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Abstract:  In this paper, we try to visualize multiplication of unit quaternions with dynamic geometry software Cabri 
3D. The three dimensional sphere ܵଷis identified with the set of unit quaternions. Multiplication of unit quaternions is 
deeply related with Clifford parallelism, a special isometry in ܵଷ. 
      
1.  Introduction 

The quaternions ܪ  are a number system that extends the complex numbers. They were first 
described by William R. Hamilton in 1843 ([1] p.186, [3]). The identities 

݅ଶ ൌ ݆ଶ ൌ ݇ଶ ൌ ݆݅݇ ൌ െ1, 
where ݅, ݆ and ݇ are basis elements of ܪ, determine all the possible products of ݅, ݆ and ݇: 

݆݅ ൌ ݇, ݆݅ ൌ െ݇, ݆݇ ൌ ݅, ݆݇ ൌ െ݅, ݇݅ ൌ ݆, ݅݇ ൌ െ݆.	
For example, if ܽ ൌ 1  ݆ and ܾ ൌ 2݆  3݇, then,  ܾܽ ൌ ሺ1  ݆ሻሺ2݆  3݇ሻ ൌ െ2  3݅  2݆  3݇. 
We are very used to the complex numbers ܥ  and we have a simple geometric image of the 
multiplication of complex numbers with the complex plane. How about the multiplication of 
quaternions? This is the motivation of this research. Fortunately, a unit quaternion ܽ with norm one 
(‖ܽ‖ ൌ 1) is regarded as a point in ܵଷ. In addition, we have the stereographic projection from ܵଷ to 

ܴଷ. Therefore, we can visualize three quaternions ܽ,ܾ, and ܾܽ as three points in ܴଷ. What is the 
geometric relation among them? Clifford parallelism plays an important role for the understanding 
of the multiplication of quaternions.  
In section 2, we review the stereographic projection. With this projection, we try to construct 
Clifford parallel in Section 3. Finally, we deal with the multiplication of unit quaternions in Section 
4.  
 
2.  Stereographic projection of the three-sphere 

The stereographic projection of the two dimensional sphere ܵଶ ([1, page 260], [2, page 74]) is a 
very important map in mathematics. It maps a sphere minus one point (the north pole ܰ) to the 
plane containing the equator by projecting along lines through ܰ as in Figure 2.1.  
 

 
 

Figure 2.1 The stereographic projection of ܵଶ (left) and its top view (right). 
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This projection preserves angles, and maps a circle on the sphere to a circle on the plane. In 
particular, a great circle on the sphere is projected to a circle passing through two antipodal points 
 on the equator. This projection enables us to draw spherical objects on a (in Figure 2.1 ܧand െ ܧ)
plane. In this sense, the unit circle is regarded as the equator, and a circle passing through two 
antipodal points on the unit circle is regarded as a great circle. 

In the same way, the stereographic projection from the north pole of the three-dimensional sphere 
ܵଷ onto the three-dimensional Euclidean space  ܴଷ enables us to draw spherical objects in  ܴଷ. In 
this sense, the unit sphere is regarded as the equator (geodesic plane) of ܵଷ, and a circle passing 
through two antipodal points on the unit sphere is regarded as a great circle. Here, let us review 
how to construct the geodesic passing through arbitrary fixed two points ܣ and ܤ.  

Figure 2.2 Stereographic projection of  ܵଷ. 

Construction 2.1 (great circle passing through ܣ and ܤ) 
0. Input: Any points ܣ and ܤ.
1. ,∗ܣ .with respect to the unit sphere (the equator) ܤ and ܣ inversion of :∗ܤ
2. െܣ,െܤ: point symmetry of ܣ∗ and ܤ∗ with respect to the origin ܵ (the south pole).
3. Output: circle ܣሺെܤሻሺെܣሻܤ is the great circle passing through ܣ and ܤ.

Note that in this model, distance is measured by radians. ܣሺെܣሻ ൌ ሻܤሺെܤ ൌ ሻܧሺെܧ ൌ ߨ . In 
Figure 2.2, let ܨ be the farthest point on the great circle from the origin ܵ in Euclidean sense. Then, 
ܧܨ ൌ ሻܨሺെܧ ൌ ሺെܨሻሺെܧሻ ൌ ሺെܧሻܨ ൌ ߨ

2ൗ . In the stereographic projection, angles are preserved,
however, distances are not preserved, therefore, we have to pay attention to measuring distances.	
Let ܽ ൌ ݏ  ܽଵ݅  ܽଶ݆  ܽଷ݇ be a unit quaternion, then ݏଶ  ܽଵ

ଶ  ܽଶ
ଶ  ܽଷ

ଶ ൌ 1. This equation 
implies that ሺs, ܽଵ, ܽଶ, ܽଷሻ ∈ ܵଷ. Hence, we can see unit quaternions in ܴଷ as in Figure 2.3. For 
ܽ ൌ ݏ  ܽଵ݅  ܽଶ݆  ܽଷ݇:  

