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Abstract

An implementation method of Boolean Gröbner bases of a powerset algebra introduced
in [14] is optimized for developing a software in the computer algebra system SageMath
using the PolyBoRi library. Our software achieves tremendous speed-up comparing to our
previous implementation in the computer algebra system Risa/Asir. It enables us to have
a first-ever real time symbolic computation Sudoku solver by Gröbner bases. It also leads
us to correct errors on the data of a mathematical hierarchy of Sudoku puzzles reported
in [15].

1 Introduction

A residue class ring B[X1, . . . , Xn]/〈X2
1 + X1, . . . , X

2
n + Xn〉 over a Boolean ring B is called a

Boolean polynomial ring. A Gröbner basis in a Boolean polynomial ring is called a Boolean
Gröbner basis, which is first introduced in [3] together with its computation algorithm. An
ideal in a polynomial ring over the Galois field GF2 is the simplest Boolean ring. Since GF2

is actually a field, such a Boolean Gröbner basis is easily computed, with no novel theoretical
advances. When the Boolean ring B is a power set algebra, Boolean Gröbner bases are of
great importance for solving certain types of combinatorial problems. Since we need a special
data structure to encode a Boolean ring of a power set algebra, it is not straightforward to
implement the computation of Boolean Gröbner bases in a general purpose computer algebra
system. In fact the first implementation was done in the logic programing languages Prolog and
Klic [4, 5]. When a Boolean ring B is the simplest power set algebra, i.e., the Galois field GF2

with characteristic 2, we can easily compute Boolean Gröbner bases in most computer algebra
system with a facility to compute Gröbner bases in a polynomial ring over a finite field.

By the technique introduced in [14], we can now compute Boolean Gröbner bases of an
arbitrary finite powerset algebra by the computation of Boolean Gröbner bases of GF2. This
method is implemented in the computer algebra system Risa/Asir [10]. It brings us a much
faster program than those of [4, 5], which enables us to obtain the recent work of Sudoku puzzles
[15]. Though the purpose of the application of Boolean Gröbner bases to Sudoku puzzles is not
making a fast solver, the program can solve any Sudoku puzzle in acceptable length of time,
while other existing Sudoku solvers by the computation of Gröbner bases such as [11, 12] can
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solve only limited types of puzzles. Nevertheless, we can not say it is a real time Sudoku solver
since the program takes more than 10 seconds for solving most puzzles by a standard laptop
computer.

In this paper we describe our implementation of Boolean Gröbner bases of a powerset algebra
in the computer algebra system SageMath using the PolyBoRi library [1]. Since PolyBoRi has
an optimal data structure for the computation of a Boolean polynomial ring over GF2, our
program achieves about 15 times speed-up than the previous program in Risa/Asir. As a result
we get a real time symbolic computation Sudoku solver. We have also recomputed s-ranks
of 735 Sudoku puzzles treated in [15] and found serious mistakes on the computation data
reported in it. The s-rank of a Sudoku puzzle is a mathematical index which represents its
level of difficulty that was introduced in [15]. For the computation of s-ranks, we have used a
parallel computation facility of SageMath. In our computation environment with 6 core CPU,
our program achieves about 15 times speed-up than the previous serial program in Risa/Asir
in average.
We put our prototype program as an open software in the following site:

http.www.mi.kagu.tus.ac.jp/~nagai/BoolGB Sage/

The paper is organized as follows. In Section 2, we describe how a Boolean ring of a powerset
algebra is used for solving certain types of combinatorial problems. In Section 3, we give a quick
review of the computation method of Boolean Gröbner bases of a powerset algebra introduced
in [14]. In Section 4, we show a performance advantage of SageMath, compared with other
computer algebra system. In Section 5, we describe our coding of the computation of Boolean
Gröbner bases using the PolyBoRi library. Section 6 contains some data we have obtained
through our computation experiments using our program. In Section 7, we correct errors in
the recent work of Sudoku puzzles [15].
The reader is referred to [9] for a comprehensive description of Boolean polynomial rings and
Boolean Gröbner bases, also to [15] for more detailed description of the application of Boolean
Gröbner bases to Sudoku puzzles.

2 Boolean ring of a power set algebra

Definition 1 A commutative ring B with an identity 1 is called a Boolean ring if every element
a of B is idempotent, i.e., a2 = a.

(B,∨,∧,¬) becomes a Boolean algebra with the Boolean operations ∨,∧,¬ defined by a ∨ b =
a+ b+ a · b, a∧ b = a · b,¬a = 1 + a. Conversely, for a Boolean algebra (B,∨,∧,¬), if we define
+ and · by a+ b = (¬a∧ b)∨ (a∧¬b) and a · b = a∧ b, (B,+, ·) becomes a Boolean ring. Note
that + is nothing but an exclusive OR operator. Note also that −a = a.

Definition 2 Let S be an arbitrary set and P(S) be its power set, i.e., the family of all subsets
of S. Then, (P(S),∨,∧,¬) becomes a Boolean algebra with the operations ∨,∧,¬ as union,
intersection and the complement of S respectively. It is called a powerset algebra of S.

Definition 3 Let B be a Boolean ring. A residue class ring B[X1, . . . , Xn]/〈X2
1 +X1, . . . , X

2
n+

Xn〉 modulo an ideal 〈X2
1 + X1, . . . , X

2
n + Xn〉 becomes a Boolean ring. It is called a Boolean

polynomial ring and denoted by B(X1, . . . , Xn), its element is called a Boolean polynomial.
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Note that a Boolean polynomial of B(X1, . . . , Xn) is uniquely represented by a polynomial of
B[X1, . . . , Xn] that has at most degree 1 for each variable Xi.
In what follows, we identify a Boolean polynomial with such a representation.
Multiple variables such as X1, . . . , Xn or Y1, . . . , Ym are abbreviated to X̄ or Ȳ respectively.
Lower small roman letters such as a, b, c are usually used for elements of a Boolean ring B. The
symbol ā denotes an m-tuple of elements of B for some m.
Definition 4 Let I be an ideal of B(X̄). For a subset A of Bn, VA(I) denotes a subset
{ā ∈ A|∀f ∈ If(ā) = 0}. When A = Bn, VA(I) is simply denoted by V (I) and called a variety
of I. We say I is satisfiable in A if VA(I) is not empty. When A = Bn, we simply say I is
satisfiable.

��

��

��
��

��
��

�� ��

Example 5 Consider the coloring problem of the above graph by three colors, green, blue
and red. Let S be a finite set {green, blue, red} and B be the powerset algebra of S. Let
Sing denote the subset of B8 defined by Sing = {(s1, . . . , s8) ∈ B8| each si is a singleton}.
Without loss of generality we can assume x1 is assigned to green and x2 is to blue. Then the
problem is equivalent to computing the variety VSing(I) for the ideal I = 〈x1 + {green}, x2 +
{blue}, x1x2, x1x5, x1x6, x2x3, x2x4, x2x8, . . . , x7x8〉 of B(x1, x2, . . . , x8).

