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Abstract

A geometry problem given for highschool students in a place such as a competition of

International Mathematical Olympiad or an entrance examination for a university often

contains unnecessary assumptions. Such assumptions sometimes undermine the quality of

the problem. In this paper we introduce a method to check whether a given assumption

is essentially necessary for solving the problem. It also computes necessary and sufficient

assumptions for getting a solution. Our method uses three tools of computer algebra,

Gröbner bases computation, quantifier elimination over complex numbers and quanti-

fier elimination over real numbers. Anyone can use our method with a minimum basic

knowledge of computer algebra using any CAS with those tools.

1 Introduction

A mathematical problem given for highschool students in a worldwide high level competition
such as International Mathematical Olympiad should be sophisticated. Unfortunately, there
are many geometry problems of International Mathematical Olympiad which have unnecessary
assumptions for getting their solutions. For example, in the following problem the triangle
ABC is assumed to be acute-angled, but we do not need it for proving the consequence.

Problem 4 (International Mathematical Olympiad 2013)✞

✝

☎

✆

Let ABC be an acute-angled triangle with orthocentre H, and let W be a point on the side
BC, lying strictly between B and C. The points M and N are the feet of the altitudes from
B and C, respectively. Denote by ω1 the circumcircle of BWN, and let X be the point on
ω1 such that WX is a diameter of ω1. Analogously, denote by ω2 the circumcircle of CWM,
and let Y be the point on ω2 such that WY is a diameter of ω2. Prove that X, Y and H are
collinear.

The authors believe that a good problem should have necessary and sufficient assumptions for
solving it. In this paper, with a focus on elementary geometry problems, we introduce a method
using CAS to check whether an assumption of a problem is essentially necessary for solving it.
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Any formula of elementary geometry can be represented as a first order formula constructed
from polynomial equations and inequalities. The structure of R is a complete model for Tarski
geometry. Since quantifier elimination of such a first order formula (called real QE in this
paper) is computable [9, 3], for any given problem of elementary geometry, theoretically we can
compute necessary and sufficient assumptions for getting the solution. For the above problem,
assigning the points A, B and C with coordinates (0, 0), (1, 0) and (c1, c2) respectively, we can
obtain a necessary and sufficient assumption of the triangle ABC by computing a quantifier free
formula of c1, c2 which is equivalent to the following formula. (See Section 3.2 for the details.)

∀x1, x2, y1, y2,m1,m2, h2, w ∈ R(
0 < w < 1 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0 ∧ F6 = 0 ∧ F7 = 0 ⇒ P = 0).

Unfortunately, however, we cannot eliminate the quantifiers in a feasible length of time by any
of the existing software of real QE such as the Mathematica packages Reduce and Resolve ([6]),
a real QE program in Regular Chains Package of Maple ([1]), QEPCAD ([7]), real QE programs
rlqe and rlhqe of redlog ([8]) except for the recent real QE implementation introduced in [5].
Computations of real QE are very heavy in general. There are many geometry problems given
in the past competitions of International Mathematical Olympiad which contain unnecessary
assumptions but we cannot detect it by any of existing software of real QE.

There are four hierarchies of elementary geometry, affine geometry, metric geometry, Hilbert
geometry and Tarski geometry. In order to present a formula algebraically, we need only
equation = and disequation 6= in affine and metric geometry, but we essentially need inequality
> in Hilbert and Tarski geometry. (More detailed descriptions may be found in a article such
as [2].) The structure of Cis a complete model for metric geometry, hence we can deal with
any problem of metric geometry by the computation of the underlying polynomial ideal. For
a problem of Hilbert geometry, we cannot deal with it by the computation of the underlying
polynomial ideal only but we can reduce the whole problem to a much smaller problem using
a decomposition of the ideal. The reduced problem can be easily handled by computation of
real QE. Most (probably all) geometry problems given in the past International Mathematical
Olympiad are at most in Hilbert geometry.

In this paper, we introduce a method to compute necessary and sufficient assumptions for
a given problem. Our method consists of three devises. The first one applies to a problem of
metric geometry which has no hidden non-degenerate assumptions. It uses only computation
of a Gröbner basis. The second one applies to a problem of metric geometry which has hidden
non-degenerate assumptions. It uses computation of complex QE, i.e. QE over C. The third
one applies to a problem of Hilbert geometry. It computes a decomposition of the underlying
ideal by factorization of polynomials then reduce the whole problem to simpler subproblems of
real QE. Anyone can use our method with a minimum basic knowledge of computer algebra
using any CAS with those tools.

