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Abstract

Pade approximation is a well-known technique and has a lot of applications in various
fields of science and engineering. Given an analytic function, the technique approximates
the function by a rational function in a such way that power series of the rational function
agrees with the power series of the given function. When given function is univariate,
the computation of Pade approximation is fairly simple. However, if given function is
multivariate, the computation is rather complex. Besides, in the multivariate case, the
rational function approximation often have poles (zeros of the denominator of the rational
function) near the expansion point, which make applications of the Pade approximation
difficult.

In this paper, we propose a multivariate Pade approximation that utilizes Quantifier
Elimination to avoid poles near the expansion point. Quantifier Elimination is a new tech-
nique in Computer Algebra, and currently being investigated by many researchers. Given
a mathematical formula with quantifiers such as ∀,∃, Quantifier Elimination, in short,
computes a quantifier free mathematical formula that is equivalent to the original math-
ematical formula. In our algorithms, we first set up free parameters in the multivariate
Pade approximation, then we use the parameters and Quantifier Elimination to exclude
poles near the expansion point. Some numerical examples are given to show effectiveness
of our algorithms.

1 Introduction

Pade approximation is a well-known technique and has a lot of applications in various fields
of science and engineering ([1],[2]). Given an analytic function, the technique approximates
the function by a rational function in a such way that power series of the rational function
agrees with the power series of the given function. The approximation is known to be the best
approximation of a function by a rational function of given order.

When given function is univariate, the computation is Pade approximation is fairly simple,
and a lot of software packages on programing language such as FORTRAN, MATLAB and
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Mathematica are available. However, if given function is multivariate, the computation is
rather complex. There are many ways to generalize univariate Pade approximation to multi-
variate one, and we need to decide what way to use ([3],[4]). Besides, in the multivariate case,
the rational function approximation often have poles (zeros of the denominator of the rational
function) near the expansion point, which make applications of the approximation difficult.

In this paper, we adopt Quantifier Elimination to exclude poles near the expansion point.
Quantifier Elimination is a comparatively new technique and currently being studied by many
researchers in various fields of science ([5]), although the research on Quantifier Elimination
started in Computer Algebra.

Given a mathematical formula with quantifiers such as ∀,∃, Quantifier Elimination, in short,
computes a quantifier free mathematical formula that is equivalent to the original mathematical
formula. This implies that we can treat a condition such that a given polynomial does not have
zeros in the specified regions, which we utilize in our algorithms.

In our algorithms, we first set up free parameters in the multivariate Pade approximation,
then we use the parameters and Quantifier Elimination to exclude poles near the expansion
point. Some numerical examples are given to show effectiveness of out algorithms.

The paper is composed as follows; We first briefly explain Pade Approximation in Section
2, and show the problems in multivariate Pade approximation with numerical examples. Then,
we show how to solve the problems, using Quantifier Elimination in Section 3. We give some
numerical examples to show effectiveness of our algorithms. Lastly, we conclude in Section 4.

2 Pade Approximation

2.1 Univariate case

Given an analytic function f(x), let

f(x) = a0 + a1x + a2x
2 + · · · + akx

k + · · · (1)

be its power series expansion. (m, n)th Pade approximation is a rational function in the form
of

p0 + p1 + · · · + pmxm

1 + q1x + q2x2 + · · · + qnxn
(2)

whose power series expansion agrees with (1) up to (m + n)th power of x. The above rational
function is called ”Pade approximant” in the rest of the paper. From (1) and (2), we see(

a0 + a1x + a2x
2 + · · ·

) (
1 + q1x + q2x

2 + · · · + qnx
n
)

= p0 + p1x + · · · + pmxm. (3)

Comparing coefficients of both sides of the above equation, we obtain

a0 = p0, a1 + a0q1 = p1, · · · , ar +
r∑

j=1

ar−jqj = pr. (4)

Let us illustrate how to determine coefficients pi, qj in (1). We set m = 1, n = 2. This implies
p0, p1, q1, q2 are unknowns and pi = 0 (i ≥ 2), qj = 0 (j ≥ 3). Thus, from (4), we obtain

a0 = p0, a1 + a0q1 = p1, a2 + a1q1 + a0q2 = 0, a3 + a2q1 + a1q2 = 0. (5)
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Solving the above equation, we obtain

p0 = a0, p1 = a1 +
a0(a1a2 − a0a3)

−a2
1 + a0a2

, q1 =
a0a3 − a1a2

a2
1 − a0a2

, q2 =
a1a3 − a2

2

a2
1 − a0a2

. (6)

Thus, we see

f(x) = a0 + a1x + a2x
2 + · · · ∼

=
p0 + p1x

1 + q1x + q2x2
, (7)

where p0, p1, q1, q2 are defined by (6). In this way, to compute (m,n)th Pade approximant, we
need power series a0 + a1x + a2x

2 + · · · of f(x) up to (m + n)th power of x.

