through another. It can be shown that the set of points constructible by these
methods form the quadratic closure of the rationals: that is, the set of all points obtainable by
any finite sequence of arithmetic operations and the taking of square roots. With the rise of
Galois theory, and of field theory generally in the 19th century, it is now known that irreducible
cubic equations cannot be solved by these Euclidean methods: so that the “doubling of the
cube”, and the “trisection of the angle” problems would need further constructions. Doubling
the cube requires us to be able to solve the equation

2 —2=0

and trisecting the angle, if it were possible, would enable us to trisect 60° (which is con-
structible), to obtain 20°. This would mean that z = cos 20 would be constructible, but this
satisfies

1
423 — 2z — = =0
z z 5

which is again irreducible over the rationals.
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The ancient Greeks indeed did have another construction: the neusis construction, which
involves the use of a “marked ruler”: a straightedge with two points on it. The use of neusis
meant that angles could be trisected and cube roots taken. And in a remarkable tour-de-force
of algebraic and geometric reasoning, the Renaissance mathematician Francois Viete showed
how to construct a regular heptagon. Excellent introductions to this geometric construction
method are given by Baragar [2], Martin [5], and various places online [6].

In order to explore this lovely area of mathematics, dynamic geometry software could be
used, but efforts to describe neusis constructions are somewhat lacking. For example, a de-
scription of one angle trisection takes the angle «, then computes the value a//3 numerically,
and then uses the new angle to build the neusis construction. So instead of using neusis to find
the angle, the construction uses the angle to construct the neusis! We show in this article how
to do it the right way round.

2 A gallery of neusis constructions

We start with a few different angle trisections, the first of which is due to Archimedes. Suppose
that AOB is the angle to be trisected, and both A and B are on a circle with centre O and
radius 1. Extend AO outside the circle, and construct a line from B which crosses the circle
at C' and the line OA at D and so that CD = 1. (This is the where the neusis is applied).
Then the angle ODB will be the trisection of AOB. We show this in figure [If where the neusis
construction is represented as a ruler with two marks on it.

0

Ny

Figure 1: Archimedes’ neusis trisection

The proof is remarkably easy, and involves some angle chasing. Draw the line OC and note
that since OC' = C'D = 1 the triangle OC'D is isosceles, with the angles COD = CDO = «a.
This means that the angle OC'D = 180—2q, and thus that the angles OCB = OBC' = 2a. Thus
the angle BOC = 180 — 4. Adding all the angles at O we have AOB + BOC' + COD = 180,

or
6+ 180 — 4o + o = 180
or that
0 = 3a.

Another construction for trisection is due to Pappus of Alexandria. Let the angle to be trisected
be placed in a rectangle ABCD, with CAB = 6. Extend DC and draw a line from A to C'D
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crossing BC' at E, meeting AD at F', and for which EF = 2AC. Then angles FF(C is the
required trisection. See figure

In order to use a neusis where the marks are place 1 apart, this construction can be slightly
modified as follows: Let GAC' be the angle to be trisected, with both G and C' on a circle of
radius 1/2 centred at A. Drop a perpendicular from C' meeting AG at B. Draw C'F parallel
to AG. Draw a line from A through C'B and DC' for which the distance between the crossings
is 1.

D F

(a) | 72

di>

Figure 2: Pappus’ (a) trisection and (b) proof

The proof is also very easy; let M be the midpoint of EF', and join C'M. By the construction,
all the lengths EM, MF, CM and CE are equal, so that ACM and MCF are isosceles
triangles. By chasing angles we have CMA = CAM = 2«a, and FAB = «, from which we
obtain 6 = 3a.

An elegant construction for /2 is due to Nicomedes, who is a shadowy figure about whom
little is known. We start with an equilateral triangle ABC', and extend the base AB. Construct
BD perpendicular to CB. From C draw a line crossing BD at E and AB at F' and for which
EF =1. Then CE = /2. This construction is demonstrated in figure (a).

The proof of this is a little more involved than the previous, as it requires some algebra.
First draw a line from C' parallel to AB and which meets BD at G. Since the angle at D
is 30°, the new triangle BC'D is half of an equilateral triangle and so CG = 2. If CF = «x,
then by Pythagoras we have BE = /22 — 1. Let M be the midpoint of AB so that C'M is
perpendicular to AB, so that MB = 1/2 and CM = /3/2. This is shown in figure (b)

By Pythagoras again, we have

MF =+/(14+x)?—3/4
and so

BF = /(1 +x)? =3/1—1/.
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A M B ™ ~F
(14+2)2=3/4—1)

Figure 3: Nicomedes’ (a) construction of /2 and (b) proof

The triangles CEG and BFE are similar, so that

CD BF
CE EF
or that

2fp = /(14 2x)%2 —3/s—1)a.
This last expression can be written as
o+ 1f2 = /(L +2) =2
and squaring both sides produces the equation
dz* +82° — 8z — 16 =0
which can be factored into
A(z +2)(2° - 2) = 0.