ሺݔ, ,ݕ ሻݖ ൌ
ሺܽଵ, ܽଶ, ܽଷሻ
1  ݏ

	,						ሺݏ, ܽଵ, ܽଶ, ܽଷሻ ൌ
1

1  ଶݎ
ሺ1 െ ,ଶݎ ,ݔ2 ,ݕ2 	,ሻݖ2
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where ݎଶ ൌ ଶݔ  ଶݕ   axis (݅-axis) directs upwards shown as in-ݔ ,ଶ. Note that in this paperݖ
Figure 2.3. For example, ݅ ൌ ሺ1,0,0ሻ, ݆ ൌ ሺ0,1,0ሻ, ݇ ൌ ሺ0,0,1ሻ, 1 ൌ ሺ0,0,0ሻ,	െ1 ൌ(point at infinity), 
and 0.5ሺ1  ݅  ݆  ݇ሻ ൌ ሺ1/3,1/3,1/3ሻ. 
 

 
 

Figure 2.3 Visualization of bases of unit quaternions. 
 

 
3.  Clifford parallelism 
    For the visualization of the multiplication of unit quaternions, let us review Clifford parallelism 
([2] p.298). Figure 3.1 is an image of the multiplication of unit quaternions ܽ and ܾ. French cruller 
is the best one to explain this calculation. Roughly speaking, if ܽ and ܾ are arranged as in Figure 
3.1, then multiplication ܾܽ is given by sliding ܾ along the pleat with distance between 1 and ܽ. In 
this picture, great circle 1ܽ (axis of donut), and all pleats including great circle ܾሺܾܽሻ  are parallel 
to each other. In this sense, Clifford parallelism plays an important role in visualization of the 
multiplication of quaternions.  

         
 

Figure 3.1 French cruller. 
 

Definition 3.1 (Clifford parallel ([1] p.299)) Two great circles ܥ,  in ܵଷ are said to be Clifford ’ܥ
parallel if ݀ሺ݉, ݉ ሻ does not depend on’ܥ ∈  .ܥ
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Figure 3.2 Clifford parallels. 

In Figure 3.2, dሺܥଵ, ଶሻܥ ൌ 90°, dሺܥଵ, ଷሻܥ ൌ 40°, dሺܥଶ, ଷሻܥ ൌ 50°		. To construct Clifford parallel, 
it is convenient to use the relation between central angle and inscribed angle. In Figure 3.3, the 
angle between circle ܽܰሺെܽሻܵ and circle ܱܰܵ is the double of angle	∠ܽܰܵ. This fact directly 
comes from inscribed angle theorem. 

Figure 3.3 Central angle and inscribed angle. 

Now we are ready to construct Clifford parallel as follows (for convenience, a great circle is a 
Euclidean line  1݅ , and point ܽ is on the	݆݇-plane) : 

Construction 3.1 (Clifford parallel passing through ܽ parallel to 1݅) (Figure 3.4) 
0. Input: great circle  1݅ and point ܽ is on the	݆݇-plane.
1. ݉: midpoint of	݅ and ܽ.
2. ݉′: rotation of ݉ around  1݅ mapping ݆ towards ݇.
3. ݅’ : half turn of ݅ around segment 1݉’
4. – ܽ : antipodal point of ܽ (Construction 2.1) 
5. Output: circle ܽ݅′ሺെܽሻ is the great circle parallel to  1݅ passing through ܽ.

O

N

a
-a

S

38.7 °

19.4 ° 38.7 °
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Figure 3.4 Construction of Clifford parallel. 
 
4.  Multiplication of quaternions 
    In fact, geometric construction of multiplication of unit quaternions in the stereographic 
projection is done by three Euclidean planar reflections and one Euclidean inversion with respect to 
a certain sphere. To understand this construction, we should recall several properties of quaternions, 
conjugation, inner product, norm, and so on ([1] p.187, [3]). The conjugate of  ܽ ൌ ݏ  ܽଵ݅  ܽଶ݆ 
ܽଷ݇ is the quaternion തܽ ൌ ݏ െ ܽଵ݅ െ ܽଶ݆ െ ܽଷ݇. Note that ܾܽ ൌ തܾ തܽ. The canonical inner product is 
ሺܽ|ܾሻ ൌ ଵ

ଶ
ሺ തܾܽ  തܾܽሻ . Hence in particular, ‖ܽ‖ ൌ √ܽ തܽ , and ‖ܾܽ‖ ൌ 	‖ܽ‖ ∙ ‖ܾ‖ . Regarding 

ሺݏ, ܽଵ, ܽଶ, ܽଷሻ as a point in ܴସ , ሼ1, ݅, ݆, ݇ሽ is an orthogonal basis of ܴସ . It is easy to check that  
ሼݑ, ,݅ݑ ,݆ݑ   .ሽ is also an orthogonal basis݇ݑ
 
Proposition 4.1 (reflection in ܴସ with respect to unit quaternion) 
Let ݑ be a unit quaternion. Then ݍ → െݍݑതݑ is a reflection in the hyper plane passing through the 
origin perpendicular to ݑ.  
 