2.2 Multivariate case

Given an analytic function g(x, y), let

a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 + · · · + ak1,k2x
k1yk2 + · · · (8)

be its power series expansion. We want a multivariate version of the univariate Pade approxi-
mant shown above. It is easy to come up with the following straightforward methods.

(a) Apply univariate Pade approximations recursively. First, apply univariate Pade approxi-
mations for variable x to g(x, y) and compute a Pade approximant

p0(y) + p1(y)x + · · · + pm(y)xm

1 + q1(y)x + q2(y)x2 + · · · + qn(y)xn
.

Then, apply univariate Pade approximations for variable y to the coefficients pi(y), qj(y)
of x.

(b) Apply univariate Pade approximations for total degree. More concretely, apply univariate
Pade approximations for variable t to g(xt, yt) (variable t indicates total degree of variable
x and y). Then let t = 1.

Although the above two methods seem to be natural, they have the following problem, when
applied to real problems;

(i) The order of the Pade approximant tends to be high.

(ii) The Pade approximant often has poles near the expansion point.

Let us illustrate the problems by examples. Let g(x, y) be

g(x, y) = (x2 + xy + x − 2y2 − y + 1) cos(x − y), (9)

whose power series expansion is given by

g(x, y) = 1 − y − 5

2
y2 + · · · +

(
1 + 2y − 3

2
y2 + · · ·

)
x +

(
1

2
+

3

2
y +

7

4
y2 + · · ·

)
x2 + · · · .

= 1 + x − y +
1

2
x2 + 2xy − 5

2
y2 − 1

2
x3 +

3

2
x2y − 3

2
xy2 +

1

2
y3 + · · · . (10)
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Computing (1, 1)th univariate Pade approximant of g(x, y) for variable x, we obtain

1 − y − 5
2
y2 +

{
−4−24y−16y2+4y3−53y4

4(−2−4y+3y2)

}
x

1 +
{

2+6y+7y2

2(−2−4y+3y2)

}
x

(11)

For each coefficients of x in the above Pade approximant, we compute (1, 1)th Pade for variable
y and obtain

1− 7
2
y

1− 5
2
y

+
{

1
2
+ 37

16
y

1+ 5
8
y

}
x

1 +
{

− 1
2
+y

1−3y

}
x

=
(1 − 3y) (−32 − 16x + 92y − 34xy + 70y2 + 185xy2)

(−2 + 5y)(8 + 5y)(2 − x − 6y + 2xy)
. (12)

As you can see, the above function has poles near the expansion point (x, y) = (0, 0) which
makes it difficult to use as an approximation of the original function g(x, y).

Let us try the other method ( method (b) ) on the same function g(x, y). Since we have

g(xt, yt) = 1 + (x − y) t +

(
1

2
x2 + 2xy − 5

2
y2

)
t2 +

(
−1

2
x3 +

3

2
x2y − 3

2
xy2 +

1

2
y3

)
t3 + · · · ,

computing (1, 2)th univariate Pade approximant for variable t, we obtain

1 +
{

−x2−10xy+11y2

x−7y

}
t

1 −
{

2(x2+xy−2y2)
x−7y

}
t +

{
3(x−y)(x2+2xy+9y2)

2(x−7y)

}
t2

. (13)

With t = 1, we see that the above function can be simplified to

−2(−x + 7y + x2 + 10xy − 11y2)

2x − 14y − 4x2 − 4xy + 8y2 + 3x3 + 3x2y + 21xy2 − 27y3
. (14)

The expansion point (x, y) = (0, 0) is a zero of both of numerator and denominator of the
above rational function, which also makes it difficult to use as an approximation of the original
function g(x, y).

As you can see, in these example, both methods compute the Pade approximants that have
poles near the expansion point. To make a Pade approximant practical, we need to exclude
poles near the expansion point. To solve the problem, we utilize Quantifier Elimination and
propose a method to compute a multivariate Pade approximant that does not have poles near
the expansion point.

3 Multivariate Pade approximation with Quantifier Elim-

ination

3.1 Quantifier Elimination

First, we briefly explain Quantifier Elimination. Quantifier Elimination is a new technique in
Computer Algebra. Given a mathematical formula with quantifiers (∀,∃), Quantifier Elimina-
tion computes a quantifier free mathematical formula that is mathematically equivalent to the
given mathematical formula.
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Let us show you an example. Let h(x) = ax2 + bx + c and consider a mathematical formula
∀x ∈ R, h(x) ̸= 0 (as you can see, the formula indicates the condition that h(x) = 0 does
not have real roots). With Quantifier Elimination, an equivalent mathematical formula to the
original formula is computed to be

(a = 0 and b = 0 and c ̸= 0) or
(
a ̸= 0 and 4ac − b2 > 0

)
. (15)

