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Abstract

The present paper investigates, the mathematical modelling of the existence of Love
type waves in a piezoelectric layer overlying a non-homogeneous half-space. Piezoelectric
layer is considered for two different cases one is electrical open circuit and another one
is electrical short circuit. The general dispersion equation has been derived for both the
cases. As a special case dispersion equation has been obtained when the half-space is
homogeneous medium. The velocities of Love waves have been calculated numerically as
a function of wave number kh. The effect of non-homogeneity and dielectric constant are
illustrated by graphs in both electrically open and electrically short circuit cases. All the
figures show that phase velocity decreases with the increases of wave number kh. Using
MATLAB software, graphical user interface (GUI) has been developed to generalize the
effect of parameters discussed. The results can be used to understand the nature of wave
propagation in piezoelectric structures.
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1 Introduction

Seismology is the study of earthquake and seismic wave that tells us about the structure of Earth
and physics of earthquake. A seismologist is a scientist who studies earthquakes and seismic
waves. The science of seismology aims simultaneously to know the infrastructure of the Earth’s
interior with the help of seismic wave phenomena and to study the nature of earthquake sources
with ultimate gole of mitigating and eventually controlling the phenomena. If the Earth rapidly
displaced at some point then energy imparted into the Earth by the source of the distortion
can be transmitted in the form of elastic waves. Ewing et al. [11] gave the basic literature on
the propagation of elastic waves.

A.E.H Love [20] developed a mathematical model of surface waves known as Love waves. He
predicted the existence of Love waves mathematically in 1911. The problems of propagation of
Love waves in the anisotropic and non-homogeneous medium have of great practical importance.



They are not only helpful in investigating the internal structure of Earth but also are very helpful
in exploration of natural resources buried inside the Earths surface. These waves are propagated
when the solid medium near the surface has non-homogeneous elastic properties. In Love-type
waves, there is no particle motion in the vertical plane but particle motion takes place in the
horizontal plane only and it is transverse to the direction of propagation. Chattopadhyay [5]
derived his idea on the dispersion equation for Love wave due to irregularity in the thickness of
non-homogeneous crustal layer. Chakraborty and Dey [3] have found that the propagation of
Love waves in water saturated soil underlain by heterogeneous elastic medium. A detail study
on seismology and plate tectonics made by Gubbins [13]. Dey et al. [7] investigated propagation
of Love waves in heterogeneous crust over a heterogeneous mantle. Love waves in a two-layered
half-space studied by Singh [28]. Abd-Alla and Ahmed [1] discussed the propagation of Love
waves in a non-homogeneous orthotropic elastic layer under initial stress overlying semi-infinite
medium. Wave transport for a scalar model of the Love waves observed by Bal and Ryzhik
[2]. The Influence of anisotropy on the Love waves in a self-reinforced medium had obtained
by Pradhan et al. [23].

Love wave propagating in the piezoelectric materials is extensively used in sensors and
transducers. The propagation of Love wave in elastic or piezoelectric materials has been in-
vestigated by many researchers. Li et al. [18] delivered his idea on the propagation of Love
waves in functionally graded piezoelectric materials. Du et al. [8] investigated Propagation of
Love waves in pre-stressed piezoelectric layered structures loaded with viscous liquid. Cao et al.
[4] studied propagation of Love waves in a functionally graded piezoelectric material (FGPM)
layered composite system. Effect of an imperfect interface on the SH wave propagating in a
cylindrical piezoelectric sensor discussed by Li and Lee [17].

Propagation of waves in piezoelectric structural layer have received considerable attention
previously as exhibited by the work of Eskandari and Shodja [10], Du et al. [9], Nie et al. [21]
Sharma et al. [26] [27]. Qian et al. [24] found the dispersion characteristics of transverse surface
waves in piezoelectric coupled solid media with hard metal interlayer. The effect of initial stress
on the propagation behavior of SH waves in piezoelectric coupled plates introduced by Sona
and Kang [30] after that in [31] they have been found the effect of shear wave propagation
in a layered poroelastic structure. Li et al. [19] studied a three-layer structure model for
the effect of a soft middle layer on Love waves propagating in layered piezoelectric systems.
Piliposian et al. [22] formulated the shear wave propagation in periodic phononic/photonic
piezoelectric medium. Theoretical validation of the existence of two transverse surface waves
in piezoelectric/elastic layered structures had also assumed by Qian and Hirose [25].

Many works have been done by many researchers in the field of Love wave propagation.
Some of them are Ghorai et al. [12], Gupta et al. [14], W.H. Sun et al. [29]. Gupta et al. [15]
established propagation of Love waves in non-homogeneous substratum over initially stressed
heterogeneous half-space. Possibility of Love wave propagation in a porous layer under the effect
of linearly varying directional rigidities obtained by Gupta et al. [16]. Chattopadhyay et al. [6]
investigated dispersion of horizontally polarized shear waves in an irregular non-homogeneous
self-reinforced crustal layer over a semi-infinite Self-reinforced Medium.