The paper is organized as follows. In section 2, we give a minimum description of mathe-
matical background to understand our paper. Since there is no standard representation form
of elementary geometry problems, it is not easy to describe our method as concrete algorithms.
Using typical examples of geometry problems given in the past International Mathematical
Olympiad, we describe our method. Our method is easily applied to any other problem. In
section 3, we treat two types of problems of metric geometry, one is a problem with no hidden
non-degenerate assumptions and the other is a problem with hidden non-degenerate assump-
tions. In section 4, we treat a problem of Hilbert geometry.
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2 Preliminaries

Q,R and C denote the field of rational numbers, real numbers and complex numbers respec-
tively. For a big letter such as X, X̄ denotes some variables X1, . . . , Xn. T (X̄) denotes a set
of terms in X̄. An admissible term order of T (X̄, Ȳ ) such that any variable Xi is greater than
any term of T (Ȳ ) is denoted by X̄ ≫ Ȳ . For an ideal I ⊂ Q[X̄], V(I) denotes its variety in C.

2.1 Gröbner Bases

The following fundamental properties of Gröbner bases, found in most standard text books of
Gröbner bases, play important roles in this paper.

Theorem 1 Let I be an ideal in a polynomial ring Q[X̄]. For any admissible term order of

T (X̄), V(I) = ∅ if and only if the reduced Gröbner basis of I is equal to {1}.

Corollary 2 For polynomials f1(X̄), . . . , fl(X̄), h(X̄), g(X̄) in Q[X̄],
∀ā ∈ Cn(f1(ā) = 0 ∧ · · · ∧ fl(ā) = 0 ∧ h(ā) 6= 0 ⇒ g(ā) = 0) holds if and only if

the reduced Gröbner basis of the ideal 〈f1, . . . , fl, hgY − 1〉 in Q[X̄, Y ] is equal to {1} for any

admissible term order of X̄, Y .

Theorem 3 Let I be an ideal in a polynomial ring Q[X̄, Ȳ ]. Let G be a Gröbner basis of I
w.r.t. a term order such that X̄ ≫ Ȳ , then G∩Q[Ȳ ] is a Gröbner basis of the elimination ideal

I ∩Q[Ȳ ] w.r.t. the same term order.

2.2 Complex QE

Let φ be a first-order formula with atomic formulas of polynomial equations over Q. QE of φ
over C is to obtain its equivalent quantifier free formula in the structure of C. Using a prenex
normal form of a given formula, we can reduce any QE problem to a QE problem of the fol-
lowing basic formula with polynomials f1, . . . , fs, g of Q[X̄, Ȳ ]:

∃X̄ ∈ Cn(f1(X̄, Ȳ ) = 0 ∧ · · · ∧ fs(X̄, Ȳ ) = 0 ∧ g(X̄, Ȳ ) 6= 0).
The problem is computable and plays an important role in this paper. There exist several im-
plementations of complex QE. Mathematica package Reduce and Resolve contain complex QE
implementation, Maple package Projection can handle the above basic formula. Besides these
programs, we can easily obtain the quantifier free formula of the basic formula by computation
of a comprehensive Gröbner systems (CGSs). Recent implementation of complex QE reported
in [4] which is based on the computation of a CGS compute the simplest quantifier free formula
in most cases.

2.3 Real QE

Let φ be a first-order formula with atomic formulas of polynomial equations and inequalities
over Q. QE of φ over R is to obtain its equivalent quantifier free formula in the structure of
R. Using a prenex normal form of a given formula, we can reduce any QE problem to a QE
problem of the following basic formula with polynomials f1, . . . , fs, g1, . . . , gt of Q[Ȳ , X̄]:

∃X̄ ∈ Rn(f1(X̄, Ȳ ) = 0 ∧ · · · ∧ fs(X̄, Ȳ ) = 0 ∧ g1(X̄, Ȳ ) > 0 ∧ · · · ∧ gt(X̄, Ȳ ) > 0).
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The problem is also computable and plays an important role in this paper. We call such QE
real QE in this paper. There exist several implementations of real QE, Mathematica package
Reduce and Resolve contain real QE implementation, the redlog package of the CAS REDUCE
contains two real QE programs rlqe and rlhqe ([8]), an open source real QE program QEPCAD
([7]), the real QE program in Regular Chains package of Maple ([1]) and a recent real QE
implementation introduced in [5], etc., are available.

