Revisiting Geometric Construction using Geogebra
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Abstract: Construction problems have always been an important part in learning Geometry. Mastering construction
helps students in logical reasoning. In this paper, we will take a look at traditional construction problems and create
these constructions using GeoGebra. GeoGebra, as a software, has many functions. However, in this paper, we will
only make use of functions that mimics the traditional compass and straightedge construction.

We will start with simple construction such as constructing angles and triangles. We will discuss construction of angle
bisectors. We also use construction in showing certain properties of geometric objects, such as triangles and circles.
We look at properties of angle bisectors and side bisectors of triangles, as well as chords of a circle. Finally, we will
build upon these basic construction techniques to eventually show and construct more complicated theorems.

1. Introduction

Geometric construction has always been a fascination to many mathematicians and educators.
While restricting the tools to straight edge and compass is not practical for real life construction,
studies show that the exercises help students think logically [11]. Furthermore, geometric
construction reflects the axiomatic system of Euclidean geometry. There is a rich supply of
construction problems that can be analyzed from various old and new sources. In analyzing why
certain constructions work, the students will be able to visualize how certain properties and
formulas work.

In solving the various construction problems, we will make use of the software GeoGebra [3].
Many recent papers on Geometric construction, such as [1, 12], make use of dynamic geometry
software. In particular, GeoGebra came out in 2002 as a free dynamic geometry software, with
comparable functionalities as other proprietary software. Currently GeoGebra is at version 4.4, with
version 5 at the beta release.

Works such as [9, 10] have explored the effects of using GeoGebra in teaching various math
lessons. Using dynamic geometry software has many advantages in classroom discussions. During
lesson planning, teachers can already create the GeoGebra files to be used for class. With the
prepared file, the teacher has extra time to create a more stimulating discussion in classes.
Furthermore, the software is very handy as teachers react to student questions, comments and
conjectures.

In this paper, we take a look at two complex construction problems: a Japanese sangaku
problem involving four incircles inside an equilateral triangle, and the Archimedean shoemaker
problem. It is worthwhile to mention that the solution to the shoemaker problem makes use of two
special cases of the solution to the classical Problem of Apollonius.



2. An equilateral triangle with four congruent incircles

This first problem is a Sangaku construction problem. Sangakus are wooden tablets inscribed
with problems in Euclidean geometry offered by the Japanese at Shinto shrines or Buddhist temples
during the Japanese isolation period (1603-1867). Sangaku problems are diverse (they are not just
construction problems!) and provide a rich material both for teaching mathematics and research.
Today, several references [4, 5, 6, 14, 15, 18] discuss Sangaku problems extensively.

This particular Sangaku construction problem is interesting because students will make use of
constructing midpoints of a line segment, perpendicular line, angle bisector, and incircle of a
triangle. This construction problem can be summarized in the following theorem:

Theorem 2.1. Given an equilateral triangle of side a, a line through each vertex can be constructed
so that the incircles of the four triangles formed are congruent. Furthermore, the incircles all have

radii % (\/7 — \/§)a.

The existence of the three suitable lines to form the congruent incircles can be shown through
construction. Furthermore, when we use GeoGebra to construct, we can show that changing the
length of the side of the equilateral triangle will change the length of the radii by the multiplier
L7 -3).

The first step is to construct an equilateral triangle. We start by constructing the line segment
AB. Next, we construct two circles: one whose center on A and through B while the other has
center B through A. The two circles will have two points of intersection. We pick one and use it as
the third vertex of our equilateral triangle ABC (see Figure 2.1.a).

Our next step is to construct the three lines mentioned in Theorem 2.1. To construct the
suitable line passing through vertex A, we need to construct the midpoint of side BC. To do so, we
construct the circles centered at B passing through C and centered at C passing through B. The two
circles will have two intersections E and F. The intersection of line segment EF and side BC is the
midpoint G of BC.

Next, we construct the line perpendicular to AB passing through G. Select G as the center of a
circle passing through B. The intersection of this circle and the side AB is I. We then construct two
circles: one centered at B passing through [ and another centered at I passing through B. The
intersection of these two new circles are G and K. We connect G and K to form the line
perpendicular to AB passing through G. We then go back to the earlier circle centered at A passing
through B. We take the intersection of this earlier circle and the line GK to obtain point L. The line
segment AL is the required line in Theorem 2.1 that passes through the vertex A (see Figure 2.1.b).

