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Abstract:  Construction problems have always been an important part in learning Geometry. Mastering construction 
helps students in logical reasoning. In this paper, we will take a look at traditional construction problems and create 
these constructions using GeoGebra. GeoGebra, as a software, has many functions. However, in this paper, we will 
only make use of functions that mimics the traditional compass and straightedge construction. 
  We will start with simple construction such as constructing angles and triangles. We will discuss construction of angle 
bisectors. We also use construction in showing certain properties of geometric objects, such as triangles and circles. 
We look at properties of angle bisectors and side bisectors of triangles, as well as chords of a circle. Finally, we will 
build upon these basic construction techniques to eventually show and construct more complicated theorems. 

 
 
1.  Introduction 
 

Geometric construction has always been a fascination to many mathematicians and educators. 
While restricting the tools to straight edge and compass is not practical for real life construction, 
studies show that the exercises help students think logically [11]. Furthermore, geometric 
construction reflects the axiomatic system of Euclidean geometry. There is a rich supply of 
construction problems that can be analyzed from various old and new sources. In analyzing why 
certain constructions work, the students will be able to visualize how certain properties and 
formulas work. 

In solving the various construction problems, we will make use of the software GeoGebra [3]. 
Many recent papers on Geometric construction, such as [1, 12], make use of dynamic geometry 
software. In particular, GeoGebra came out in 2002 as a free dynamic geometry software, with 
comparable functionalities as other proprietary software. Currently GeoGebra is at version 4.4, with 
version 5 at the beta release. 

Works such as [9, 10] have explored the effects of using GeoGebra in teaching various math 
lessons. Using dynamic geometry software has many advantages in classroom discussions. During 
lesson planning, teachers can already create the GeoGebra files to be used for class. With the 
prepared file, the teacher has extra time to create a more stimulating discussion in classes. 
Furthermore, the software is very handy as teachers react to student questions, comments and 
conjectures. 

In this paper, we take a look at two complex construction problems: a Japanese sangaku 
problem involving four incircles inside an equilateral triangle, and the Archimedean shoemaker 
problem. It is worthwhile to mention that the solution to the shoemaker problem makes use of two 
special cases of the solution to the classical Problem of Apollonius. 
 
 
 



2.  An equilateral triangle with four congruent incircles 
 

This first problem is a Sangaku construction problem. Sangakus are wooden tablets inscribed 
with problems in Euclidean geometry offered by the Japanese at Shinto shrines or Buddhist temples 
during the Japanese isolation period (1603-1867). Sangaku problems are diverse (they are not just 
construction problems!) and provide a rich material both for teaching mathematics and research. 
Today, several references [4, 5, 6, 14, 15, 18] discuss Sangaku problems extensively. 

This particular Sangaku construction problem is interesting because students will make use of 
constructing midpoints of a line segment, perpendicular line, angle bisector, and incircle of a 
triangle. This construction problem can be summarized in the following theorem: 
 
Theorem 2.1. Given an equilateral triangle of side ܽ, a line through each vertex can be constructed 
so that the incircles of the four triangles formed are congruent. Furthermore, the incircles all have 

radii 
ଵ

଼
൫√7 െ √3൯ܽ. 

 
The existence of the three suitable lines to form the congruent incircles can be shown through 

construction. Furthermore, when we use GeoGebra to construct, we can show that changing the 
length of the side of the equilateral triangle will change the length of the radii by the multiplier 
ଵ

଼
൫√7 െ √3൯. 

The first step is to construct an equilateral triangle. We start by constructing the line segment 
 while the other has ܤ and through ܣ Next, we construct two circles: one whose center on .ܤܣ
center ܤ through ܣ. The two circles will have two points of intersection. We pick one and use it as 
the third vertex of our equilateral triangle ܥܤܣ (see Figure 2.1.a). 

Our next step is to construct the three lines mentioned in Theorem 2.1. To construct the 
suitable line passing through vertex ܣ, we need to construct the midpoint of side ܥܤ. To do so, we 
construct the circles centered at ܤ passing through ܥ and centered at ܥ passing through ܤ. The two 
circles will have two intersections ܧ and ܨ. The intersection of line segment ܨܧ and side ܥܤ is the 
midpoint ܩ of ܥܤ. 

Next, we construct the line perpendicular to ܤܣ passing through ܩ. Select ܩ as the center of a 
circle passing through ܤ. The intersection of this circle and the side ܤܣ is ܫ. We then construct two 
circles: one centered at ܤ passing through ܫ and another centered at ܫ passing through ܤ. The 
intersection of these two new circles are ܩ and ܭ. We connect ܩ and ܭ to form the line 
perpendicular to ܤܣ passing through ܩ. We then go back to the earlier circle centered at ܣ passing 
through ܤ. We take the intersection of this earlier circle and the line ܭܩ to obtain point ܮ. The line 
segment ܮܣ is the required line in Theorem 2.1 that passes through the vertex ܣ (see Figure 2.1.b). 

By a similar process, we can construct suitable lines passing through vertices ܤ and ܥ. Taking 
the intersection of these three lines and hiding the unnecessary circles and line segments, we form 
four triangles inside our original triangle ܥܤܣ (see Figure 2.2.a). 