3 Problems of Metric Geometry

In this section, we introduce two methods to check whether a given problem of elementary
geometry is a problem of metric geometry. The first one applies to a problem with no hidden
non-degenerate assumptions. If a given problem is a problem of metric geometry and it has
only obvious non-degenerate assumptions, the first method detects it and finds all unnecessary
assumptions for solving it. If a given problem is a problem of metric geometry but has some
hidden non-degenerate assumptions, the second one finds all such assumptions together with
all unnecessary assumptions for solving it.

3.1 Problems with no hidden non-degenerate assumptions

Consider the following problem. We will show that it is a problem of metric geometry and has
an unnecessary assumption for solving it by computation of a Gröbner basis.

Problem 1 (International Mathematical Olympiad 2012)☛

✡

✟

✠

Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This
excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively.
The lines LM and BJ meet at F, and the line KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG
and BC. Prove that M is the midpoint of ST.
(The excircle of ABC opposite the vertex A is the circle that is tangent to the line segment
BC, to the ray AB beyond B, and to the ray AC beyond C.)

Let the coordinates of B and C be (0, 0) and (1, 0) respectively w.l.o. generality. Let the coor-
dinates of A and J be (a1, a2) and (j1, j2) respectively. Since S and T are on the line BC, the
coordinates of S and T are (s1, 0) and (t1, 0) respectively.

1. We need an obvious non-degenerate assumption a2 6= 0 in order that the points A, B and C
are not collinear.

2. Since JM ⊥ BC, the coordinate of M is (j1, 0).
3. Since K is on the line AB such that B is between A and K, the coordinate of K is

(−ka1,−ka2) for some positive real number k.
4. Since L is on the line AC such that C is between A and L, the coordinate of L is

(1− l(a1 − 1),−la2) for some positive real number l.
5. Since F is on the line BJ, the coordinate of F is (fj1, fj2) for some real number f .
6. Since G is on the line CJ, the coordinate of G is (1 + g(j1 − 1), gj2) for some real number g.
7. The condition that BA ⊥ KJ (equivalent to KA ⊥ KJ) is represented by the following

equation: a1(j1 − (−ka1)) + a2(j2 − (−ka2)) = 0.
8. The condition that CA ⊥ LJ (equivalent to LA ⊥ LJ), is represented by the following
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equation: (a1 − 1)(j1 − (1− l(a1 − 1))) + a2(j2 − (−la2)) = 0.
9. The condition that G, M and K are collinear is represented by the following equation:

((1 + g(j1 − 1))− j1)(−ka2)− (gj2)((−ka1)− j1) = 0.
10. The condition that F, M and L are collinear is represented by the following equation:

((fj1)− j1)(−la2)− (fj2)((1− l(a1 − 1))− j1) = 0.
11. The condition that A, G and T are collinear is represented by the following equation:

(a1 − t1)(gj2)− a2((1 + g(j1 − 1))− t1) = 0.
12. The condition that A, F and S are collinear is represented by the following equation:

(a1 − s1)(fj2)− a2((fj1)− s1) = 0.
13. The condition |KJ| = |MJ| is represented by the following equation:

(j1 − (−ka1))
2 + (j2 − (−ka2))

2 − j22 = 0
14. The condition |LJ| = |MJ| is represented by the following equation:

(j1 − (1− l(a1 − 1)))2 + (j2 − (−la2))
2 − j22 = 0.

