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Abstract

We propose an interval-symbol method with correct zero rewriting or ISCZ method for
short, which is an extension of the so-called interval method, to obtain exact results while
reducing exact computations. Namely, this method uses not only a floating-point interval
but also a symbol for each real coefficient of a polynomial. Symbols are used to keep
track of the execution path of the original algorithm with exact computations. Moreover,
the method has the rule of zero rewriting from stabilization techniques, which rewrites an
interval into the zero interval if the interval contains zero. The key point is that at each
stage of zero rewriting, one checks to see if the zero rewriting is really correct; namely, an
interval considered to be zero is really zero by exploiting the associated symbol. Therefore,
one can expect that it mostly uses floating-point computations; exact computations are
only performed at the stage of zero rewriting and in the final evaluation to get the exact
coefficients. As another important merit, one does not need to check the correctness of
the output. The results of Maple experiments on convex hull construction indicate that
our method is very effective for non-rational coefficients.

1 Introduction

While usually polynomials with exact coefficients are obtained by executing an algorithm with
exact computations in all steps, the new method we propose makes the exact computations



as few as possible, or equivalently, it makes the floating-point computations as many as pos-
sible, but nevertheless obtains polynomials with exact coefficients. This method is based on
stabilization techniques [10].

Stabilization techniques were proposed to moderate instability of algebraic algorithms de-
rived from the use of floating-point computations. These techniques are fundamentally the
interval method using zero rewriting, where if 0 lies within an interval, the interval is rewritten
to an interval with center 0 and radius 0. When using a stabilized algorithm, if we increase
the precision of the floating-point coefficients of the input, the output will converge to the true
output. Here, precision denotes the number of decimal digits in the mantissa of a floating-point
representation.

Let us briefly mention two categories of application of stabilization techniques. The first
category is one in which we estimate the precision for stabilization in advance, and with that
precision run the stabilized algorithm to get the reasonably approximate result. A typical
example is floating point Gröbner basis [7]. However, there is the problem of estimating which
precision will give a stabilized result. As the first success, Khungurn and the authors solved
this problem for GCD computing algorithms [5].

The second category is one in which we repeatedly run the stabilized algorithm while in-
creasing the precision until the correct result is obtained. An example of the second category is
a method of Gröbner basis conversion using floating-point computations [8]. Another example
is the ISZ method [11, 12]. In this method, we used not only a floating-point interval but also
a symbol for each coefficient of a polynomial. Symbols are used to keep track of the execu-
tion path of the original algorithm with exact computations. The notion of interval-symbols
(IS’s), which is thought of as an extension of intervals, will also be used in the new method
we propose. The details on this notion will be described in Section 3.1. After the algorithm
terminates, one evaluates the symbols of the output and get a result with exact coefficients. If
necessary, one goes back to the starting point and increases the precision of the floating-point
input and computation until a correct result is obtained. The details on the ISZ method can
be found in [9].

The new method is similar to the ISZ method from the viewpoint of using symbols, but is
definitely different in its treatment of zero rewriting. Whereas the ISZ method runs until the
end regardless of whether zero rewriting is correct, the new method checks at each stage of
zero rewriting if the zero rewriting is correct by evaluating the associated symbols. Here, zero
rewriting is correct if the evaluated value is really zero. Therefore, one can expect that this
method mainly involves floating-point computations; exact computations are only performed
in zero rewriting and in the final evaluation to get the exact coefficients. In other words, one
can reduce the exact computations of nonzero coefficients and still obtain correct results with
exact coefficients. Moreover, unlike the ISZ method, one does not need to check the correctness
of the output. The advantages of the new method will be discussed in detail in Section 3.2.