In this paper, we carry out an investigation of the existence of propagation of Love wave
in layered piezoelectric overlying a non-homogeneous half-space. Piezoelectric sensitive layer
structures having layer electromechanical coupling factors, PZT-4 metal has been widely ap-
plied. Piezoelectric layer is considered for two different cases one is electrically open circuit and



another one is electrically short circuit. The influences of dielectric constant and inhomogeneity
parameter for the layer and half-space are also discussed.

2 Formulation of the Problem

Consider an elastic piezoelectric layer of thickness h (where −h ≤ z ≤ 0) overlying a non-
homogeneous half-space as shown in figure 1. The piezoelectric layer is deposited perfectly

Figure 1: Geometry of the problem

on the heterogeneous layer, which results in a surface at z = −h free of external forces. The
plane z = 0 is surface of contact of piezoelectric layer and half-space and the z-axis is vertically
downwards. The x-axis is parallel to the direction of propagation of the wave. So, the non-zero
field of quantities representing the motion are only function of x, z and time t.

3 Solution of Problem

3.1 Solutions of Piezoelectric Layer

A piezoelectric structure involving a thin piezoelectric layer bonded perfectly over a non-
homogeneous elastic half-space is illustrated in figure 1. The piezoelectric material is polarized
along the x-direction. The constitutive equations of the piezoelectric medium can be written
as

σij = cij,klSkl − ek,ijEk (1)

Dj = ej,klSkl + εjkEk (2)

where σij and Skl are the stress and strain tensors, Ek is the electrical potential field, Dj is
the electrical displacement and cijkl, ekij and εjk are the elastic, piezoelectric and dielectric
coefficients respectively.

Now, in the problem the waves are propagating along x-direction and the material properties
of piezoelectric layer vary continuously along the direction of thickness. Therefore the motion



equation and the electrical displacement equilibrium equation are given by

σij,j = ρv̈i, (3)

Di,i = 0 (4)

where vi is the component of mechanical displacement in the i-th direction and ρ is the mass
density.
The propagation of Love waves may be represented by displacement components and electrical
potential function as

u = 0 = w, v = v1(x, z, t)
φ = φ(x, z, t)

}

(5)

where u, v and w are the mechanical displacement components in the x, y and z direction,
respectively, and φ is the electrical potential function.
Now, the relation between the mechanical displacement and the strain components is as follows

Sij =
1

2
(vi,j + vj,i) (6)

According to the quasi-static Maxwell’s equation, the relation between the electrical intensity
and the electrical potential is

Ei = − ∂φ

∂xi

(7)

Typically, for the transversely isotropic piezoelectric, equations (1) and (2), can be expressed
in the rectangular form as

σx = c11Sx + c12Sy + c13Sz − e31Ez

σy = c12Sx + c11Sy + c13Sz − e31Ez

σz = c13Sx + c13Sy + c33Sz − e31Ez

σxz = (c11 − c12)
Sxz

2

σyz = c44Syz − e15Ez

σxy = c44Sxy − e15Ex

Dx = e15Sxy + ε11Ex

Dz = e15Szy + ε11Ez

Dy = e31Sx + e31Sz + e31Sy + ε33Ey
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(8)

Now, substituting equation (5) into equations (6) and (7), again substituting the modified
equations (6) and (7), into equation (8), using new equations into (3) and (4), we can obtained
the governing equations for the mechanical displacements and the electrical potential followed
by Bleustein

c44 ▽2 v1 + e15 ▽2 φ = ρv̈1
e15 ▽2 v1 − ε11 ▽2 φ = 0

}

(9)

where v1 and φ denote the mechanical displacement and electrical potential function in the
piezoelectric layer and c44, e15, ε11 and ρ are the elastic, piezoelectric, dielectric constants and



mass density respectively, ▽2 is the two dimensional Laplacian and t is time.

Now, the equation (9) takes the form as

▽2v1 −
1

c20
v̈1 = 0 (10)

▽2φ− 1

c20

(

e15
ε11

)

v̈1 = 0 (11)

where c0 =
√

c̄44
ρ

and c̄44 =
(

c44 +
e2
15

ε11

)

, c0 is the bulk-shear-wave velocity in the transversely

piezoelectric layer.
We assume the solutions of the equations (10) and (11) in the form of

v1(x, z, t) = V1(z)e
ik(x−ct)

φ(x, z, t) = φ1(z)e
ik(x−ct)

where k is the wave number, c is the phase velocity, i =
√
−1 and V1(z) be the solution of the

equation given by

d2V1(z)

dz2
+ k2b2V1(z) = 0 (12)

where b =

√

(

c2

c2
0

− 1
)