15. The condition that M is the midpoint of ST is represented by the following equation:
t1 + s1 − 2j1 = 0

Let F1 = a1(j1−(−ka1))+a2(j2−(−ka2)), F2 = (a1−1)(j1−(1−l(a1−1)))+a2(j2−(−la2)), F3 =
((1 + g(j1 − 1)) − j1)(−ka2) − (gj2)((−ka1) − j1), F4 = ((fj1) − j1)(−la2) − (fj2)((1 − l(a1 −
1))− j1), F5 = (a1− t1)(gj2)−a2((1+ g(j1− 1))− t1), F6 = (a1− s1)(fj2)−a2((fj1)− s1), F7 =
(j1−(−ka1))

2+(j2−(−ka2))
2−j22 , F8 = (j1−(1−l(a1−1)))2+(j2−(−la2))

2−j22 , P = t1+s1−2j1.

The problem is nothing but proving the following sentence is true:

∀a1, a2, k, l, g, f, j1, j2, s1, t1 ∈ R(a2 6= 0 ∧ k > 0 ∧ l > 0 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0∧
F4 = 0 ∧ F5 = 0 ∧ F6 = 0 ∧ F7 = 0 ∧ F8 = 0 ⇒ P = 0).

In fact we do not need any assumption on the excenter J . The conclusion P = 0 holds not
only for other 3 excenter but also for the incenter. That is the above sentence is true even if
we exclude the conditions k > 0 and l > 0.

Unfortunately, some real QE implementations such as Mathematica packages Resolve and Re-
duce do not terminate in hours for these QE problems. Note that after we remove all conditions
containing inequalities from an original problem, if the problem still holds then the original
problem is likely to belong to metric geometry. Remember that the structure of C is a com-
plete model for metric geometry, hence it suffices to check the following sentence is true.

∀a1, a2, k, l, g, f, j1, j2, s1, t1 ∈ C(a2 6= 0 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0 ∧ F6 =
0 ∧ F7 = 0 ∧ F8 = 0 ⇒ P = 0).

By Corollary 2, the sentence is true if and only if the reduced Gröbner basis of the ideal
〈F1, . . . , F8, a2PY − 1〉 ⊂ Q[a1, a2, k, l, g, f, j1, j2, s1, t1, Y ] is equal to {1}.
Gröbner bases computation program on most CAS such as Mathematica, Maple, REDUCE,
Singular and Risa/Asir, etc. immediately returns the above output {1}. It shows that the
problem is of metric geometry and the given assumption for the excenter is too severe.

3.2 Problems with hidden non-degenerate assumptions

The problem discussed in the previous subsection has no hidden non-degenerate assumptions.
If a problem contains some hidden, i.e. non trivial, non-degenerate assumptions, unless we
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add all such assumptions we cannot detect unnecessary assumptions. Complex QE is useful for
finding all hidden non-degenerate assumptions. Consider the problem given in the introduction.

Let the coordinate of A and B be (0, 0) (1, 0) respectively w.l.o. generality.
Let the coordinate of C, M, X and Y be (c1, c2),(m1,m2), (x1, x2) and (y1, y2) respectively.

1. We add the condition c2 6= 0 in order that the points A, B and C are not collinear.
2. The condition that ABC is an acute-angled triangle is represented by the following formula:

0 < c1 < 1 ∧ (c1 − 1/2)2 + c22 > 1/4.
3. Since CN ⊥ AB, the coordinate of N is (c1, 0).
4. Since H is on the line CN, its coordinate is (c1, h2) for some real number h2.
5. Since W is on the line BC, its coordinate is (1 + w(c1 − 1), wc2) for some real number w.
Since W is strictly between B and C, we need 0 < w < 1.

6. The condition that M is on the line AC is represented by the following equation:
m1c2 −m2c1 = 0.

7. The condition that BH ⊥ AC is represented by the following equation:
(c1 − 1)c1 + h2c2 = 0.

8. The condition that BM ⊥ AC, which is equivalent to that H is on the line BM,
is represented by the following equation:

(m1 − 1)c1 +m2c2 = 0.
9. The condition that WX is a diameter of ω1 is represented by the following equations:
((1 + w(c1 − 1))− x1)

2 + (wc2 − x2)
2 = ((1 + w(c1 − 1)) + x1 − 2c1)

2 + (wc2 + x2)
2

= ((1 + w(c1 − 1)) + x1 − 2)2 + (wc2 + x2)
2.