In the work [9] at SNC 2009, we reported experimental results on Buchberger’s algorithm
that computes Gröbner bases. At that time, we could not claim that the ISCZ method is always
more effective than the purely exact approach which uses exact computations in all steps The
main reason for this is that symbols tend to grow drastically due to the presence of recursion
when executing reduction of polynomials. In the present paper, we perform new experiments
on convex hull construction with Graham’s algorithm that has no recursion, to show the real
advantage of the ISCZ method over the purely exact method. Moreover, for Gröbner basis



computation, we introduced symbol lists to circumvent the growth of symbols as explained in
Section 3.3. Surprisingly, in the case of convex hull construction, we discovered that the ISCZ
method not using symbol lists is much more faster than one using symbol lists.

Related researches about using approximate computations to obtain exact results include
[3, 4] for real algebraic number computations and real root isolation. Both of them employ
interval arithmetic, and if interval arithmetic is not successful, they resort to exact computations
without a symbol. On the other hand, lazy arithmetic [2] utilizes an IS-like notion called a lazy
number in computational geometry. While they treat only rational numbers as inputs, we can
treat non-rational numbers too.

This paper is organized as follows. Section 2 briefly reviews the theory of stabilization
techniques, namely, the interval method with zero rewriting. Section 3 describes the proposed
method, and Section 4 gives experimental results on convex hull construction. The conclusion
mentions future work.

2 Review on the Interval Method with Zero Rewriting

We briefly describe the stabilization techniques, namely, the interval method with zero rewriting
for the following class of algorithms:

• Input, intermediate, and output data are from the polynomial ring R[x1, . . . , xm], where
R is a subring of the real numbers.

• Operations on data are polynomial functions over R.

• Predicates on data have zero discontinuity.

Let us explain the discontinuity set of a predicate. Predicates map polynomials to the set
of two elements: {“TRUE”, “FALSE”}. A predicate p is discontinuous at f ∈ R[x1, . . . , xm] if
there exists a sequence {fi}i in R[x1, . . . , xm] where fi → f but p(fi) 6→ p(f) (i.e. for any M
there is M ′ ≥ M s.t. p(fM ′) 6= p(f)). Here, fi → f means that fi converges coefficientwise to
f , where convergence in the coefficient ring R is defined from the usual topology on the real
numbers. A predicate is said to have zero discontinuity if it has no discontinuous points – i.e.
it is continuous – or the only discontinuous point of the predicate is zero, i.e. a polynomial all
of whose coefficients are 0, such as in the if statement “If C = 0 then ... else ...”. Instead of
“If C = 0”, “If C ≥ 0” or “If C > 0” can also be considered.

Let us call the class of algorithms that satisfy the above three conditions, algebraic algo-
rithms with zero discontinuity.

Now the interval method with zero rewriting consits of the following three points:

R-to-Interval Make each input coefficient a into a (circular) interval [ã, α] of a, where ã is a
floating-point approximation of a with a specified precision µ and α is an error bound.

Interval Arithmetic Employ interval arithmetic (see [1]) for addition, subtraction, and mul-
tiplication between intervals.

Zero Rewriting For any intermediate interval [E, ε], rewrite [E, ε] to [0, 0] if |E| ≤ ε in the
course of executing A.



Let us call this procedure Stab(A). The details can be found in [10].
Before we can discuss the effect of Stab(A), we must define a few concepts. If we write

an input f ∈ R[x1, . . . , xm] as f =
∑
¸ a¸x¸ using multi-index notation, an approximation

sequence {Int(f)j}j for f can be defined as Int(f)j =
∑

α[(a¸)j, (ε¸)j] x
¸, where for all α and

for any j, we have |a¸− (a¸)j| ≤ (ε¸)j, and (ε¸)j → 0 as j →∞. In this case, we simply write
Int(f)j → f . Most typically, (a¸)j is a floating-point approximation of a¸ with precision j.

The fundamental theorem is as follows.

Theorem 1 (Stability Theorem [10]) Let algorithm A be an algebraic algorithm with zero
discontinuity, and let it terminate normally for an input f ∈ R[x1, . . . , xm]. Then, for any
approximation sequence {Int(f)j}j for f , there exists n such that if j ≥ n, Stab(A) terminates
normally for Int(f)j, and Stab(A)(Int(f)j) → A(f).