4 9
3 1 8

5

5 8
2 9

1 7

6 5
7

2 9

Example 6 Consider the above Sudoku puzzle. We associate a variable Xij for each grid at the
i-th row and the j-th column. This puzzle can be considered as a set constraint where each vari-
able should be assigned a singleton from 9 candidates {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} and
{9} so that any distinct two variables which lie on a same row, column or block must be assigned
different singletons. 17 variables are assigned singletonsX11 = {4}, X15 = {9}, . . . , X99 = {9} as
the initial conditions. Let B be a powerset algebra of the finite set {1, 2, . . . , 9}. This constraint
is translated into a system of equations of the Boolean polynomial ring B(X11, X12, . . . , X99) =
B(X̄) as follows:

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

328



(1) X11 + {4} = 0, X15 + {9} = 0, . . . , X99 + {9} = 0.
(2) XijXi′j′ = 0 for each pair of distinct variables Xij, Xi′j′ which lie on a same

row, column or block.
(3)

∑
(i,j)∈AXij + 1 = 0 where A is a set of indices lying on a same row, column

or block. (There are 27 such A’s. Remember that 1 = {1, 2, . . . , 9}.)
Let I be the ideal of B(X̄) generated by the corresponding polynomials of (1),(2) and (3). Let
Sing denote the subset of B81 defined by Sing = {(s1, s2, . . . , s81) ∈ B81| each si is a singleton
}. Then the puzzle is equivalent to computing the variety VSing(I).

The above examples are so-called singleton set constraints. We can handle such a constraint
by the computation of Boolean Gröbner bases of a finite powerset algebra. See [15] for more
details.

3 Computation of Boolean Gröbner bases of a finite pow-

erset algebra

Let S be a finite set and k be its cardinality. Then the Boolean ring B of the powerset algebra
P(S) is isomorphic to the direct product GFk

2. More precisely, let S = {a1, a2, . . . , ak} then the
isomorphism θ from P(S) to GFk

2 is defined by θ(A) = (e1, e2, . . . , ek) for each A ⊆ S, where
ei = 1 if ai ∈ A and ei = 0 if ai 6∈ A for each i = 1, . . . , k.

For an element v ∈ GFk
2, πi(v) denotes the i-th component of v. This projection is naturally

extended to a Boolean polynomial of GFk
2(X̄). The following theorem reduces the computation

of a Boolean Gröbner basis of a Boolean polynomial ring GFk
2(X̄) to the computation of Boolean

Gröbner bases of GF2(X̄).

Theorem 7 In a Boolean polynomial ring GFk
2(X̄), let G be a finite set of Boolean closed

polynomials. Then, G is a (reduced) Boolean Gröbner basis of an ideal I in GFk
2(X̄) if and only

if πi(G) = {πi(g)|g ∈ G} \ {0} is a (reduced) Gröbner basis of the ideal πi(I) = {πi(f)|f ∈ I}
in GF2(X̄) for each i = 1, . . . , k.

For each i = 1, . . . , k, define a map φi from GF2 to GFk
2 by φi(0) = (0, . . . , 0) and φi(1) =

(e1, . . . , ek) where ei = 1 and ej = 0 for any j such that j 6= i. It is also naturally extended to
a map from GF2(X̄) to GFk

2(X̄).

Algorithm: Boolean GB
input: F a finite subset of GFk

2(X̄) and a term order > on T (X̄)
output: G a reduced Boolean Gröbner basis of 〈F 〉 w.r.t. >
For each i = 1, . . . , k compute the reduced Boolean Gröbner basis Gi of the ideal 〈πi(F )〉 in
GF2(X̄). Set G = ∪k

i=1φi(Gi).

In order to get a stratified Boolean Gröbner basis, we further need the following manipula-
tion.

Algorithm: Stratification
input: G a reduced Boolean Gröbner basis in GFk

2(X̄)
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output: G′ a stratified Boolean Gröbner basis
Let {t1, . . . , ts} be the set of all leading terms of some polynomial in G. For each i = 1 . . . , s,
let gi =

∑
LT (g)=ti,g∈G g. Set G′ = {g1, . . . , gs}.

4 Efficient BGB software

In this section, we give the computation data obtained by SageMath, Risa/Asir, Mathemathica,
Maple, and Singlar, in order to consider suitable software to compute Boolean Gröbner bases.
In the experiments, we used randomly generated 20 examples which include polynomials over
GF2 with 100 variables by using PolyBoRi command “random element”. Most combinatorial
problems are consisted of polynomials which have total degree 1 or 2 because the Boolean op-
erations ∨,∧,¬ are defined by a∨ b = a+ b+ a · b, a∧ b = a · b,¬a = 1 + a. In fact, polynomials
of Example 5 and 6 are constructed of a linear combination of monomials have total degree 1
or 2. In our experiments, we therefore randomly generated polyomials have total degree 1 or
2 like Example 8, 9 and 10. All the computations are done by the same computer with the
following spec:

OS: Ubuntu 14.04 LTS 64bit, CPU: Intel(R) Core(TM) i7-3970X, Clock: 3.50GHz, Number of
Cores: 6, Memory: 64GB.

We compared the following system:

SageMath Version 6.7: PolyBoRi package with heuristic option False. Risa/Asir Version
20140224: “nd gr” command. Mathemathica Version 10: Modulus 2 options. Maple: Gröbner
package with default options. Singular 3-1-6: “std” command. With the exception of SageMath,
we add the following polynomials {x21+x1, x

2
2+x2, · · · , x2n+xn} to polynomials F in Examples.

Table 1 contains computation time of Gröbner bases (in seconds) of F in examples 8, 9
and 10.

SageMath Risa/Asir Singlar Mathematica Maple

Example 8 0.73 0.99 0.27 1723.74 >1 hour
Example 9 3.66 40.49 385.65 >1 hour >1 hour
Example 10 500.90 > 2 hours > 2 hours >2 hours >2 hours

Table 1: Computation time of Gröbner bases (Sec)

For other 8 examples, a Gröbner basis computation by Risa/Asir, Mathematica, Maple and
Singlar did not terminate in hours, whereas SageMath successfully computed.