10. The condition that WY is a diameter of ω2 is represented by the following equations:
((1 + w(c1 − 1))− y1)

2 + (wc2 − y2)
2 = ((1 + w(c1 − 1)) + y1 − 2mc1)

2 + (wc2 + y2 − 2mc2)
2

= ((1 + w(c1 − 1)) + y1 − 2c1)
2 + (wc2 + y2 − 2c2)

2.
11. The condition that X, Y and H are collinear is represented by the following equation:

(y1 − c1)(y2 − x2)− (y2 − h2)(y1 − x1) = 0.

Let F1 = m1c2 −m2c1, F2 = (c1 − 1)c1 + h2c2, F3 = (m1 − 1)c1 +m2c2, F4 = ((1 +w(c1 − 1))−
x1)

2+(wc2−x2)
2− (((1+w(c1− 1))+x1− 2c1)

2+(wc2+x2)
2), F5 = ((1+w(c1− 1))−x1)

2+
(wc2 − x2)

2 − (((1 +w(c1 − 1)) + x1 − 2)2 + (wc2 + x2)
2), F6 = ((1 +w(c1 − 1))− y1)

2 + (wc2 −
y2)

2− (((1+w(c1−1))+y1−2mc1)
2+(wc2+y2−2mc2)

2), F7 = ((1+w(c1−1))−y1)
2+(wc2−

y2)
2−(((1+w(c1−1))+y1−2c1)

2+(wc2+y2−2c2)
2), P = (y1−c1)(y2−x2)−(y2−h2)(y1−x1).

The problem is nothing but proving the following sentence is true:

∀x1, x2, y1, y2,m1,m2, h2, w, c1, c2 ∈ R(c2 6= 0 ∧ 0 < c1 < 1 ∧ (c1 − 1/2)2 + c22 > 1/4∧
0 < w < 1 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0 ∧ F6 = 0 ∧ F7 = 0 ⇒ P = 0).

Unfortunately, any of the real QE program, Resolve or Reduce in Mathematica, the real QE
program of RegularChains package in Maple, the real QE software QEPCAD, the real QE pro-
grams rlqe and rlhqe in redlog is unable to handle it. They cannot either compute a necessary
and sufficient assumption of c1 and c2 for getting the solution as is described in the introduction.

Note that the problem contains an obvious non-degenerate assumption c2 6= 0 in order that
the points A, B and C are not collinear. It also contains obvious non-degenerate assumptions
w 6= 0, 1 in order that BWN and CWM have their circumcircle. Using only these conditions, we
can see the problem is actually a problem of metric geometry together with getting all hidden
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non-degenerate assumptions by applying complex QE to the following formula:

∀x1, x2, y1, y2,m1,m2, h2, w ∈ C(w 6= 0 ∧ w 6= 1 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F4 = 0∧
F5 = 0 ∧ F6 = 0 ∧ F7 = 0 ⇒ P = 0).

The equivalent quantifier free formula is the following:

(c1 = 1 ∧ c22 + 1 = 0) ∨ (c1 = 0 ∧ c2 = 0) ∨ (c1 − 1)((c1 − 1/2)2 + c22 − 1/4) 6= 0.

The first formula c1 = 1 ∧ c22 + 1 = 0 is impossible for real values and the second formula
c1 = 0 ∧ c2 = 0 is also impossible under the condition c2 6= 0. Hence, the following formula is
true:

∀x1, x2, y1, y2,m1,m2, h2, w, c1, c2 ∈ R(c1 6= 1 ∧ c2 6= 0 ∧ (c1 − 1/2)2 + c22 6= 1/4∧
w 6= 0 ∧ w 6= 1 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0 ∧ F6 = 0 ∧ F7 = 0 ⇒ P = 0).

Note that the condition c1 = 1 implies N=B and the condition (c1 − 1/2)2 + c22 = 1/4 implies
M=C, both are degenerate cases. Note also that c1 = 1 ⇔ CB⊥BA and (c1 − 1/2)2 + c22 =
1/4 ⇔ AC⊥CB. Hence, necessary and sufficient conditions for the conclusion are ∠ABC6=
π/2,∠ACB6= π/2 and W6=B,W6=C. The important point is that we can automatically obtain
them by the computation of complex QE and detect that the problem belongs to metric ge-
ometry. Our implementation of complex QE ([4]) computes the above quantifier free formula
within 1 second in a standard laptop computer. The Maple package Projection also computes
it within a few seconds.