By a similar process, we can construct suitable lines passing through vertices B and C. Taking
the intersection of these three lines and hiding the unnecessary circles and line segments, we form
four triangles inside our original triangle ABC (see Figure 2.2.a).

The next step is to construct the incenters and incircles of the four interior triangles. We shall
construct the incircle of triangle AOB and the process for the other three triangles are the same. The
incenter is simply the intersection of the three angle bisectors of the interior angles of the triangle.
To obtain the intersection, however, we only need to construct at least two of the three angle
bisectors. We start with vertex A. Construct a circle centered at A passing through O. The
intersection of this circle and the line segment AB is U. Construct two new circles, one centered at
O passing through U and another centered at U passing through O. One of the intersections of the
two new circles is W. Line segment AW bisects Z0OAB (see Figure 2.2.b).
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Figure 2.1 (a) An equilateral triangle; (b) Constructing the suitable line from Theorem 2.1 passing
through vertex A

Ad
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Figure 2.2 (a) The equilateral triangle with the three lines from Theorem 2.1; (b) Constructing the
angle bisector of ZOAB;

We do a similar process for another angle, say 2ZABO. The intersection of the two angle
bisectors is the incenter X of triangle AOB. Next, we construct a line segment passing through X
and perpendicular to side AB. The intersection of AB and the perpendicular line passing through X
is Y. Construct a circle centered at X passing through Y and this is the incircle of triangle AOB. We
repeat the process for triangles ATC, BVC, and TOV.

Finally, we can use GeoGebra to show the measurements of the radii of the incircles as well as
the measurement of side AB, which is a. According to Theorem 2.1, when a = 1, the radii of the

incircles have measurement é (\/7 - \/§) ~ 0.11 (see Figure 2.3.a). Also, when a = 5, the radii of
the incircles have measurement Z (\/7 — \/§) ~ 0.57 (see Figure 2.3.b).



Figure 2.3 (a) Verifying Theorem 3.1 when a = 1; (b) Veritying Theorem 3.1 whena = 5

3. The Archimedean twin circles

The second problem we will discuss is interesting because it is an ancient problem. It was
discussed in T.L. Heath’s 1897 book The Works of Archimedes [7], as well as other references [2,
8, 16, 17]. Consider the line segment AB with point P on AB. Suppose there are three circles with
diameters AB, AP, and PB, where the radius of circle AP is a and the radius of circle PB is b. Let
Q be the intersection of circle AB and the line perpendicular to AB passing through P. Then we
have the following results due to Archimedes:

Theorem 3.1. (a) We define the twin circles C; and C, as follows: C; is tangent to PQ, circle AB,
and circle AP while C, is tangent to PQ, circle AB, and circle PB. Then C; and C, have equal radii
and is given by
ab
S
(b) The circle C tangent to circles AB, AP, and PB has radius
ab(a + b)

=a2+ab+b2'

The theorem above is reminiscent of the classical problem of Apollonius, solved by Viete by
construction in 1600 [17]. In the problem of Apollonius, we are asked to construct a circle that is
tangent to three given circles. This problem led to several cases (in fact, 10 cases), depending on
whether the given circles have zero, positive finite, or infinite radius. If a given circle has zero
radius, then you are constructing a circle tangent to a point. If a given circle has infinite radius, then
you are constructing a circle tangent to a line.

In Theorem 3.1.a, we are trying to construct a circle C; tangent to two circles and a line; or
tangent to two circles with positive finite radius and a circle with infinite radius. The same is true in
constructing C,. In Theorem 3.1.b, we are trying to construct a circle C tangent to three circles of
positive finite radius.

Just like in the previous section, let us construct the figures described in the theorem and verify
if the formulas are true. We start by constructing the line segment AB and picking a point P in AB.
Since AB, AP, and PB are diameters, we need to construct the midpoints C, D, and E so we can
construct the circles AB, AP, and PB, respectively. By a similar method in the previous section, we



also construct point Q by constructing the line perpendicular to AB passing through P (see Figure
3.1).