Since = must be positive, we have z = /2.
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3 Enter the conchoid

Although we have described neusis in terms of a marked straightedge, the ancient Greek math-
ematicians used a more general construction, which involves a curve called the conchoid, and
which is attributed to Nicomedes. To construct a conchoid, three parameters are needed: a
point P, a line L not going through P, and a distance d. From P draw a line M which crosses
L at ). Extend the line to a point R so that QR = d. The locus of all these points R forms a
conchoid. The construction and an example of the curve is shown in figure [4]

R

P

Figure 4: The conchoid

Suppose that P = (0,0), the line L is given by the equation y = s, and that the line M
makes an angle 6 with the positive z-axis. Let PR = r. Since (PQ)sinf = s we have
s

r = —
sin 6

or that
r =d -+ scosecf

as the polar equation of the conchoid. If the line is vertical, with x = s, then the equation
would be r = d + ssecf.

A conchoid can be used for any neusis construction involving distances between lines, such
as Pappus’ trisection, and Nicomedes’ v/2. Here is how a conchoid can be used for trisection.
We have our rectangle ABC'D, with § = C'AB being the angle to be trisected. Let A be the
point of the conchoid, BC' the line L, and the distance d = 1. This is shown in figure [f] To
trisect the angle § = C'AB, extend DC' to meet the conchoid at F. Then a = CF A is the
trisection.

To see that this works, note that by definition of the conchoid, for any line through A, the
distance between its intersection £/ with L and the conchoid must be constant—in this case 1.
But this distance is all that is required by Pappus’ construction.

4 Using dynamic geometry software

For purposes of demonstration, we shall use GeoGebra [4], which is open source and so easily
available. However, the method we describe should be easily translatable to any software which
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Figure 5: Using a conchoid for trisection

can draw graphs of functions in either polar or parametric form.

We wish to trisect an angle 6 which is given as the angle between two lines CA and GA. We
can do this by using a unit circle at the origin; A is the origin, G = (1,0) and C' is any chosen
point on the circle. The value s of the distance of the line to the point will be the z-coordinate
of C. Thus in GeoGebra, having created the circle and a point C on it, we can create the
conchoid with

s = x(C)
Curve[s + 2cos(t), s tan(t) + 2sin(t), t, —0.7, 0.7]

Note that angles are measured in radians, so that 0.7 corresponds to about 40°.
Now we can create a line from C' parallel to the x-axis; this could be done for example with

Curve[t,y(C),t,0, infinity ]

and then using the intersection tool to determine the point of intersection between this line and
the conchoid. This produces a diagram very similar to that of figure [5| However, the beauty of
using dynamic geometry software is that as C' is moved around the circle, the value s which is
one of the conchoid parameters also changes, and so the conchoid will be redrawn in real time.

We can easily add some measurements to our diagram, by using the point B on the z-axis:

B = (x(C).0)

and again using the intersection tool to find the intersection E between BC' and AF'. Since we
have started with a unit circle, the distance EF' will be expected to be 2, and as C' is moved
around the circle, this value never changes.

Implementing Archimedes’ trisection method will require some adjustment, as the neusis
construction doesn’t use a distance beyond a line, but a distance beyond a circle. To make the
construction tractable, rotate and shift the figure in diagram [1| by € so that B is at the origin
and the center of the circle is at (1,0). Figure [6] shows the setup.
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Figure 6: Setting up Archimedes’ trisection for dynamic geometry

The conchoid consists of all points at a fixed distance from a given line; the curve here will
consist of all points at a fixed distance beyond a circle, with all lines emanating from a position
on the circle itself. Since the polar equation of a circle of radius s which passes trough the
origin is r = 2scosf, the equation of our new curve will be r = d + 2scosf. Since we have
s = d = 1, the polar equation is 7 = 1 + 2cosf, and this curve is called a limagon (the word
comes from the French and means “small snail”). The curve is shown in gray in figure @

Now this is easily implemented in our DGS: start with a unit circle centred at (1,0) and let
B = (0,0). Let A be any point on the curve so that the angle at (1,0) between A and B is .
Set up the limagon:

Curve[(1+2xcos(t))*cos(t),(1+2xcos(t))*sin (t), t,—2x7m/3,2%7 /3]

Now extend the line through A and (1, 0) to intersect the limagon at F'. The the angle « = BF A
will be the trisection of 6.