4 Problems of Hilbert Geometry

Let O be the origin (0, 0). Given four points T= (t1, t2), U= (u1, u2), V= (v1, v2) and W=
(w1, w2) besides the origin. Then, the relation ∠TOU= ∠VOW is represented by the equation

t1u1+t2u2√
(t2

1
+t2

2
)(u2

1
+u2

2
)
= v1w1+v2w2√

(v2
1
+v2

2
)(w2

1
+w2

2
)
. But this is not a polynomial equation.

In order to represent it by a polynomial equation, we need to use inequality as follows:

∠TOU= ∠VOW ⇔ (t1u1 + t2u2)
2(v21 + v22)(w

2
1 + w2

2) = (v1w1 + v2w2)
2(t21 + t22)(u

2
1 + u2

2)
∧(t1u1 + t2u2)(v1w1 + v2w2) ≥ 0.

Consider the following problem. It contains an equation between two angles. Such a problem is
likely to belong to Hibert geometry, since we essentially need an inequality as described above.

Problem 4 (International Mathematical Olympiad 2014)✄

✂

�

✁

Points P and Q lie on side BC of acute-angled triangle ABC so that ∠ PAB = ∠ BCA and
∠ CAQ = ∠ ABC. Points M and N lie on lines AP and AQ, respectively, such that P is the
midpoint of AM, and Q is the midpoint of AN. Prove that lines BM and CN intersect on the
circumcircle of triangle ABC.

Let the coordinates of A, B and C be (a1, a2), (0, 0) and (1, 0) respectively w.l.o. generality.
Let the coordinates of P and Q be (p1, 0) and (q1, 0). Let the intersection point of BM and CN
be E and its coordinate (e1, e2). Let D be the circumcenter of the circumcircle of triangle ABC.

1. We add the condition a2 6= 0 in order that the points A, B and C are not collinear.
2. The coordinates of M and N are (−a1 + 2q1,−a2) and (−a1 + 2p1,−a2) respectively by the

assumption.
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3. The coordinate of D is (1/2, d2) for some real number d2 by the assumption DB=DC.
4. The condition that ABC is an acute-angled triangle is represented by the following formula:

0 < a1 < 1 ∧ (a1 − 1/2)2 + a22 > 1/4.
5. The condition that D is the circumcircle of triangle ABC, which is equivalent to

|AD| = |BD| = |CD|, is represented by the following equation:
(a1 − 1/2)2 + (a2 − d2)

2 − (d22 + 1/4) = 0.
6. The condition that the points E is on the line NC is represented by the following equation:

e2(−a1 + 2q1 − 1) + a2(e1 − 1) = 0.
7. The condition that the points E is on the line MB is represented by the following equation:

e2(−a1 + 2p1) + a2e1 = 0.
8. The condition that ∠PAB= ∠BCA is represented by the following equation and inequality:

(−a1(p1 − a1) + a22)
2((a1 − 1)2 + a22)− (1− a1)

2(a21 + a22)((p1 − a1)
2 + a22) = 0

∧(−a1(p1 − a1) + a22)(1− a1) ≥ 0.
9. The condition that ∠CAQ= ∠ABC is represented by the following equation and inequality:

((1− a1)(q1 − a1) + a22)
2(a21 + a22)− a21((1− a1)

2 + a22)((q1 − a1)
2 + a22) = 0

∧((1− a1)(q1 − a1) + a22)a1 ≥ 0.
10. The condition that the points P and Q lie on side BC is represented by the inequalities:

1 ≥ p1 ≥ 0, 1 ≥ q1 ≥ 0.
11. The conclusion which is equivalent to |ED| = |DB| is represented by the equation:

(e1 − 1/2)2 + (e2 − d2)
2 − (d22 + 1/4) = 0.

Let F1 = (a1 − 1/2)2 + (a2 − d2)
2 − (d22 + 1/4), F2 = e2(−a1 + 2q1 − 1) + a2(e1 − 1), F3 =

e2(−a1 + 2p1) + a2e1, F4 = (−a1(p1 − a1) + a22)
2((a1 − 1)2 + a22) − (1 − a1)

2(a21 + a22)((p1 −
a1)

2 + a22), F5 = ((1 − a1)(q1 − a1) + a22)
2(a21 + a22) − a21((1 − a1)

2 + a22)((q1 − a1)
2 + a22), G1 =

(−a1(p1−a1)+a22)(1−a1), G2 = ((1−a1)(q1−a1)+a22)a1, P = (e1−1/2)2+(e2−d2)
2−(d22+1/4).