Example 8 F = {x17x77 + x60x85, x4x96 + x96x99, x35x84 + x39x59, x23x58 + x61x83, x35x45 +
x43x76, x17x51 +x75x85, x49x73 +x70, x28x50 +x35x80, x8x30 +x14x49, x35x41 +x52x54, x13x29 +
x17x28, x21x72+x39x49, x22x92+x37x38, x17x55+x57x98, x14x72+x32x67, x25x42+x58x80, x1x24+
x78x96, x20x41+x58x84, x20x47+x36x41, x46x56+x66x75, x26x85+x46x100, x43x60+x44x69, x5x82+
x6x27, x26x94 + x30x65, x1x88 + x54x90}.
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Example 9 F = {x39+x40x76+x45+x52+x93+x94, x24+x25x62+x25+x51+x72+x80, x25x71+
x25+x32+x38+x69+x90, x5+x16x30+x22+x35+x65+x96, x7x54+x11+x49+x67+x87+x92, x5x53+
x17+x37+x74+x76+x90, x17+x44x66+x61+x65+x74+x89, x16+x33+x34+x57x69+x59+x73, x10+
x35x41+x51+x59+x100+1, x2+x5x47+x56+x91+x92+x95, x15+x30x96+x30+x37+x84+x86, x1+
x53+x76x88+x76+x85+1, x10+x19x22+x35+x50+x58+x92, x18+x37+x44+x51x59+x59+x77, x30+
x31x73+x38+x45+x78+x89, x14+x22+x24+x81x98+x92+x98, x10x31+x19+x39+x40+x41+x44}.

Example 10 F = {x4x84 + x69x92, x49x82 + x75x89, x41x73 + x58x75, x1x43 + x9x50, x2x86 +
x15x79, x24x34 + x45x52, x4x48 + x22x98, x2x23 + x51x81, x8x77 + x10x79, x3x8 + x53x95, x3x73 +
x18x95, x8 + x18 + x27 + x29 + x30 + x66, x2 + x9 + x63 + x73 + x79 + x97, x36 + x46 + x59 + x63 +
x70 + x74, x31 + x34 + x36 + x41 + x60 + x66, x9 + x30 + x48 + x79 + x83 + x88, x26 + x47 + x67 +
x85 + x88 + x100, x1 + x42 + x53 + x55 + x86 + x98, x33 + x57 + x69 + x70 + x84 + x90, x3 + x12 +
x14 + x59 + x61 + x72, x2 + x41 + x43 + x63 + x91 + x97, x12 + x19 + x38 + x62 + x65 + x77, x20 +
x32 +x36 +x50 +x98 + 1, x2 +x4 +x17 +x40 +x85 +x92, x11 +x29 +x31 +x46 +x79 +x98, x10 +
x51 +x58 +x59 +x89 +x90, x2 +x8 +x17 +x42 +x50 +x93, x6 +x24 +x27 +x64 +x86 +x90, x1 +
x6 + x47 + x67 + x74 + x85, x26 + x40 + x54 + x57 + x68 + x89, x7 + x51 + x53 + x92 + x94 + x98}.

5 Coding in SageMath

Our program to compute Boolean Gröbner bases of a finite powerset algebra P({s1, . . . , sk})
has the following rather simple shape.

def bgb(Polys,Vars,Eles):

B=BooleanPolynomialRing(len(Vars)+len(Eles),Eles+Vars,order=’lex’)

BPolys=(B.ideal(Polys)).gens()

BEles=(B.ideal(Eles)).gens()

Polys_set=divide(BPolys,Eles)

Bgb_Set=bgb_comp(Polys_set,Vars,Eles)

Ele_Polys=mulatom(Bgb_Set,BEles)

Bgb=stratify(Ele_Polys,Eles)

return Bgb

A Boolean polynomial of P({s1, . . . , sk})(X̄) is represented by a Boolean polynomial of GF2(s1,
. . . , sk, X̄) considering s1, . . . , sk as indeterminates. For example, a Boolean polynomial {green,
red}X1+{blue}X2 is represented by a polynomial (green+red)∗X1+blue∗X2. We input a list
of such represented Boolean polynomials in Polys, a list of variables, i.e., X̄ in Vars and a list
of elements, i.e., s1, . . . , sk in Eles. BooleanPolynomialRing is a PolyBoRi command which
defines a Boolean polynomial ring GF2(X̄, s1, . . . , sk). For the input F of Polys, divide com-
putes πi(F ) for each i = 1, . . . , k. bgb_comp computes a reduced Gröbner basis Gi of the ideal
〈πi(F )〉 in GF2(X̄) for each i = 1, . . . , k, which uses the PolyBoRi program groebner_basis to
compute Gröbner bases of GF2. mulatom is a program to compute π−1i (Gi). Finally stratify

compute the stratified Boolean Gröbner basis G′.

The following is a computation example of a Boolean Gröbner basis by our program. It com-
pute the stratified Boolean Gröbner basis {x+{s1}, y+{s2}} of the ideal 〈(1 +{s1, s2})(XY +
X +Y ), {s1}X + {s1}, {s2}Y + {s2}, XY 〉 in a Boolean polynomial ring P({s1, s2})(x, y) w.r.t.
a lex order such that x > y.
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% sage

sage: load("bgb.sage")

sage: var("x,y,s1,s2")

(x, y, s1, s2)

sage: bgb([(1+s1+s2)*(x*y+x+y),s1*x+s1,s2*y+s2,x*y],[x,y],[s1,s2])

[x + s1, y + s2]

6 Computation Data

We give the computation data obtained by our program of SageMath and the previous program
of Risa/Asir [10]. (For the computation of s-ranks, we have fixed its bug.) We also optimized
programs of both Risa/Asir and SageMath for Sudoku puzzle. All the computations are done
by the same computer.

Table a contains average time (in seconds) of 10 puzzles in the Sudoku book High and Ul-
traHard [17] for obtaining a solution of a puzzle. These puzzles have a property of solvable
introduced in [15]. Each computation is done serially.
Table b contains average time (in seconds) of 10 puzzles in the Sudoku book High and Ultra-
Hard [17] for obtaining s-rank of a puzzle. Each computation of SageMath is done in parallel.

SageMath Risa/Asir
(Serial) (Serial)

High 0.64 9.44
UltraHard 0.77 11.28

(a) Solving time (Sec)

SageMath Risa/Asir
(Parallel) (Serial)

High 1.90 24.7
UltraHard 8.38 120.78

(b) Computation time of s-rank (Sec)

We put snapshots of the computations of the following puzzles by SageMath programs. S50_1
is basic solvable, S60_1 has a s-rank 1.

9 3 8 4 2
8 1 3

3 5 8

9 2 3
1 7 6
8 4 5 2

4 3 1 7
2 9

8 6 4 1 3

8 3
9 8 5 3
6 1 9 7

4 7 3 5
7 9 6 4

2 6 8 1

5 9 7 6
4 6 3 9

4 3

S50_1 S60_1
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sage: S=sudoku_solve(S50_1) sage: S=srank(S60_1)

This is solvable. This is NOT solvable.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 [6, 7, 9, 3, 8, 4, 2, 5, 1] 1 [4, 5, 8, 3, 2, 7, 9, 1, 6]

2 [2, 8, 5, 7, 1, 6, 4, 3, 9] 2 [7, 9, 1, 4, 8, 6, 5, 3, 2]

3 [3, 1, 4, 2, 5, 9, 7, 6, 8] 3 [3, 6, 2, 5, 1, 9, 4, 8, 7]

4 [9, 4, 6, 1, 2, 8, 5, 7, 3] 4 [6, 1, 4, 7, 9, 3, 8, 2, 5]