5 Solving cubic equations

We have seen how an ancient Greek construction, re-imagined using dynamic geometry software,
can be used to create geometric constructions which can trisect angles. It is a pleasant and
easy exercise to use a conchoid for Nicomedes’ construction of /2. We now show how to solve
cubic equations.

The so called “trigonometric solution” is well known, and is based on the identity

cos 30 = 4cos  — 3 cos . (1)
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We shall consider only the case of the “depressed cubic”
2® —3ax —2b =0 (2)

which is missing an 2 term—and note that any cubic can be put into this form by a linear
transformation—and writing the coefficients thus for simpler analysis later on. FEven more
particularly, we shall only consider equations for which a® > b? which ensures there are three
unequal real roots. This is Cardan’s casus irreducibilis, the form of the cubic for which purely
algebraic methods of solution will always lead to the use of complex numbers.

Suppose that £ = k cos 6, then by multiplying equation by k* we have

4k3 cos 360 — 3k3 cosf — k3 cos 360 = 0

or that
3k? k3 cos 36
3
O L ReoseY
S I 4

Comparing coefficients with that of the depressed cubic above, we have
k* =4a, k®cos30 = 8b
from which we find k& = 2/a and 6 satisfies
8% b
2va)y  Vad
This means that given

b
CcoSp = ——

Va?

cos 30 =

then
zo = 2v/a cos <§)

is a solution of the cubic above. The other two solutions will be

1 = 2V/acos (é + Q—W) = —Vacos (g) —V/3a sin (g)

3 3
Ty = 2+/a cos <§ + 4%) = —/acos (%) +v/3a sin <§)

To implement this geometrically, start with a circle of radius y/a centred at (0,0), and construct
the line = b/a. The intersection of this line with the circle will be at points C;,Cy =
(cos ¢, £sin ).

Construct the conchoid r = 2y/a + (b/a)secf and use it to trisect the angle C;OB with
B = (b/a,0) using Pappus’s method. The trisection line will cross the initial circle at point
Ey; and so one solution will be double its x coordinate: 2E;[z]. The other two solutions will
be double the x coordinates of the rotations of E; by 120° and 240°.

In GeoGebra, this can be done by using the menu system, or by entering the following
commands:
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c = Circle [(0,0), sqrt(a)]

L = Line[(b/a,0),(b/a,1)]

C = Intersect [c, L]

r(th) = b/axsec(th)+2xsqrt(a)
g = Curve[r(th)*cos(th), r(th)xsin*th),th,—0.7,0.7]
D = Intersect [y=x(C_1),g]

E = intersect [Line [(0,0), D],c]
s = 2xx(E)

F = Rotate[E,2x%pi/3]

G = Rotate[E,4*pi/3]

t = 2xx(F)

u = 2xx(G)

In this sequence of commands, r(th) is the polar equation of the conchoid, and g is its imple-
mentation in Cartesian coordinates. The result will look something like figure

Figure 7: Solving a cubic equation using a neusis technique

The open circles on the z-axis are each half the values of the three roots. Historically,
this was the most difficult of all of the three possible solutions to the cubic: one real and two
imaginary (conjugates); real only, but with multiple roots; or with three distinct real roots.
Cardan’s initial method led him to complex numbers, which at the time were not understood.
In his magisterial Ars Magna[3], published in 1545, he claimed that

“Dismissing mental tortures, and multiplying 5 + +/—15 by 5 — v/—15, we obtain
25 — (—15). Therefore the product is 40. ...and thus far does arithmetical subtlety
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go, of which this, the extreme, is, as I have said, so subtle that it is useless.”

It is now known that it is not possible to avoid complex numbers in a purely algebraic
treatment of the cubic equations [7], hence the use of a transcendental solution, involving
circular functions, as we have done. There is nothing in our solution which is beyond ancient
Greek mathematics, or in a modern setting, beyond the reach of dynamic geometry software.

6 Conclusions

We have shown how a simple technique—known and used by the ancient Greeks, but not
by Euclid—can be formally and easily implemented using dynamic geometry software. This
brings an elegant chapter of mathematics into the reach of modern students, teachers, or simply
mathematical experimenters. Interestingly, the modern mathematical analysis of origami shows
an equivalence to Euclidean geometry plus neusis [I], so the techniques of neusis are sufficient
to create all possible single folds. It is quite remarkable that such a simple technique can have
such far-reaching consequences!