The problem is nothing but proving the following sentence is true:
∀a1, a2, p1, q1, d2, e1, e2 ∈ R(a2 6= 0∧1 > a1 > 0∧(a1−1/2)2+a22 > 1/4∧1 ≥ p1 ≥ 0∧1 ≥ q1 ≥ 0∧

F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0 ∧G1 ≥ 0 ∧G2 ≥ 0 ⇒ P = 0).

In fact, we can see the following sentence is true:
∀a1, a2, p1, q1, d2, e1, e2 ∈ R(a2 6= 0 ∧ p1 ≥ 0 ∧ 1 ≥ q1∧

F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0 ∧G1 ≥ 0 ∧G2 ≥ 0 ⇒ P = 0).

Unfortunately, most real QE programs are unable to handle both of them except for the real
QE program of RegularChains package in Maple and the recent real QE implementation of [5].

Using the methods introduced in the previous section, we can check both of the following
sentence and formula is false:

∀a1, a2, p1, q1, d2, e1, e2 ∈ C(a2 6= 0∧F1 = 0∧F2 = 0∧F3 = 0∧F3 = 0∧F4 = 0∧F5 = 0 ⇒ P = 0),
∀a1, a2, d2, e1, e2 ∈ C(a2 6= 0 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0 ⇒ P = 0).

As we predicted, the problem does not belong to metric geometry. Using computation of a
Gröbner basis we can check that it is a problem of Hilbert geometry and obtain necessary and
sufficient conditions for getting the conclusion.

For a problem of a Hilbert geometry, an essential need of an inequality arises for fixing an angle.
For an angle θ(π > θ > 0), π/2 ≥ θ if and only if cos θ ≥ 0. When we know the value cos θ, even
though we cannot fix an angle θ without using an inequality, we can narrow its possible values
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to only two candidates. In our problem, we can narrow the range of the coordinate of the point
P or Q to two possible candidates in terms of a1, a2. Since there are four possible combinations,
we can decompose the underlying ideal I = 〈a2v − 1, F1, . . . , F5〉 ⊂ Q[v, a1, a2, p1, q1, d2, e1, e2]
to I1 ∩ I2 ∩ I3 ∩ I4. In each component Ii, the coordinates of P and Q are uniquely determined.
By computing a Gröbner basis of I w.r.t. a term order such that v, q1, d2, e1, e2 ≫ a1, a2, p1 we
obtain the elimination ideal I ∩Q[a1, a2, p1] = 〈a41 +2a21a

2
2 + a42 − 2a31p1 − 2a1a

2
2p1 − p21 +2a1p

2
1〉,

a term order such that v, p1, d2, e1, e2 ≫ a1, a2, q1 yields the elimination ideal I ∩ Q[a1, a2, q1]
= 〈−2a31 + a41 − 2a1a

2
2 + 2a21a

2
2 + a42 − 2a1q1 + 6a21q1 − 2a31q1 + 2a22q1 − 2a1a

2
2q1 + q21 − 2a1q

2
1〉.

Factorizing two generator polynomials we get the following decomposition:
I = (I + 〈a21 + a22 − p1,−2a1 + a21 + a22 + q1〉) ∩ (I + 〈a21 + a22 − p1, a

2
1 + a22 + q1 − 2a1q1〉) ∩ (I +

〈a21 + a22 + p1 − 2a1p1,−2a1 + a21 + a22 + q1〉) ∩ (I + 〈a21 + a22 + p1 − 2a1p1, a
2
1 + a22 + q1 − 2a1q1〉)