3.2 Multivariate Pade approximant with free parameters

Let us review the process to compute univariate Pade approximants. We derived equations (4),
comparing the coefficients in (3). Thus, let us consider multivariate version of (3).(

a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 + · · ·
)
(1 + q10x + q01y + · · · + qn1,n2x

n1yn2) =

p00 + p10x + p01y + · · · + pm1,m2x
m1ym2 . (16)

To make explanation simple, let us set function g(x, y) to g(x, y) in (9) and consider the following
problem;(

1 + x − y +
1

2
x2 + 2xy − 5

2
y2 + · · ·

)
(1 + q10x + q01y + q11xy) = p00 + p10x + p01y (17)

In the above equation, we have six unknowns q10, q01, q11, p00, p10, p01. Hence, looking coefficients
of x, y, x2, xy, y2 and the constant term, we can determine these unknowns and obtain

q10 = −1

2
, q01 = −5

2
, q11 = 0, p00 = 1, p10 =

1

2
, p01 = −7

2
. (18)

Thus, we obtain multivariate Pade approximant

1 + x − y +
1

2
x2 + 2xy − 5

2
y2 + · · · ∼

=
1 + 1

2
x − 7

2
y

1 − 1
2
x − 5

2
y

=
2 + x − 7y

2 − x − 5y
. (19)

The above Pade approximant has poles near the expansion point (x, y) = (0, 0), concretely at
y = −1

5
x+ 2

5
. To exclude poles near the expansion point, we set up free parameters in the Pade

approximant. More concretely, we consider the following problem;(
1 + x − y +

1

2
x2 + 2xy − 5

2
y2 + · · ·

) (
1 + q10x + q01y + q20x

2 + q11xy + q02y
2
)

=

p00 + p10x + p01y. (20)

Looking coefficients of x, y, x2, xy, y2 and the constant term, we obtain linear equations

p00 = 1, p01−q01 = −1, p10−q10 = 1, −q01+q10−q11 = 2, −q10−q20 =
1

2
, q01−q02 = −5

2
. (21)

In the above equation, we have eight unknowns q10, q01, q20, q11, q02, p00, p10, p01. We let q20, q02 be
free parameters and determine six unknowns q10, q01, q11, p00, p10, p01. Solving (21) with respect
to six unknowns, we obtain

q10 = −1

2
−q20, q01 = −5

2
+q02, q11 = −q20−q02, p00 = 1, p10 =

1

2
−q20, p01 = −7

2
+q02. (22)
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Thus, we see

1 + x − y +
1

2
x2 + 2xy − 5

2
y2 + · · · ∼

=

1 +
(

1
2
− q20

)
x +

(
−7

2
+ q02

)
y

1 +
(
−1

2
− q20

)
x +

(
−5

2
+ q02

)
y + q20x2 + (−q20 − q02) xy + q02y2

. (23)

We can set any real numbers to free parameters q20, q02. For example, if we set q20 = 0, q02 = 7
2
,

we obtain from the above equation

1 + x − y +
1

2
x2 + 2xy − 5

2
y2 + · · · ∼

=
2 + x

2 − x + 2y − 7xy + 7y2
. (24)

The above Pade approximant does not have any poles for the region

{ (x, y) | − 1 < x < 1, −1 < y < 1 } ,

and can be useful as a Pade approximant. In this case, we are lucky enough to find such
parameter values q20 = 0, q02 = 7

2
. However, such nice parameter values may not always be

found by hand. Hence, we use Quantifier Elimination to find such values systematically.

3.3 Basic algorithm

Our basic algorithm computes a multivariate Pade approximant that does not have poles near
the expansion points. More concretely, computed Pade approximant does not have any poles
in the region

D(r) = { (x, y) | x ∈ R, y ∈ R, −r < x < r, −r < y < r } , (25)

where r (> 0) is a given real number. The following are our Basic algorithm for computing
a multivariate Pade approximant.

Basic algorithm

(i) Determine the form of Pade approximant (the form should have free parameters).

(ii) Derive linear equations looking at coefficients of (16). Then, compute the solution of the

equation and determine Pade approximant p(x,y)
q(x,y)

.

(iii) Determine real number r (> 0) and compute a quantifier free mathematical formula
equivalent to

∀(x, y) ∈ D(r), q(x, y) ̸= 0 (26)

by Quantifier Elimination. Then, determine free parameters in the Pade approximant so
that the parameters satisfy the mathematical formula computed.

Let us show a numerical example of the above Basic algorithm. We set function g(x, y)
to g(x, y) in (9) and compute a multivariate Pade approximant, following Basic algorithm.

Step (i)
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We define the form of the Pade approximant to be

p00 + p10x + p01y

1 + q10x + q01y + q20x2 + q11xy + q02y2
, (27)

where q10, q01, q11, p00, p10, p01 are unknowns and q20, q02 are free parameters.