References

[1] Roger C. Alperin, ”A mathematical theory of origami constructions and numbers.” New
York J. Math , vol 6, 2000, pp119-133

[2] Arthur Baragar, ”Constructions using a compass and twice-notched straightedge.” Ameri-
can Mathematical Monthly, 2002, pp151-164.

[3] Girolamo Cardano, The Great Art or the Rules of Algebra (Ars Magna), trans. T. R. Wit-
mer, Cambridge (Mass.): MIT Press, 1968

[4] M. Hohenwarter et al., Geogebra, Dynamic mathematics for learning and teaching, version
5.0, 2015, http://www.geogebra.org/

[5] George E. Martin, Geometric Constructions, 2012, Springer Science & Business Media

[6] Numbers and Shapes, “Neusis constructions (1)”, at http://numbersandshapes.net/?p=
2564, accessed June 2015

[7] B. L. van der Waerden, Modern Algebra, Vol 1 (1949), trans. Fred Blum and John R.
Schulenberger, Frederick Ungar Publishing Co, NY, 1970

224


http://numbersandshapes.net/?p=2564
http://numbersandshapes.net/?p=2564

	ATCMProceedings2015_CombinedInvited.pdf
	3892015_20771-Todd
	Solve First – Ask Questions Later: discovering geometry using Symbolic Geometry and CAS
	Saturday Academy
	2. An Inscribable Circumscribable Pentagon
	3. Limiting forms of Triangle Defined Circles
	4. Telescope Aberration
	5. Solar Cookers
	5. Cusps on Circle Caustics
	6. Conclusion
	References


	3892015_20826-Yang
	Introduction
	Seeing is just beginning
	Animations Make Mathematics Fun to Explore
	Locus and Optimization Problems
	Explore Real Life Problems
	Conclusions

	3892015_20829-Vallejo
	Introduction
	The log function: Entropy and genomics
	Analytic Geometry: Cassegrain antennas
	Polynomials: Reed–Solomon corrector method
	Conclusions

	3892015_20831-Jingzhong
	3892015_20849-Ho
	Introduction
	Disciplinarity of coding
	Problem posing and solving
	Understanding the problem
	Devising a plan
	Carrying out the plan
	Checking and extending

	Framework for computational thinking
	Professional Development for Teachers
	A course on computing for teachers
	Mini Project

	Reflection and conclusion

	3892015_20859-Arganbright
	3892015_20898=Qun
	3892015_20977-Ghosh
	3892015_21005-Yuan
	3892015_21030-Kissane
	3892015_21044-Khairiree
	3892015_21063-McAndrew
	Introduction: a personal journey
	Why use open source?
	A far too brief introduction to some open-source software
	Computer Algebra Systems
	Numeric Software
	Assessment tools

	Conclusions


	ATCMProceedings2015_CombinedContributed.pdf
	3892015_20773-Todd
	3892015_20830-Maeda
	3892015_20865-Skillen
	3892015_20912-McAndrew
	Introduction
	A gallery of neusis constructions
	Enter the conchoid
	Using dynamic geometry software
	Solving cubic equations
	Conclusions

	3892015_20919-Li
	3892015_20920-Oeyen
	3892015_20922-Yao
	3892015_20930-Wei
	3892015_20931-Jiajia
	3892015_20934-Ping
	The educational technology software used in mathematics teaching of high school
	Application of Ti calculator
	From Ellipse to multi-oval
	Conic sections cutting
	Normal distribution curve
	Fractal


	3892015_20935-Ping
	Platonic Solids
	Archimedean Solid
	Construct Through Truncation

	Construction Through Edge Cutting and Corner Truncating
	 Catalan Solid
	Stellation
	Constructing Polyhedron through Extending
	Construction by Mutual Containing


	3892015_20940-Wei
	3892015_20941-Li
	3892015_20943-Yubing
	3892015_20944-Dahan
	3892015_20947-Sato
	3892015_20948-Nagai
	Introduction
	Boolean ring of a power set algebra
	Computation of Boolean Gröbner bases of a finite powerset algebra
	Efficient BGB software
	Coding in SageMath
	Computation Data
	Hierarchy of Sudoku puzzles
	Conclusions and Remarks

	3892015_20958-Kitamoto
	3892015_20974-Fukuda
	3892015_20975-Fukuda
	3892015_20988-McAndrew
	Introduction
	The Survey
	Discussion of the survey
	Conclusions

	3892015_21034-Makishita
	3892015_21045-Yingprayoon