5 [1, 5, 2, 9, 7, 3, 8, 4, 6] 5 [8, 7, 9, 1, 5, 2, 6, 4, 3]

6 [8, 3, 7, 4, 6, 5, 9, 1, 2] 6 [2, 3, 5, 6, 4, 8, 1, 7, 9]

7 [4, 6, 3, 5, 9, 2, 1, 8, 7] 7 [5, 8, 3, 9, 7, 1, 2, 6, 4]

8 [5, 2, 1, 8, 3, 7, 6, 9, 4] 8 [1, 4, 6, 2, 3, 5, 7, 9, 8]

9 [7, 9, 8, 6, 4, 1, 3, 2, 5] 9 [9, 2, 7, 8, 6, 4, 3, 5, 1]

S50_1: Comp time 0.671790838242 S60_1: Comp time 0.777539014816

S-Rank : 1

Comp time of a basic strategy 0.742350101471

Comp time of BR polynpmials 0.231873035431

Comp time of S-rank(SUM) 0.974223136902

7 Hierarchy of Sudoku puzzles

In this section, we propose a new hierarchy for the data reported in [15] which is found errors
and corrected by our program. We use the same notations given in Example 2. The reader is
referred to [15] for s-rank and BRk(J).

In [15], s-ranks of 525 Sudoku puzzles contained in the series of Sudoku books (named High,
SuperHigh, Hard, SuperHard and UltraHard) [17] are reported as in the following table.

s-rank 0 1 2 3 4 5 ∞
High 84 3 10 7 1 0 0

SuperHigh 58 9 22 12 4 0 0
Hard 39 15 21 17 8 4 0

SuperHard 17 13 32 24 19 1 0
UltraHard 11 15 22 21 21 9 6

We have recomputed them by our program. The results are as follows.

s-rank 0 1 2 ∞
High 84 21 0 0

SuperHigh 58 47 0 0
Hard 40 65 0 0

SuperHard 17 86 2 0
UltraHard 13 90 2 0

Our new data shows that we cannot categorize Sudoku puzzles in terms of their s-ranks. In
order to give a finer hierarchy, we define two numbers ‘A’ and ‘B’. ‘A’ means the numbers of
solutions which have already gotten for the element which polynomials contained in BRk(J)
have, i.e., 9> A ≥ 0. When A = 0 and we cannot construct BRk(J), then we up s-rank. ‘B’
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means the numbers of Boolean Gröbner bases we need compute for getting a maximal ideal,
i.e., B > 0. The following table contains an obtained data by our program. In the table, puzzles
are ordered from right to left according to our mathematical levels of difficulty.

s-rank 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
A - 6 6 4 4 4 4 4 2 2 2 2 2 4 4 2
B - 1 2 1 2 3 4 5 1 2 3 4 5 3 4 2

High 84 1 1 10 4 2 2
SuperHigh 58 17 22 2 2 3 1

Hard 40 10 28 5 1 1 13 6 1
SuperHard 17 4 1 38 11 3 15 13 1 1 1
UltraHard 13 2 29 9 4 2 21 14 6 3 1 1

8 Conclusions and Remarks

For only solving combinatorial problems such as Sudoku puzzles, symbolic computation of
Boolean Gröbner bases is too heavy. In fact, a Sudoku puzzle can be formulated in a Boolean
polynomial ring of GF2 using 729 variables. This approach is hired for Sudoku solvers by
SAT. They can solve any Sudoku puzzle in a second, while symbolic computation for such a
formulation is too heavy even for PolyBoRi. However, this formulation cannot decide the level
of difficulty of a Sudoku puzzle. Our approach by symbolic computation is an ideal tool for
deciding the s-rank of a Sudoku puzzle.

When a given Sudoku puzzle is not basic solvable, for computing its s-rank we need com-
putations of many Boolean Gröbner bases. For such a computation, parallel computation is
efficient as is shown in Section 6. For very tough Sudoku puzzles such as the one introduced
in [16], we need long computation even by our parallel program. Distributive computations by
many computers could gain much speed-up, although we have not done this computation yet.

We also have some problems besides Sudoku puzzles for which our BGB algorithm is superior
to standard algorithms for our future work.
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Comprehensive Boolean Gröbner Bases on General Computer Algebra Systems. Proceed-
ings of ICMS2014, pp 531-536, Springer LNCS 8592, 2014.

[15] Inoue, S and Sato, Y. A Mathematical Hierarchy of Sudoku Puzzles and its Computation
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university teaching is predominantly lecture-based, and sometimes students find the transition from
secondary school to university difficult.

Curiously, a study some years ago [9] found that Chinese teachers in “lower grades” had more
confidence in employing technology than did their US counterparts; the author’s interpretation was
that Chinese mathematics teachers in lower grades are in general better trained and prepared. Note that
technology in the context of this article meant generic technology: AuthorWare, Flash, PowerPoint.
The author claimed that Chinese teachers were more keen to use technology for “instruction”. There
was no indication that teachers would put such technology in the hands of learners.

4 Conclusions
Although there appear differences between the Chinese and Australian attitudes, as evidenced by
our survey, the similarities in fact outweigh them. In both countries tertiary mathematics is teacher-
centred and syllabus-driven; in both countries the driving force behind most teaching is that of “cov-
ering the syllabus”; of “getting through” all the material. This leaves little time for experimentation,
and for the use of more student-centred learning models such as problem-based learning, in which
one may expect technology to play a major part.

The statistics presented in this paper have been descriptive only; further work will uncover statis-
tical significances, and the degrees to which attitudes in both countries differ.

However, based on the results so far, indications are that academics in both countries have much
of the same attitudes: that the use of CAS may well deepen student understanding of mathematical
concepts, but there is no room in the syllabi, and little or no local support, for its current use.

References
[1] Peter Gray, “Be Glad for Our Failure to Catch Up with China in Education”, Psychology Today, May 28,

2013, http://bit.ly/1HwC2i6
[2] Sherry Herron, Rex Gandy, Ningjun Ye, and Nasser Syed. “A Comparison of Success and Failure Rates

between Computer-Assisted and Traditional College Algebra Sections.” Journal of Computers in Mathe-
matics and Science Teaching 31, no. 3 (2012) pp249–258

[3] Yueqiang Hu and Lining Hao, “Thoughts on Cultivating Chinese College Students Learning Auton-
omy in Mathematics”, International Conference on Education Technology and Economic Management
(ICETEM), 2015, pp145–152

[4] Yeping Li and Rongjin Huang (eds), How Chinese Teach Mathematics and Improve Teaching, Routledge,
2013

[5] Xiang Longwan, “Mathematics Education in Chinese Universities”, in The Teaching and Learning of
Mathematics at University Levele: An ICMI Study, ed Derek Holton, Kluwer 2001, pp 45–49

[6] OECD, PISA 2009 Results: Executive Summary http://www.oecd.org/pisa/pisaprod
ucts/46619703.pdf, 2010

[7] OECD, PISA 2012 Snapshot of results in mathematics, reading and science, http://www.oecd.
org/pisa/keyfindings/PISA-2012-results-snapshot-Volume-I-ENG.pdf, 2013

[8] Kan Wei, “Explainer: what makes Chinese maths lessons so good?” The Conversation, March 24, 2014,
http://bit.ly/1HwE7L6

[9] Zhonghe Wu, “Comparison Study of Teachers Knowledge and Confidence in Integrating Technology into
Teaching Mathematics in Elementary School in the U.S. and China”, Journal of Research in Innovative
Teaching, March 2009, Vol 2, pp126–135

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

372



[10] Linda Yeung, “Asian students’ superiority at maths due to Confucian focus on hard work”, South China
Morning Post, December 23, 2013, http://bit.ly/1HwEyoE

[11] Dacheng Zhao and Michael Singh. “Why do Chinese-Australian students outperform their Australian
peers in mathematics: A comparative case study.” International Journal of Science and Mathematics
Education Vol 9, no. 1 (2011), pp69–87.