3 ISCZ method

3.1 Interval-Symbols

We introduce coefficients based upon intervals with formal symbols for polynomials. These were
also used for the ISZ method. As before, intervals play the role of “reasonable” approximations
with regard to the input, intermediate, and output coefficients. The intervals have the property
that they always contain an exactly correct point. Symbols play the role of keeping track of the
coefficients appearing in the course of a given algorithm. For example, let input coefficients be
1/3 and 1/9. The intervals for 1/3 and 1/9 are [.333, .0005] and [.111, .0005] with precision digits
3. Let the symbols for 1/3 and 1/9 be, say, s and t (indeterminates). Combining the interval and
symbol for each, we can write [[.333, .0005], s] and [[.111, .0005], t] for these input coefficients.
Next consider an operation, say, addition. We define addition between [[.333, .0005], s] and
[[.111, .0005], t] as:

[[.333, .0005], s] + [[.111, .0005], t] = [[.333, .0005] + [.111, .0005], +̇(s, t)]

We use interval arithmetic for [.333, .0005] + [.111, .0005]. The symbol part +̇(s, t) is still a
formal symbol, namely a formal sequence of the symbols “+̇”, “(”, “s”, “,”, “t”, and “)”. If
necessary, one may replace +̇(s, t) by another symbol or code. In any case, one has only to
keep track of operations and the associated arguments in each step of an algorithm. There
might be some clever methods for efficient symbolization or coding. Section 3.3 gives one such
example. When the algorithm finishes executing, one can recover or evaluate the final symbols
of the output to see what their values actually are. Let us call such a pair of an interval and a
symbol, an interval-symbol, or simply an IS. For an IS u = [[a, α], s], we shall call the interval
part [a, α] the I part of u, and the symbol part s the S part of u.

Conversely, given a symbol, its exact value can be obtained by substituting the original
values from R of the input coefficients for the respective input symbols. In this substitution,
operation symbols such as “+̇”, “×̇” are given the mathematical meanings of their associated
functions. The reason why the S part works is that it has information about how the coefficient
arises from the original input coefficients, i.e., how it is generated from the input symbols. As a
simple example, let S = ×̇(s, +̇(t, u)) be the S part of an IS, where s, t and u are input symbols
for

√
2, 3, and 4, respectively. Then if one performs the substitution s =

√
2, t = 3, and u = 4



for S, one should obtain the result
√

2× (3+4) = 7
√

2. This implies that the correct coefficient
should be 7

√
2. By evaluating a symbol, we mean obtaining the exact value from the symbol

in this manner.

3.2 Theory

Given an algebraic algorithm with zero discontinuity, we propose a new method for reducing
the steps of exact computations to obtain exact results. The fundamental idea is that like the
ISZ method we use IS coefficients for keeping track of coefficients, but at each stage of zero
rewriting we guarantee that the zero rewriting is really correct by evaluating the symbol. In
contrast, the ISZ method runs until the end regardless of whether intermediate zero rewriting
is correct.

The description of the method is as follows:

R-to-IS Make each input coefficient a into a pair [[ã, α], Symbola], where [ã, α] is an interval
of a with a (preselected) precision, and Symbola is an indeterminate representing a.

IS Arithmetic Perform arithmetic between IS’s:

[[A,α], s] + [[B, β], t] = [[A, α] + [B, β], +̇(s, t)]

[[A,α], s]− [[B, β], t] = [[A,α]− [B, β], −̇(s, t)]

[[A,α], s]× [[B, β], t] = [[A,α]× [B, β], ×̇(s, t)]

Correct Zero Rewriting For any intermediate IS [[E, ε], s], if |E| ≤ ε, then evaluate the
symbol s to make the associated real number r(s). If r(s) = 0, proceed to the next step;
if otherwise, raise the precision and go back to R-to-IS.