Figure 3.1 Constructing circles AB, AP, PB

The next step is to construct the twin circles C; and C,. We shall construct the circle C;, and C,
is constructed similarly. First, we construct the line segment FD, where FD is perpendicular to AB
at D. Then we construct GE, where GE is perpendicular to AB at E. Then we find the intersection H
of line segments DG and FE. Construct the circle centered at P passing through H. The intersection
of this circle with AB are points I and J. Construct the circle centered at D passing through J and
construct the line perpendicular to AB passing through I. The intersection L of the last circle and
perpendicular line is the center of circle C;. Next, construct the line perpendicular to PQ passing
through L. The intersection M of this perpendicular line with PQ is the point of tangency of C; with
PQ. So, C; is simply the circle centered at L passing through M (see Figure 3.2).
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Figure 3.2 Constructing circle C;

Q

When C, has been constructed, we can now verify Theorem 3.1.a. For example, when a = 4

andb =3,t = 1—72 ~ 1.71 (see Figure 3.3).



Figure 3.3 Verifying Theorem 3.1.awhena =4 and b = 3

Theorem 3.1.b is interesting for another reason. The construction involved is related to Soddy’s
circles [16]. The traditional statement of the problem in Soddy’s circles is that given circle AB,
three circles interior to circle AB can be constructed such that all four circles are mutually tangent
to each other at a total of six points. In Theorem 3.1.b, however, the big circle AB and two of the
three interior circles (circles AP and PB) are already given. The task is to construct the third circle
C. In the end, the four circles will be mutually tangent at six points.

To construct circle C, we start at our three original circles: circles AB, AP, and PB, with
centers C, D, and E, respectively. Just like the previous construction, we construct the line segment
FD, where FD is perpendicular to AB at D. Then we construct GE, where GE is perpendicular to
AB at E. Then we find the intersection H of line segments DG and FE. Now, construct the circle
centered at H passing through P. The intersection of circle AP with circle HP is [ while the
intersection of circle PB with circle HP is J. The intersection of DI and EJ is L. Circle C is the
circle centered at L passing through I and J (see Figure 3.4).

Figure 3.4 Constructing circle C

We can now verify Theorem 3.1.b. For example, when a = 3.7 and b = 2.2, p = _ablatb) _

co a?+ab+b?
8.14X5. 48 .

= ~ 1.8 (see Figure 3.5).
13.69+8.14+4.84  26.67




a=3.7 b=22

Figure 3.5 Verifying Theorem 3.1.b when a = 3.7 and b = 2.2

4. Concluding Remarks

In this short note, we have seen solved construction problems using GeoGebra. While using
GeoGebra for construction is a good idea, actually doing it is not as easy as it sounds. The students
(and teachers!) need to figure out which GeoGebra functionalities to use given a set of construction
instructions. That is a good exercise as each step in the construction can then be analyzed by the
student.

As a software, GeoGebra has a lot of functionalities. If we are being strict with construction
using straight edge and compass, we need to ignore many of the functionalities of GeoGebra.
Recently, a game called “Euclid the Game” [13] is becoming popular. The game actually limits the
functionalities of GeoGebra, giving a good exercise in construction. Furthermore, this shows that
learning construction using GeoGebra can also be fun. As the level of the player in the game
progress, more GeoGebra functionalities are being allowed. A similar concept can also be done in
classroom discussions for complex construction problems like the ones presented in this paper.
Teachers can start with simple and basic construction techniques and when the class progress to the
more complicated constructions, they can start using the other GeoGebra functionalities.

The choice of the construction problem used in the classroom discussion is equally important.
In this note, we made use of two problems both with great historical background. The historical
background can be used as an interesting context at the start of the discussion. Teachers can pose
questions such as why the ancient Japanese created the Sangaku problems or how the Archimedean
shoemaker problem is a special case of the Problem of Apollonius.

The complexity of the problem is also important as it allows teachers to start at easier
construction problems and progress to more difficult and complicated ones, until the main problem
is solved. In both examples above, students need to learn how to construct perpendicular lines, how
to find the midpoint, how to construct an equilateral triangle, how to find the incenter and construct
the incircle. For some students, each of these simple construction problems may be dull when
discussed on its own. But when they are discussed in the context of a much more complex problem
(such as the examples above), then learning these simple construction problems now has a purpose.

Lastly, the two problems discussed in this paper is just part of a wider collection of problems.
The Sangaku problems, while not all are construction problems, consists of many construction
problems. A lecture, or series of lectures, can focus on the different Sangaku construction
problems. On the other hand, since the Archimedean shoemaker problem is a special case of the



Problem of Apollonius, then a lecture can also focus on the complete solution of the Problem of
Apollonius.
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