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

373



Figure Drawing using KETCindy and its Application to
Mathematics Education

– Practical example of application of mathematics to
mathematics –

Hideyo Makishita
hideyo@shibaura-it.ac.jp
College of Engineering

Shibaura Institute of Technology
Japan

Abstract

Geometric construction normally means generation of a �gure suited for given condi-
tions using rulers and a pair of compasses only for a �nite number of times. Hereinafter,
this is referred to simply as geometric construction. This paper presents a discussion of,
in addition to geometric construction, the practice of drawing �gures by adding mathe-
matical contents.

When mathematical material is added to geometric construction using rulers and com-
passes, the use of dynamic geometry (DG) software is one option, whereas KETCindy is
used for this study because KETCindy is equipped with DG′s Cinderella as GUI and can
be used for drawing �gures by Script as CUI. Therefore, mathematically precise �gures
can be drawn with ease, producing beautiful results. This paper explains �gure drawing
while the quadratic curve concept is added to geometric construction. The author consid-
ers that �gure drawing by Script is extremely useful for mathematics education from the
viewpoints of application of mathematics to mathematics. This point will be discussed
hereinafter.

1 Introduction

Quite a few teachers use LATEX for the production of handouts to be used for math classes and
test questions. The author encountered teachers who were struggling to find and use a system
that can output precise and good-looking figures and graphs. The author tested several software
packages and now uses KETCindy because it can output precise and good-looking figures and
graphs by simple manipulations.

One benefit of KETCindy is that it uses dynamic geometry software Cinderella as the GUI,
thereby allowing visual operation. Regarding GUI operation, although operating environments
are almost identical to those of other software, an important benefit of Cinderella is that
the generation of figures and graphs is made possible by a Character User Interface (CUI).
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An additional benefit is that necessary commands and function formulae can be added by
programming1. Figures in Japanese mathematics2, which might be drawn only slightly, can
be drawn now to a greater degree by the addition of mathematical contents such as quadratic
curves.

In addition, with KETCindy, the quality of figures and graphs is equal to or greater than
those depicted in the textbook. Furthermore, figures are generated precisely by simple manip-
ulation. Results thus obtained can be output beautifully by LATEX. Thanks to this system,
the quality of figures and graphs used in the data for author′s class and academic papers were
improved remarkably. The prime reason why the author uses KETCindy in LATEX lies here.

All figures shown in Chapter 2 are drawn by KETCindy. The high quality of these figures
is readily apparent: they are equal to or greater in terms of quality than those depicted in the
textbook. Figure drawing in which Script is used concomitantly is explained taking Japanese
mathematics problem as an example. At the same time, the benefits of rendering figures using
LATEX and KETCindy are reported. In Chapter 3, future tasks of mathematics education [1]
and fostering of mathematics teacher will be discussed based on the contents of Chapter 2 [2].
In the Appendix, the contents of the Encyclopedia of Geometric Solution [3], which presented
the problem consciousness for this paper, are cited.

2 Quality �gures drawn using Script and KETCindy

Wasan dealt with numerous problems related to figures [4]. If a drawing meeting with the
conditions is given, then the solution itself leading to an answer is not so difficult.

However, in some cases, the generation of a figure is difficult even if the conditions are being
given. Here, example problems 1, 2 and 3 shown below are addressed [5]. In fact, the center of
circle P can be drawn by adding a quadratic curve concept to figure drawing using rulers and
compasses. This illustration presents a quadratic curve drawn using Script. Beautiful drawings
can be output by KETCindy.

A

B C

D

P

Fig.1.

Ex 1: Find the length of one side
of a square when the
diameter of circle P is 1.

A

B C

D

P

Fig.2.

Ex 2: Find the length of one side
of a square when the
diameter of circle P is 3.

O
P P

Q

Q

Fig.3.

Ex 3: Two large circles Q and two
small circles P are shown in
outer circle O.
When the diameter of the
small circle P is 2, �nd the
diameter of the large circle.

1 Function formula capable of creating parabola, ellipsoid, hyperbolic curve, and symbols showing that the
lengths of line segments are equal are added by the program.

2 Japanese mathematics: Wasan which was developed during the Edo Period (1603 – 1867).
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2.1 Figure drawing of Example 1: Utilization of a parabola

Example 1 : As illustrated at right, in square ABCD,
circle P is inscribed in quadrant C having
its center at C, and inscribed on side BC and
side CD.
Find the length of one side of the square when
the circle diameter is 1.

Answer : The length of one side of the square is
1 +

√
2

2
.

A

B C

D

P

Fig.1.2.1.1 Procedures for drawing circle P

Procedures for drawing circle P shown in Example 1 are the following.

1. Center P of the circle passes through intersection E of quadrant C and diagonal line AC.
2. Center P of the circle draws a parabola while E is the focal point and side BC is the

directrix.
3. Intersection of a parabola and diagonal line AC is the center P of the circle to be obtained.

A

B C

D

P

E

Fig.4.

A

B C

D

P

E

Fig.5.

2.1.2 Example of Script of Example 1

Here, the example of Script of Fig.5 is presented.