IS-to-R Substitute the original input coefficient values for the respective symbols to evaluate
the S part of the output.

We refer to this method as the ISCZ method (the IS method with correct zero rewriting).
The execution path of Stab(A) evaluated on Int(f)j with some precision j will be exactly

the same as that of A evaluated on f , when every zero rewriting throughout the algorithm is
correct. In the ISCZ method, at each step of zero rewriting, the correctness of the zero rewriting
is checked. From the stability theorem, there is a precision for which every zero rewriting is
correct. Therefore, the ISCZ method terminates in a finite number of steps, and the symbol of
each IS coefficient of the output gives the correct output.

We thus have the following theorem:

Theorem 2 (Termination and Correctness of the ISCZ Method) Suppose that A ter-
minates with an input I. Then, the ISCZ method for A always terminates in a finite number
of steps and gives the correct result, i.e. the same result as the output of A(I).

The advantage of the ISCZ method is that unlike the ISZ method one does not need to
check the correctness of the output. One can skip exact computations (evaluation of s) of any
IS [[E, ε], s] and use only floating-point computations unless |E| ≤ ε. In other words, one can
reduce the exact computations of nonzero coefficients. Therefore, the ISCZ method is effective
when there are more cases where |E| > ε than those where |E| ≤ ε.



3.3 Symbol List

The ISCZ method can obviously cause the S parts of IS’s to grow. Although evaluations can
be avoided in the intermediate stages, if the symbols themselves become too big, the method
would fail because of memory exhaustion. Here, we discuss a way to circumvent the growth of
the S parts.

If one always uses the IS’s themselves, the size of the S parts would grow explosively and
the method might be impractical. Here, we give an efficient method using integers – address
numbers – instead of symbols themselves to keep track of the S parts.

We use pairs of the form [[A,α],M ], where [A,α] is an interval and M is an indeterminate
or integer, and a list containing information as to how each pair is constructed from other pairs.
Let us call the list the symbol list. After executing the algorithm, we will recover the IS’s from
the symbol list.

1. Do R-to-IS conversion as described in Section 3.1.

2. (Initialization) Let N be 0 and the symbol list L be the empty list.

3. An operation ∗ (+, −, × etc.) between pairs [[A,α], L] and [[B, β],M ] is defined as
follows.

First, compute the interval part and apply zero rewriting to the resulting interval [C, γ] =
[A, α] ∗ [B, β].

If [C, γ] is rewritten to [0, 0], the result is 0 and do not change L.

Otherwise, increment N (i.e., N := N + 1), make the new coefficient [[C, γ], N ] and add
(∗̇, L, M) to the end of L.

4. (Recovery) Let [[A,α], N ] be a coefficient of a polynomial in the output. Convert the pair
[[A,α], N ] into the associated IS as follows:

If N is an indeterminate, do nothing. The pair [[A,α], N ] is the IS.

Otherwise (i.e., N is an integer), convert N into the associated symbol S by rewriting N
to the Nth element of L recursively. The resulting pair [[A,α], S] is the IS.

The symbol list was sometimes useful for Gröbner basis computation, but as we will see in
the next section, it may not always be necessary.

4 Experiments on Convex Hull Construction

We applied the ISCZ method to construct two-dimensional convex hulls. The convex hull of a
set S of points is the smallest convex set containing S. Hereafter, we assume that S is a finite
set in R2 so that the convex hull of S is a convex polygon. Therefore, for a given finite set S of
points, “to find the convex hull of S” means “to give an ordered list of vertices of the convex
hull of S.”