By the method given in Section 3.1, we can check only the first one of the following four
sentences is true:
∀a1, a2, p1, q1, d2, e1, e2 ∈ C(a2 6= 0 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0∧,

a21 + a22 − p1 = 0 ∧ −2a1 + a21 + a22 + q1 = 0 ⇒ P = 0),
∀a1, a2, p1, q1, d2, e1, e2 ∈ C(a2 6= 0 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0∧,

a21 + a22 − p1 = 0 ∧ a21 + a22 + q1 − 2a1q1 = 0 ⇒ P = 0),
∀a1, a2, p1, q1, d2, e1, e2 ∈ C(a2 6= 0 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0∧,

a21 + a22 + p1 − 2a1p1 = 0 ∧ −2a1 + a21 + a22 + q1 = 0 ⇒ P = 0),
∀a1, a2, p1, q1, d2, e1, e2 ∈ C(a2 6= 0 ∧ F1 = 0 ∧ F2 = 0 ∧ F3 = 0 ∧ F3 = 0 ∧ F4 = 0 ∧ F5 = 0∧

a21 + a22 + p1 − 2a1p1 = 0 ∧ a21 + a22 + q1 − 2a1q1 = 0 ⇒ P = 0).

As a result, the condition a21+a22−p1 = 0∧−2a1+a21+a22+ q1 = 0 is a necessary and sufficient
assumption for the conclusion. Note that the assumptions given in the original problem imply
this condition, however, it is too severe. In order to get a natural interpretation of the condition
we need a little bit of heuristics and light computations of real QE.

If we look at the problem carefully, we notice that P is on the right side of B and Q is left
side of C, i.e. p1 ≥ 0 and 1 ≥ q1. This is actually the desired assumption. In order to see it
we need real QE computations. We can easily check the following sentences are true even by
hand. (Actually we do not need the conditions G1 ≥ 0 and G2 ≥ 0.)
∀a1, a2, p1 ∈ R(a2 6= 0 ∧G1 ≥ 0 ∧ a22 + a21 − p1 = 0 ⇒ p1 ≥ 0).
∀a1, a2, q1 ∈ R(a2 6= 0 ∧G2 ≥ 0 ∧ −2a1 + a21 + a22 + q1 = 0 ⇒ 1 ≥ q1).
We can also easily check the following formulas are equivalent to a1 = 1 and a1 = 0 respectively
by any real QE program.
∃a2, p1 ∈ R(a2 6= 0 ∧G1 ≥ 0 ∧ a21 + a22 + p1 − 2a1p1 = 0 ∧ p1 ≥ 0).
∃a2, q1 ∈ R(a2 6= 0 ∧G2 ≥ 0 ∧ a21 + a22 + q1 − 2a1q1 = 0 ∧ 1 ≥ q1 ≥ 0).
Note that a22 + a21 − p1 and a21 + a22 + p1 − 2a1p1 are identical when a1 = 1, −2a1 + a21 + a22 + q1
and a21 + a22 + q1 − 2a1q1 are also identical when a1 = 0. Hence, the second sentence in the
previous page is true.

In order to get a desired factorization, i.e., any factor is a linear polynomial of a target variable
(p1 and q1 in the above example), we generally need some algebraic extension of Q. We can
also obtain such an algebraic extension by computation of Gröbner bases in general, although
factorization of a polynomial ring over Q suffices for all problems of Hilbert geometry given in
the past International Mathematical Olympiad.
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5 Conclusion and Remarks

Many works on geometry theorem proving such as [2] have been done to date. Their main
purpose is to develop advanced algorithms to get automatic proofs of difficult theorems. For
example, the paper [10] gives an absolute factorization algorithm which efficiently computes the
minimal algebraic extension. Meanwhile, we do not need such a sophisticated algorithm for our
purpose as is mentioned in the last section. With a minimum knowledge given in this paper,
anyone can apply our method in any CAS which can compute Gröbner bases, complex QE and
real QE. Real QE can deal with any problem, however, its computation is very heavy and many
problems cannot be handled by any of the existing real QE implementation. For a problem of
metric geometry, complex QE is sufficient. Its computation is much faster than real QE. For
a problem of Hilbert geometry, Gröbner basis computation, the fastest among others, is also
useful for reducing an original problem to a much simpler subproblem which can be handled
by most existing real QE programs. According to our computation experiment, we can detect
unnecessary assumptions within a few seconds for any problem given in the past International
Mathematical Olympiad using our method on Mathematica, Maple and REDUCE.
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267-281, Birkhäuser/Springer, 2015.

[5] Fukasaku, R., Iwane, H. and Sato, Y. Real Quantifier Elimination by Computation of
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