1:Fhead=”Parabola.tex”; File name: Parabola.tex
2:Ketinit(); Initialization of KETCindy
3:Addax(0); Coordinate axes are not drawn
4:Listplot([A,B,C,D,A],[”dr,2”]); Square ABCD is drawn by line 2
5:Listplot([A,C],[”do,1”]); Diagonal AC is drawn by dotted line
6:Circledata([C,B],[”dr,1”,”Rng=[pi/2,pi]”]); Quadrant C, the part of circle C from π/2 to π
7:Parabolaplot(”1”,[E,B,C],[”da,1”]); Parabola with focal point E and directrix BC
8:Putintersect(”P”,”rt1para”,”sgAC”); Intersection P of parabola and diagonal line
9:Circledata([P,E],[”dr,1”]); Circle passing through center P and point E

10:Pointdata(”1”,E,[”size=7”]); Point E is shown by size 7
11:Pointdata(”2”,P,[”size=7”]); Point P is shown by size 7
12:Letter([A,”nw”,”A”,B,”sw”,”B”,C,”se”,

”C”,D,”ne”,”D”,E,”n2”,”E”,P,”n2”,”P”]);
Points A, B, C, D, E, P are shown

13:Windispg(); Displayed on the display
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Notes : The file name written on the first line and the script shown above are written between
the 2nd line and the 13th line. Then the figure can be output by KETCindy on Cinderella,
which is the GUI. Furthermore, actual figures can be confirmed by PDF. For the alteration
of symbols in the figure and the vertex, the figure might be changed directly returning to
Cinderella or changed by Script. At the same time, a tpic file which can be inserted by LATEX
can be generated by the name of the first line. If the file name in the first line is inserted under
the layer environment, then a figure can be inserted at the desired point3. KETCindy includes
expressions of various kinds used in the textbook from mathematics education viewpoints. For
example, for the line type, line, dashed line, and dotted line available, each is designated by
”dr,n”, ”da,n” and ”do,n” and the thickness can be designated too. The script in the fourth
line means a line and thickness 2. The default of the line type and thickness is ”dr,1”. Function
formula Parabolaplot in the seventh line for drawing parabola is added by the program. With
KETCindy, function formula and symbol can add functions to be generated as necessary. Those
added as necessary are explained hereinafter in each case.

2.1.3 Bene�ts of using KETCindy

As described previously, the author uses KETCindy to employ mathematically precise figures
which are also quality printing materials for mathematics education. Quality printing materials
can then be inserted into LATEX. Comparison of quality of the drawing between DG (a figure
of Cinderella is used here) and a figure by KETCindy reveals the difference between the two at
a glance.

Furthermore, it might be cited that with KETCindy, the description of Script is mathe-
matical and brief. For example, as represented by the seventh line of parabola Script in the
statement above, the focal point and directrix are simply designated. At designation, the focal
point and directrix are simply designated by symbols referring to the figure of Cinderella.

A

B C

D

P

E

Fig.5.Fig.6.

The following points can be cited as benefits of KETCindy:

1. Cinderella is useful as DG.
2. Precise and quality figures are drawn

by DG and might be presented
to students as printing materials.

3. Alteration of drawn figures is simple.
4. Program of KETCindy is mathematical

and easy to understand.
5. It is freeware and can be introduced

easily into school education.

3 Details are shown in the Appendix provided at the end of this paper.
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2.2 Figure drawing of Example 2: Utilization of ellipsoid

Example 2 : As illustrated at right, circle P is in square ABCD
and is tangent to two quadrants B and C having its
center at point B and point C and to side BC.
When the length of the diameter of the circle is 3,
find the length of one side of the square.

Answer : The length of one side of the square is 4.

A

B C

D

P

Fig.2.
2.2.1 Procedures for drawing circle P

Procedures for drawing circle P shown in Example 2 are the following.

1. Circle P passes through midpoint E of side BC.
2. Circle P is inscribed to quadrant B at point Y.
3. BP + EP = BP + PY = BY = BC (constant).
4. Circle P passes through point E inside of circle B (quadrant B). Therefore, point P is on

the ellipsoid having focal point on two points B and E.
5. Center P of the circle is also on the vertical bisector of side BC.
6. Therefore, center P of the circle to be obtained is the intersection of the ellipsoid and

vertical bisector.

A

B C

D

P

E

Y

F

Fig.7.

A

B C

D

P

E

F

Y

◦

◦

Fig.8.
2.2.2 Example of Script of Example 2

Here, the example of Script of Fig.8 is presented.

4:Listplot([A, B, C, D, A],[”dr,2”]); Square ABCD is drawn by line 2
5:Circledata([B,C],[”dr,1”,”Rng=[0,pi/2]”]); Quadrant B, the part of circle B from 0 to π/2
6:Circledata([C,B],[”dr,1”,”Rng=[pi/2,pi]”]); Quadrant C, the part of circle C from π/2 to π
7:Listplot([E,F],[”do,1”]); Line segment EF: Vertical bisector EF
8:Ellipseplot(”1”,[B,E,|B − C|],[”da,1”]); Ellipsoid having two focal points B and E
9:Putintersect(”P”,”rt1elp”,”sgEF”); Intersection P of the parabola and segment EF

10:Circledata([P,E],[”dr,1”]); Circle passing through center P and point E
13:Pointdata(”1”,P,[”size=7”]); Point P is shown by size 7
15:Drawsegmark(”1”,[B,E],[”Type=2”]); Mark showing equivalent line segment
16:Drawsegmark(”2”,[C,E],[”Type=2”]); Mark showing equivalent line segment
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Notes : In Example 1, all statements of Script are shown. In Example 2, only major Scripts
are shown. Therefore, some line numbers are missing. Drawsegmark shown in the 15th line
and 16th line means that two line segments are equal as shown in Fig.7 and Fig.8. Namely,
BE = CE. It is visually understood by this symbol that point E is the midpoint of side BC.
This expression is used frequently in Japanese mathematics textbooks. In Fig.8, if results
show that two points B and E are of focal points, then point P to be obtained should satisfy
BP + EP = 2a (2a is the sum of distance) as characteristics of the ellipsoid. It is important to
recognize that it is the radius of quadrant B. If this is found, |B − C| is simply designated in
KETCindy. This is similar to vector notation and is mathematically simple.

2.3 Figure drawing of Example 3: Utilization of hyperbola

Example 3 : As illustrated at right, two large circles Q
and two small circles P are shown in outer
circle O.
When the diameter of small circle P is 2,
find the diameter of the large circle.

Answer : The diameter of the large circle is 3.

O
P P

Q

Q

Fig.3.2.3.1 Procedures for drawing circle P

Procedures for drawing circle P in Example 3 are the following. Two large circles Q are
designated as Q1 and Q2. Two small circles P are designated as P1 and P2. Locations of the
centers of two large circles Q1 and Q2 might be readily apparent. Procedures drawing center
P1 and P2 of two small circles are explained hereunder.

1. Points of tangency of the circle P and circle O are designated respectively as A and B.
The line segment AB is a diameter of circle O.

2. Circle P1 and circle Q1 are circumscribed at point Y.
3. Point P1 is outside of circle Q1.
4. |Q1P1 − AP1| = |Q1P1 − P1Y| = |Q1Y| = |Q1O| (constant).
5. Therefore, P1 is a hyperbola having two focal points of A and Q1.
6. The intersection of hyperbola and diameter AB is center P1 to be obtained.

Similarly, drawing of the center of small circle P2 is obtainable by the hyperbola.

O

Q1

Q2

A BP1 P2

Y

Fig.9.

Y

Q1

Q2

A B
P1 P2O

Fig.10.
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2.3.2 Example of Script for Example 3

Here, the example of the Script for Fig.10 is presented.