The next step is to construct the incenters and incircles of the four interior triangles. We shall 
construct the incircle of triangle ܤܱܣ and the process for the other three triangles are the same. The 
incenter is simply the intersection of the three angle bisectors of the interior angles of the triangle. 
To obtain the intersection, however, we only need to construct at least two of the three angle 
bisectors. We start with vertex ܣ. Construct a circle centered at ܣ passing through ܱ. The 
intersection of this circle and the line segment ܤܣ is ܷ. Construct two new circles, one centered at 
ܱ passing through ܷ and another centered at ܷ passing through ܱ. One of the intersections of the 
two new circles is ܹ. Line segment ܹܣ bisects ∠ܱܤܣ (see Figure 2.2.b). 



(b)(a)  
 

Figure 2.1  (a) An equilateral triangle; (b) Constructing the suitable line from Theorem 2.1 passing 
through vertex ܣ 

 

 
 

Figure 2.2  (a) The equilateral triangle with the three lines from Theorem 2.1; (b) Constructing the 
angle bisector of ∠ܱܤܣ; 

 
We do a similar process for another angle, say ∠ܱܤܣ. The intersection of the two angle 

bisectors is the incenter ܺ of triangle ܤܱܣ. Next, we construct a line segment passing through ܺ 
and perpendicular to side ܤܣ. The intersection of ܤܣ and the perpendicular line passing through ܺ 
is ܻ. Construct a circle centered at ܺ passing through ܻ and this is the incircle of triangle ܤܱܣ. We 
repeat the process for triangles ܥܸܤ ,ܥܶܣ, and ܱܸܶ. 

Finally, we can use GeoGebra to show the measurements of the radii of the incircles as well as 
the measurement of side ܤܣ, which is ܽ. According to Theorem 2.1, when ܽ ൌ 1, the radii of the 

incircles have measurement 
ଵ

଼
൫√7 െ √3൯ ൎ 0.11 (see Figure 2.3.a). Also, when ܽ ൌ 5, the radii of 

the incircles have measurement 
ହ

଼
൫√7 െ √3൯ ൎ 0.57 (see Figure 2.3.b). 

 



 
 

Figure 2.3  (a) Verifying Theorem 3.1 when ܽ ൌ 1; (b) Verifying Theorem 3.1 when ܽ ൌ 5 
 
 
3.  The Archimedean twin circles 
 

The second problem we will discuss is interesting because it is an ancient problem. It was 
discussed in T.L. Heath’s 1897 book The Works of Archimedes [7], as well as other references [2, 
8, 16, 17]. Consider the line segment ܤܣ with point ܲ on ܤܣ. Suppose there are three circles with 
diameters ܲܣ ,ܤܣ, and ܲܤ, where the radius of circle ܲܣ is ܽ and the radius of circle ܲܤ is ܾ. Let 
ܳ be the intersection of circle ܤܣ and the line perpendicular to ܤܣ passing through ܲ. Then we 
have the following results due to Archimedes: 
 
Theorem 3.1. (a) We define the twin circles ܥଵ and ܥଶ as follows: ܥଵ is tangent to ܲܳ, circle ܤܣ, 
and circle ܲܣ while ܥଶ is tangent to ܲܳ, circle ܤܣ, and circle ܲܤ. Then ܥଵ and ܥଶ have equal radii 
and is given by 

ݐ ൌ
ܾܽ
ܽ ൅ ܾ

. 

(b) The circle ܥ tangent to circles ܲܣ ,ܤܣ, and ܲܤ has radius 

݌ ൌ
ܾܽሺܽ ൅ ܾሻ

ܽଶ ൅ ܾܽ ൅ ܾଶ
. 

 
The theorem above is reminiscent of the classical problem of Apollonius, solved by Viète by 

construction in 1600 [17]. In the problem of Apollonius, we are asked to construct a circle that is 
tangent to three given circles. This problem led to several cases (in fact, 10 cases), depending on 
whether the given circles have zero, positive finite, or infinite radius. If a given circle has zero 
radius, then you are constructing a circle tangent to a point. If a given circle has infinite radius, then 
you are constructing a circle tangent to a line. 

In Theorem 3.1.a, we are trying to construct a circle ܥଵ tangent to two circles and a line; or 
tangent to two circles with positive finite radius and a circle with infinite radius. The same is true in 
constructing ܥଶ. In Theorem 3.1.b, we are trying to construct a circle ܥ tangent to three circles of 
positive finite radius. 

Just like in the previous section, let us construct the figures described in the theorem and verify 
if the formulas are true. We start by constructing the line segment ܤܣ and picking a point ܲ in ܤܣ. 
Since ܲܣ ,ܤܣ, and ܲܤ are diameters, we need to construct the midpoints ܦ ,ܥ, and ܧ so we can 
construct the circles ܲܣ ,ܤܣ, and ܲܤ, respectively. By a similar method in the previous section, we 
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Problem of Apollonius, then a lecture can also focus on the complete solution of the Problem of 
Apollonius. 
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