There are several well-known algorithms for constructing two-dimensional convex hulls, and
these include Graham’s algorithm, Jarvis’ algorithm, and Bentley-Shamos’ algorithm (see [6]
for instance). A basic routine in these algorithms is to determine whether P3 is to the left of,



to the right of, or on the directed line from P1 to P2, for three given points Pi = (xi, yi) (i = 1,
2, 3). This is equivalent to determining the signature of the determinant

∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
,

because the determinant is positive, negative or zero, depending on whether P3 is to the left
of, to the right of or on the directed line P1 to P2.

Graham’s algorithm is as follows.
Graham’s algorithm.

Input: A finite set S = {P1, P2, . . . , Pm} ⊂ R2.
Output: A list of vertices for the convex hull of S.

1. [Base point] Pick a point in S that will be a vertex of the convex hull (e.g., the point with
the largest y-coordinate among the points with the smallest x-coordinate) and call it O.

2. [Sort] Sort the points in S, other than O, in increasing order of the arguments of the line
segments from O to Pi. If more than one point have the same argument, select the one
farthest from O and discard the others among them. Let Q1, Q2, . . . , Qn be the result
of this operation, and put Q0 = O.

3. [Sweep] Create the convex hull by determining whether Qi is to the left of the directed
line Qi−2 to Qi−1 or not. More precisely, the procedure can be described as follows:

j := 0
for i from 0 to n do

j := j + 1
Rj := Qi

while j ≥ 4 and Rj is to the right of or on
−−−−−−→
Rj−2Rj−1 do

Rj−1 := Rj

j := j − 1
return [R1, R2, . . . , Rj]

Notice that Graham’s algorithm is also an algebraic algorithm with zero discontinuity. We
applied this algorithm to the following 8 examples through the implementation of our methods.

The first four examples consist of 5000 input points with integer coordinates.

Example 1 5000 points with coordinates (X, Y ), where X and Y are randomly generated in-
tegers satisfying that 0 ≤ X, Y ≤ 200.

Example 2 5000 points with coordinates (X, Y ), where X and Y are randomly generated in-
tegers satisfying that −200 ≤ X, Y ≤ 200 and X2 + Y 2 ≤ 2002.

Example 3 5000 points with coordinates (X, Y ), where X and Y are randomly generated in-
tegers satisfying that 0 ≤ X, Y ≤ 400, X2 + Y 2 ≤ 4002, and Y 2 ≤ 3X2. That is, the points are
bounded by a sector whose center is at the origin, radius is 400, and angle subtended by the arc
at the center is π/3.



Example 4 The origin (0, 0) and 4999 points with coordinates (X, Y ), where X and Y are
randomly generated integers satisfying that 1 ≤ X, Y ≤ 6000, X2 + Y 2 ≤ 60002, and 9

10
≤ Y

X
≤

1. That is, the points are bounded by a narrow sector whose center is at the origin and radius
is 6000.

The second four examples consist of 5000 input points with non-rational coordinates.

Example 5 5000 points with coordinates (
√

X,
√

Y ), where X and Y are randomly generated
integers satisfying that 0 ≤ X, Y ≤ 200.

Example 6 5000 points with coordinates (sign(X)
√
|X|, sign(Y )

√
|Y |), where sign(X) is the

sign of X, and X and Y are randomly generated integers satisfying that −200 ≤ X,Y ≤ 200
and X + Y ≤ 200.

Example 7 5000 points with coordinates (
√

X,
√

Y ), where X and Y are randomly generated
integers satisfying that 0 ≤ X,Y ≤ 400, X + Y ≤ 400, and Y ≤ 3X. That is, the points are
bounded by a sector whose center is at the origin, radius is 20, and angle subtended by the arc
at the center is π/3.

Example 8 The origin (0, 0) and 4999 points with coordinates (
√

X,
√

Y ), where X and Y are
randomly generated integers satisfying that 1 ≤ X, Y ≤ 6000, X + Y ≤ 6000, and 9

10
≤ Y

X
≤ 1.

That is, the points are bounded by a narrow sector whose center is at the origin and radius is
20
√

15.