4:Circledata([O,A],[”dr,1”]); Line type 1 passing through A at center O
5:Circledata([Q1,O]); Circle having its center at Q1 and passing through O
6:Circledata([Q2,O]); Circle having its center at Q2 and passing through O
7:Listplot([A,B],[”do,1”]); Line segment AB is shown by dotted line
8:Hyperbolaplot(”1”,[A, Q1, |Q1 − O|]); Hyperbola having focal points A and Q1
9:Putintersect(”P1”,”rt1hyp”,”sgAB”); Intersection P1 of hyperbola and line segment AB

10:Hyperbolaplot(”2”,[B, Q1, |Q1 − O|] Hyperbola of focal points B and Q1 which is
,[”notex”]); not shown in TEX

11:Putintersect(”P2”,”rt2hyp”,”sgAB”); Intersection P2 of hyperbola and line segment AB
12:Circledata([P1,A]); Circle having its center at P1 and passing through A
13:Circledata([P2,B]); Circle having its center at P2 and passing through B
17:Pointdata(”1”,P1,[”size=7”]); Point P1 is shown by size 7

Notes : Only the major Script relating to Example 3 are shown. Therefore, some line numbers
are missing. Regarding the drawing of the hyperbola shown in the eighth line, if results show
that in Fig.10 two points of A and Q1 are focal points similarly to Example 2, then the point
to be obtained should satisfy |AP1 − Q1P1| = 2a (where 2a is the difference of distance) as
characteristics of the hyperbola. An important matter is recognition that it is the radius of
circle Q1. If this is found, then it is designated simply as |Q1 − O| in KETCindy.

For drawing of P2, a hyperbola having two focal points of B and Q1 shown in the tenth line
should be generated. However, this will complicate Fig.10. Then, “notex” is included, which
means that no drawing is provided at the end of the tenth line by the designated option.

3 Summary and Future Tasks

The problems of figure drawing shown in Examples 1, 2 and 3 taken up here are resolved by
KETCindy, in which contents of the quadratic curve are added to geometric construction using
rulers and a pair of compasses.

Generating a drawing using rulers and a pair of compasses only for a finite number of times is
normally designated as geometric construction in the mathematical field. According to the au-
thor, generation of a figure by adding mathematical contents to said figure drawing is extended
geometric construction. When extended geometric construction is used, a regular heptagon that
is impossible to draw accurately can be drawn with extended geometric construction manner
by solving high-degree equations. Such educational material is regarded as effective from the
perspective of application of mathematics to mathematics. Extended geometric construction
is to apply mathematics itself to mathematics and the author considers that from viewpoints
of utilization of the learned contents; it is appropriate content for challenge learning in high
school and for application of mathematics and mathematical exploration currently proposed.

Next, as represented by KETCindy, a system that can output generated results beautifully as
the printed educational material is conducive to mathematics education for pupils and students.
Simultaneously, it might be used as a means for research announcements by pupils engaged in
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SSH research4. The author considers that the application of mathematics to problem-solving is
urgent to meet the demands of society as well as curriculum guidelines. Therefore, the author
intends to report research outcomes at international conferences in the form of an academic
paper under the title of “Application of Mathematics to Mathematics” [1].

With the program used here for figure drawing, parabolas, ellipsoids, and hyperbolas can
be generated by designating a focal point and a directrix in a similar manner as the definition
of quadratic curves. As a future task, such a program will need Script. To do this, some
programming knowledge is necessary for mathematics teachers in secondary school so that
they can solve their own problems as well as ICT applications. To that end, the ICT training
system will become increasingly important.

Finally, to draw figures meeting the conditions shown in this paper mathematically precisely
and beautifully, problems listed in the Encyclopedia of Geometric Solution (1959) [3] should be
studied. Then, figures can be drawn easily and mathematically precisely. The author wonders
why, although tips for extended geometric construction were listed in the literature published
a half century ago, no extended geometric construction idea as introduced by the author has
been devised. The reasons for this might be that teaching of quadratic curves was insufficient
and that effective application of ICT to mathematics education was not attempted actively.
The author feels that ICT is not used extensively in present-day mathematics education. As a
future task, we mathematical teachers should apply ICT aggressively. In this case, hardware
and software should be modified so that our students might become familiar with them. Teach-
ers should use them to a greater degree. It is desirable that they are able to perform basic
mathematical programming of Cinderella and KETCindy introduced in this report. To do so,
the author intends to develop and distribute valuable educational materials for mathematics
using KETCindy.
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Appendixes

1. For figure drawing by Script in Examples 1, 2 and 3 in the Encyclopedia of Geometric
Solutions [3], reference is made to Item 4 Trajectory of quadratic curve, Section 4 Problems
relating to circles, Chapter 5 Trajectory. When results of this problem are used, circle P
can be drawn by adding the quadratic curve concept to geometric construction by rulers
and a pair of compasses as stated in this paper. Problem numbers 1440, 1444, and 1443

4 Under the SSH program, in collaboration with universities and other institutions, high schools focus on
science and mathematics in conducting experiential learning, research projects and curriculum development.
The program aims to foster students with a high level of creativity and a passion for science and technology. [6]
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in Encyclopedia of Geometric Solution referred to in this paper are incorporated here as
references5.

Problems from Encyclopedia of geometric solution� �
1440. Fixed straight line ` and fixed point F outside this straight line are given.

Obtain the trajectory of center P of the circle which passes through F and is
tangent to `.

1444. Obtain trajectory of center of circle P which passes through fixed point F
inside fixed circle F′ and is tangent to fixed circle F′.

1443. Obtain the trajectory of center of circle P which passes through fixed point F
outside fixed circle F′ and which is tangent to fixed circle F′.� �

The trajectory of circle P is represented by a parabola having focal point F and directrix
`, ellipsoid having focal points F′ and F, and hyperbola, respectively. These are drawn
by KETCindy.

F

H

P

`

1440.

Point H is the point of
contact of circle F and `

F′ F

P
Q

1444.

Point Q is the point of contact
of circle F′ and circle F

F′ F

PQ

1443.

Point Q is the point of contact
of circle F′ and circle F

2. The following illustration is used frequently in Wasan. Circle O and circle O′ tangent to
common line of tangency g which is tangent to circle F can be drawn. However, point F is
the focal point of the parabola shown by dashed line; ` shown by dashed line is directrix.

F

O
O′

`

g

5 Although these problems ask a student to obtain a trajectory, these are modi�ed to meet the contents of
this paper. Figures are of extended geometric construction by Cinderella and ketcindy, and vertex and points
are uni�ed to those used in this paper.
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3. The author shows how to insert the tpic file in the LATEX under the layer environment.
It is possible to determine the position of the figure as follows.