Step (ii)
Looking at coefficients of (16) (in this case, that is equal to (20)), we derive linear equa-

tions (21). Computing the solution of the equation, we obtain (22). Thus, computed Pade

approximant is given by p(x,y)
q(x,y)

where p(x, y), q(x, y) are

p(x, y) = 1 +

(
1

2
− q20

)
x +

(
−7

2
+ q02

)
y, (28)

q(x, y) = 1 +

(
−1

2
− q20

)
x +

(
−5

2
+ q02

)
y + q20x

2 + (−q20 − q02) xy + q02y
2. (29)

Step (iii)
We let r = 1 and compute a quantifier free mathematical formula equivalent to

∀(x, y) ∈ D(r), q(x, y) ̸= 0 (30)

by Quantifier Elimination (variable q20, q02 are parameters). The result is shown in Fig. 1,
where parameter region that satisfies the mathematical formula computed is shown by darker
color. From the figure, we can, for example, choose q20 = 0, q02 = 3.5, which gives the same
Pade approximant as the one in (24).

3.4 Applied algorithm

In our algorithms, variable r in (25) indicates the distance between the poles of the Pade ap-
proximant and the expansion point. In Basic algorithm, the value of variable r is determined
by user in step (iii). However, it is possible to use variable r as parameters in Quantifier Elim-
ination. More concretely, we skip the process to determine variable r and perform Quantifier
Elimination on (26), leaving r as a parameter for Quantifier Elimination. Thus, we obtain the
following Applied algorithm.

Applied algorithm

(i) Perform step (i) of Basic algorithm.

(ii) Perform step (ii) of Basic algorithm.

(iii) Compute a quantifier free mathematical formula equivalent to

∀(x, y) ∈ D(r), q(x, y) ̸= 0 (31)

by Quantifier Elimination (note that variable r is used as a parameter). Then, determine
free parameters in the Pade approximant so that the parameters satisfy the mathematical
formula computed.
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q20

q02

Figure 1: Parameter region satisfying (30)

As you can see, step (i) and step (ii) are the same as those in Basic algorithm. Let us
illustrate how Applied algorithm works. We set function g(x, y) to g(x, y) in (9) and compute
a multivariate Pade approximant, following Applied algorithm.

Step (i) and Step (ii)
We do the same as the numerical example of Basic algorithm in the previous subsection

and obtain Pade approximant p(x,y)
q(x,y)

, where p(x, y), q(x, y) are given by (28) and (29).

Step (iii)
We compute a quantifier free mathematical formula equivalent to

∀(x, y) ∈ D(r), q(x, y) ̸= 0 (32)

by Quantifier Elimination (variables r, q20, q02 are parameters). The result is shown in Fig.
2, where parameter region that satisfies the mathematical formula computed is shown. In
this case, we have three parameters r, q20, q02 and the figure is three dimensional. As you can
see, parameter regions for variable q20, q02 becomes smaller as parameter r increases. We can
maximize variable r, using the mathematical formula computed by Quantifier Elimination. To
maximize variable r, we only have to see that at what value of r, parameter regions for variable
q20, q02 vanish. Looking at Fig. 2 and the mathematical formula computed by Quantifier
Elimination closely, we see that the maximum of r is r = 1.04 when q20 = −1

2
, q02 = 5

2
. This

gives Pade approximant

1 + x − y +
1

2
x2 + 2xy − 5

2
y2 + · · · ∼

=
2(1 + x − y)

2 − x2 − 4xy + 5y2
. (33)
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r

q20

q02

Figure 2: Parameter region satisfying (32)

4 Conclusion

Pade approximation is a well-known technique and has a variety of applications in various
fields of science and engineering. Although the computation of a Pade approximant for a
univariate function is fairly simple, it is rather complex for a multivariate one. Moreover,
a multivariate Pade approximant often has poles near the expansion point, which make the
application of the Pade approximant difficult. In this paper, we propose a method to com-
pute a multivariate Pade approximant, utilizing Quantifier Elimination. Proposed algorithm
Basic algorithm computes a Pade approximant that does not have any poles in the region
D(r) = { (x, y) | x ∈ R, y ∈ R, −r < x < r, −r < y < r } for riven real number r. In Ap-
plied algorithm, variable r is leaved as undetermined and used as a parameters of Quantifier
Elimination, which makes the relation between variable r and free parameters in Pade ap-
proximants clear. We showed some numerical examples to show effectiveness of the proposed
algorithms.

The problem of our algorithms is its practicality. Although our algorithms is theoretically
clear, the computation of our algorithm is heavy, since Quantifier Elimination is notorious for
its heavy computation ([6]). Hence, our future tasks are (i) application of our algorithms to
real problems, (ii) improvement of the efficiency of our algorithms.
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