We performed the ISCZ method implemented in Maple 12, where the initial precision is 1
and the step of increasing precision is 1, on a computer with a dual core AMD(R) Opteron(R)
processor (2.85GHz), 8GB RAM, and Linux(R) OS. The Maple code can be freely downloaded
from the url http://www.rs.tus.ac.jp/˜sekigawa/programs/.

We tried two versions of using symbol lists and not using symbol lists, because Graham’s
algorithm may not cause the symbols of IS’s to grow so largely as Buchberger’s algorithm does.
Moreover, we introduced an evaluation list in which the value r(s) is kept once s is evaluated,
so that we can reuse it when we must evaluate s more than once. Using this list, we will count
the number of evaluated symbols and how many times symbols were referenced.

Finally, we implemented Graham’s algorithm in Maple 12, which gives convex hulls with
exact coefficients by performing only exact computations in the real field. Let us call this
function R CH.

The experimental results are shown in Tables 1 and 2, respectively. Here, cpu time (1)
means the total of the cpu times in seconds required for computations with the initial precision
to the successful precision using symbol lists, and cpu time (2) means one not using symbol lists.
“SP” and “ZR” stand for the successful precision and the number of intervals that were actually
rewritten into zero by zero rewriting. “# of skipped nonzero coefficients” means the number of
nonzero coefficients for which exact computations were skipped because of the “|E| > ε” case
at the precision that produced a success. “len. of symbol list” denotes the length of the final
symbol list. “# of references” means the number of total references of the symbols, and the
numbers in the braces mean the maximal reference times of a symbol.

From this we can conclude:



Table 1: Convex hull (integer coordinates)

Ex. cpu cpu SP ZR # of skipped len. of # of # of R CH
time time nonzero symbol evaluated references
(1) (2) coefficients list symbols

1 6510.6 8.2 6 1693 64920 130695 9403 9677 (22) 5.8
2 6262.9 9.3 6 774 67406 137748 4560 4662 (15) 6.6
3 5885.2 9.1 7 1059 66612 135189 5976 6167 (24) 6.3
4 4371.4 9.8 8 174 68978 142649 1062 1092 (18) 7.2

Table 2: Convex hull (non-rational coordinates)

Ex. cpu cpu SP ZR # of skipped len. of # of # of R CH
time time nonzero symbol evaluated references
(1) (2) coefficients list symbols

5 5039.5 10.6 9 660 67602 139214 2775 2806 (19) 72.1
6 6008.3 11.4 10 386 68439 141166 1697 1730 (31) 59.5
7 5127.4 11.1 9 560 68200 140508 2549 2582 (26) 72.7
8 5743.0 11.7 11 222 68695 141562 1215 1264 (29) 54.2

1. The ISCZ method without symbol lists is much more efficient than one with symbol lists.

2. The ISCZ method without symbol lists is more efficient than R CH in the case of non-
rational coefficients.

3. The number of evaluated symbols is much less than the length of the final symbol list,
namely, exact computations are essentially reduced.

Moreover, in the case of convex hulls, it would be generally difficult to verify that the
obtained result is a really correct convex hull without constructing the convex hull with an
exact approach, but the ISCZ method theoretically guarantees the correctness without any
later verification.

5 Conclusion

We proposed a method to obtain exact results using floating-point computations in most parts
of the intermediate stages for the class of algebraic algorithms with zero discontinuity. Whether
one should use symbol lists depends on the algorithm in question. When symbols grow largely
due to recursion and so on, as in Buchberger’s algorithm, we should use symbol lists. On the
other hand, for algorithms whose structure is “flat” like Graham’s algorithm, not using symbol
lists would be better. Moreover, in the case of non-rational coefficients, the ISCZ method is
generally more useful than it is in the case of rational coefficients, since it can avoid a significant
amount of exact arithmetic in the intermediate stages. Our future work will include finding
algorithms for which the ISCZ method is useful and practical examples in the real world.
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