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

A

B C

D

P

Fig.1.

\begin{layer}{150}{55}

\putnotese{90}{0}{\input{Parabola.tex}}

\putnotese{110}{51}{Fig.1.}

\end{layer}

The first line means that you display the plane in a grid pattern from point (0, 0) to point
(150, 55) by x, y coordinates. The second line means that the file of “Parabola.tex”–
Fig.1′s upper-left corner – is placed on the southeast of point (90, 0). When you are
satisfied with the position of the figure, you should turn off the grid as below.

\begin{layer}{150}{0}*

\putnotese{90}{0}{\input{Parabola.tex}}

\putnotese{110}{51}{Fig.1.}

\end{layer}

Therefore, it is possible to obtain the figure of Example 1.
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Abstract 

Information technology enables us to develop innovative learning/teaching tools for mathematics education 

both in the classroom and out-of-school activities. This paper shows a brief potential and challenges of 

using Augmented Reality (AR) in mathematics education. The learners can view geometrical objects in 3-

dimention having better understanding of the structures. Mobile phones or computer tablets can be used to 

view the 3D geometrical objects using special application software. Autodesk Maya software is used to draw 

geometrical objects and some AR viewing software can be used to view the objects in 3D. This paper will 

describe how to develop a simple AR system for the improvement of abilities of learning mathematics. 

Sample AR materials used for mathematics education at high school as well as university level will also be 

discussed. 

 

1. Introduction 
  

Augmented Reality in education is relative new but developing rapidly. Sometimes mathematics, 

especially geometry, in the classroom is difficult to understand because the students have to 

imagine in a three-dimension way. Virtual Reality (VR) can be used to arouse curiosity and raise 

motivation of students to enhance the learning process with a high potential. 

Azuma [1] gave a good definition of Augmented Reality (AR). AR is a variation of VR. AR 

allows the users to see the real world with virtual objects composited with the real world. The 

users can also see geometrical virtual objects like a cube or a cone in 3D superimposed with the 

pictures of a cube or a cone in 2 dimensions in a textbook. This will help the students to visualize 

for better understanding. 

 

2. Related Work 
 

For better understanding of mathematical models, Virtual Reality (VR) can be used to raise 

interest of the students as suggested by several authors [9, 11, 12]. Information technology enables 

us to develop a new approach for mathematics education both in the classroom and out-of-school 

activities. The important purpose of an educational environment is to introduce social interactions 

among users in the same physical area [12].  Construction of 3D objects combines four research 

areas: geometry, pedagogy psychology and augmented reality. There are several researchers 

developed Augmented Reality from Virtual Reality [2, 3, 4, 13, 6 and many others]. The 

educational dynamic geometry applications such as Geometer’s Sketchpad [5], Cindarella [10], 

Euklid [8] and Cabri Geometry [7] support two- dimensional geometry only. Augmenter Reality is 

a rapidly developed with connections of computer graphics and user interface research. 
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3. Applications 
 

Mobile phones and computer tablets become common tools in daily life. The people always use 

mobile phones as calculators. Information technology can enables us to develop applications on 

mobile phones for mathematics education purposes. In order to create 3D objects for mathematics 

education approaches, we need software for making 3D geometrical models and for scanning or 

viewing the objects.  

 

There are several software applications using for creating 3D objects in the market. These 

applications can run on mobile phones or on computers. In this paper I used software Autodesk 

Maya to create 3D geometrical objects for AR applications. This software can be purchased from 

personal or commercial uses from website: www.autodesk.com. There is also a student version for 

educational purposes only. 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

Fig.1 Working screen of Autodesk Maya for making a model of a cube. 

We have to run the programme Autodesk Maya on a computer to create a model. A type od model 

can be chosen by clicking a button on the model menu on the top left of the screen. The size and 

position can be adjusted by dragging a mouse to create the chosen model. The Fig. 1 shows the 

cube model created by Autodesk Maya. After the model is created, it must be saved using an 

export command to store the model in a working folder. The model must be saved in the file type 
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DAE. In this case, the model is saved under the name CUBE.DAE. This model (a cube) will be 

used to display in a 3D floating on a background in a real world.  

 

In order to construct an AR of the model we created from Autodesk Maya, we need another 

software to link the model to the background or tracker. The software for Augment Reality can be 

purchased from http://www.augmentedev.com/. A student version can also be obtained for 

educational purposes only by contacting the software provider.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Working screen of Augment for making an AR of a cube model. 

 

 

When we go to Augment website, we can see the working screen as shown in Fig. 2. The cube 

model we saved in the working folder of Autodesk Maya has to be added to the AR folder by 

clicking the button ADD MODEL on the screen. After upload the cube model to Augment folder, 

a picture of a cube will appear on the screen. 

 

In order to view 3D cube model of AR using a mobile phone or a computer tablet, we need a 

background picture to be scanned. The background is called tracker.  
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Fig. 3 A working screen of Augment for uploading a tracker to AR folder. In this case an ATCM 

2015 poster is used as a tracker for AR of a cube model. 

 

We have to prepare a tracker so that it will be used to scan and link with the model that we have in 

the model folder. An ATCM 2015 poster is used as a tracker for AR of a cube model. In order to 

upload a tracker photo, we have to click an ADD TRACKER button on the Augment screen. The 

ATCM tracker is uploaded in to the tracker folder as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Press Save and publish to form the link between the model and the tracker. 
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The last step to view AR 3D image of the model is to download a special software application for 

scanning the tracker. In this paper I used application “AUGMENT” for iPhone. When running the 

application AUGMENT, the menu of the functions will appear as shown in Fig. 5. Press scan 

button to scan the ATCM 2015 tracker on the left hand side of the Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  Using AUGMENT application to scan the ATCM tracker to view 3D model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  A cube model viewing from different angles. 
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After scanning a tracker, a cube model will appear in front of the ATCM tracker when using a 

mobile phone to scan. 3D images of a cube model can be seen from different positions like a real 

object floating in the air with tracker background. 

 

 

4. Using Augmented Reality in the Classroom 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Different views of a cube model using a page of textbook as a tracker related to the content 

in the book. 

 

 

With the help of AR the teachers can raise interest and motivation of students to enhance the 

learning process with a high potential for better understanding. It will be more interesting if the 

teachers can create various AR geometrical models using some pages of the textbook or 

worksheets as trackers related to the contents being studied. The students can use their own mobile 

phones or computer tablets to view 3D objects they are studying coming out from the pages and 

the Virtual objects can be seen from different angles in a 3-dimensional way. The sample of this 

idea is shown in the Fig. 6. 
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5. Conclusion 
 

Author conducted several mathematics workshops for teachers and camps for students and was 

looking for new ways to review math terms for better understanding. Author tried the way using 

QR codes as well as GIF animator. These ways could make more fun in the classrooms. 

Augmented Reality (AR) is another way that author tried to make classroom more interesting and 

fun. This could raise interest and motivation of the learners. Using geometrical pictures in the 

textbook as trackers to create AR objects, the learners paid more attention to the classroom and 

they studied more from textbook. Author asked students to create their own AR objects related to 

the topics they are studying. Some of the students used their own AR objects linking with QR 

codes as well as GIF animator for their work.  The learners shared their AR works among groups. 

This shows a very strong impact in improving learning environment of mathematics classroom or 

even self-study anywhere. 
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