Proof. Let ݂ሺݍሻ ൌ െݍݑതݑ. Then, 

݂ሺݍݑሻ ൌ െݑݍݑݑ ൌ െݍݑതݑതݑ ൌ െݍݑത,  
hence, ݂ሺݑሻ ൌ െݑ,  ݂ሺ݅ݑሻ ൌ ሻ݆ݑሺ݂  ,݅ݑ ൌ ሻ݇ݑand ݂ሺ ,݆ݑ ൌ  Therefore, ݂ is a reflection in the.݇ݑ
hyper plane subtended by ݆ݑ ,݅ݑ, and ݇ݑ. ∎ 
 
For simplicity, let ܽ ൌ ݁ఏ  in the following argument. Multiplication ܾܽ  is realized by the 
following four reflections ݂ 	ሺ݅ ൌ 1,2,3,4ሻ  in ܴସ . Let ݂ 	ሺ݅ ൌ 1,2,3,4ሻ  be four reflections 
perpendicular to four unit quaternions such as 

ଵݑ ൌ ݆, ଶݑ  ൌ ݆ ݏܿ
ߠ
2
 ݇ ݊݅ݏ

ߠ
2
ൌ ݁

ఏ
ଶ݆ ൌ ݆݁ି

ఏ
ଶ, ଷݑ  ൌ ݅, ସݑ  ൌ ݅݁

ఏ
ଶ.	

Then, 

ଵ݂ሺܾሻ ൌ െ݆ܾ݆,				 ଶ݂ሺܾሻ ൌ െ݁
ఏ
ଶ݆ܾ݆݁ି

ఏ
ଶ,	

hence,  

ଶ݂° ଵ݂ሺܾሻ ൌ െ݁
ఏ
ଶ݆൫െ݆ܾ݆൯݆݁ି

ఏ
ଶ ൌ ݁

ఏ
ଶܾ݁ି

ఏ
ଶ. 
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On the other hand, 

ଷ݂ሺܾሻ ൌ െܾ݅݅,				 ସ݂ሺܾሻ ൌ െ݅݁
ఏ
ଶܾ݅݁

ఏ
ଶ,	

hence, 

ସ݂° ଷ݂ሺܾሻ ൌ െ݅݁
ఏ
ଶ൫െܾ݅݅൯݅݁

ఏ
ଶ ൌ ݁

ఏ
ଶܾ݁

ఏ
ଶ.	

Therefore, 
ସ݂° ଷ݂° ଶ݂° ଵ݂ሺܾሻ ൌ ݁ఏܾ ൌ ܾܽ.	

In this way, we can realize the multiplication ܾܽ with four reflections in ܴସ. In the stereographic 
projection, the composition of reflections ଶ݂° ଵ݂ is a rotation around Euclidean line 1݅. On the other 
hand, the composition of reflections ସ݂° ଷ݂  is a “rotation” around Euclidean circle ݆݇ሺെ݆ሻሺെ݇ሻ. 
Note that in the stereographic projection, reflection is realized by inversion with respect to great 
sphere. In particular, if a unit quaternion ݑ is a pure quaternion (Re	ݑ ൌ 0), then reflection is a 
simple Euclidean planar reflection in the stereographic projection. Three unit quaternions ݑଵ,  ଶݑ
and ݑଷ are pure quaternions, however, only  ݑସ is not pure. So, we can construct the multiplication 
of unit quaternions with three Euclidean reflections and one Euclidean inversion as follows: 
 

 
 

Figure 4.1 Construction of multiplication of unit quaternions. 
 
Construction 4.1 (multiplication of unit quaternions) (Figure 4.1) 
0.  Input: unit quaternion  ܽ on great circle  1݅, and unit quaternions ܾ at any place. 
1.  ܽ′: rotation of ܽ around 1݆ mapping ݅ towards ݇. 
2.  ݉: midpoint of ܽ′ and ݆.  
3. 	ܲ1 : plane including 1݅  and ݆. 
4.  ܲ2 : plane including 1݅  and ݉. 
5.  ܾ1 : reflection of ܾ in plane ܲ1. 
6.  ܾ2 : reflection of ܾ1 in plane ܲ2. 
7.  ܲ3 : plane including  1, ݆, and ݇. 
8.  – ܽ : antipodal point of ܽ (Construction 2.1) 
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– sphere centered at :1ܵ  .9 ܽ through ݆. 
10.  ܾ3 : reflection of ܾ2 in plane ܲ3. 
11. Output  ܾܽ : inversion of ܾ3 with respect to ܵ1.  
 
In the case that both ܽ and ܾ are at any place, the similar procedure leads the construction of ܾܽ. 
We can easily check that great circle ܾሺܾܽሻሺെܾሻ is Clifford parallel to great circle 1݅. 
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