, c
c0

is the phase velocity ratio

and φ1(z) be the solution of the equation

d2φ1(z)

dz2
− k2φ1(z) +

1

c20

(

e15
ε11

)

{A1sin(kbz) + A2cos(kbz)} k2c2 = 0 (13)

With out loss of generality, it is assumed that the Love waves propagated along the positive
direction of the x-axis, so the solutions of the equations (10) and (11) can be written as

v1(x, z, t) = {A1sin(kbz) + A2cos(kbz)} eik(x−ct) (14)

φ(x, z, t) =

{

e15
ε11

{A1sin(bkz) + A2cos(bkz)} + A3e
−kz + A4e

kz

}

eik(x−ct) (15)

where A1, A2, A3 and A4 are arbitrary constants.
The stress component and electric displacement of piezoelectric layer used for the boundary
and continuity conditions are

σyz =
[

kbA1c̄44cos(bkz)− kbA2c̄44sin(bkz) + ke15
{

−A3e
−kz + A4e

kz
}]

eik(x−ct) (16)

Dz = ε11k
{

A3e
−kz −A4e

kz
}

eik(x−ct) (17)



3.2 Solution for the half-space

The lower semi-infinite medium is consider as non-homogeneous with exponential variation in
density and rigidity i.e., µ = µ1e

az and ρ = ρ1e
az , where a is inhomogeneity parameter. Let

u2, v2 and w2 be the displacements along x, y and z axis respectively. Here, the propagation
of horizontally polarized surface waves of Love type are propagating along x-direction. So the
displacement components are u = 0 = w and v = v2(x, z, t).

Therefore, applying the Love wave components conditions the equation of motion for a
non-homogeneous elastic solid in the absence of body forces can be written as

∂

∂x

(

µ1e
az ∂v2

∂x

)

+
∂

∂z

(

µ1e
az ∂v2

∂z

)

= ρ1e
az ∂

2v2
∂t2

(18)

where µ1 and ρ1 are the rigidity and density of the medium respectively.

Now, the non-homogeneity in medium are taken as,

µ = µ1e
az , ρ = ρ1e

az (19)

where µ1 and ρ1 are the values of rigidity µ and density ρ at z = 0 in the medium. Therefore for
the Love-type waves, propagating along the x-direction having the displacement of the particles
along the y-direction will produce only the exy and eyz strain components and the other strain
components will be zero. Hence the stress-strain relations gives

txy = 2µ1e
az exy, tyz = 2µ1e

az eyz. (20)

Now, using the separation of variable method we substitute v2(x, z, t) = V2(z)e
ik(x−ct) in

(18) we obtain

d2V2

dz2
+ a

dV2

dz
− k2m2

1V2 = 0 (21)

where m2
1 =

(

1− c2

c2
1

)

, c1 =
√

µ1

ρ1
and ω = kc, k is the wave number and c is the phase velocity.

Again, substituting V2(z) = V (z)e−
a

2
z in (21) we get

d2V

dz
− k2n2V = 0 (22)

where n2 =
(

m2
1 +

a2

4k2

)

.

Therefore, we have

v2(x, z, t) = A5e
−nkze−

a

2
zeik(x−ct) (23)

where A5 is a arbitrary constant.
This is the required solution of the lower non-homogeneous semi-infinite medium.



4 Boundary and continuity Conditions

The propagation of Love waves in this assumed model should satisfy the following boundary
and continuity conditions:

The upper surface of the piezoelectric layer problem is stress free i.e.,

(1) σyz = 0 at z = −h

At the surface contact of upper layer and lower non-homogeneous semi-infinite layer,
the mechanical displacement and normal component of stress are continuous and electric
potential function is displacement free i.e.,

(2) v1 = v2, σyz = tyz, φ = 0, at z = 0

(4) v2 → 0 as x → +∞
The electrical conditions at the free surface can be classified into two categories, i.e.,

(i) electrically open circuit: Dz = 0 at z = −h and

(ii) electrically short circuit: φ = 0 at z = −h,
based on the fact that the space above the piezoelectric layer is air and its permitting is
much less than that of the piezoelectric material.

5 Dispersion relations

Using the above boundary conditions we get the relations from equations (14),(15), (16), (17)
and (23) as follows

A1bc̄44cos(bkh) + A2bc̄44sin(bkh)− e15A3 ekh + A4e15 e−kh = 0 (24)

A2 −A5 = 0 (25)

bc̄44A1 − e15A3 + e15A4 + µ1A5

(

n +
a

2k

)

= 0 (26)

e15
ε11

A2 + A3 + A4 = 0 (27)

A3e
kh − A4e

−kh = 0 (28)

e15
ε11

{−A1sin(bkh) + A2cos(bkh)}+ A3e
kh + A4e

−kh = 0 (29)



5.1 Dispersion relation for case of electrically open circuit

For this case eliminating Ai (i = 1, 2, ...5), from the equations (24) to (28), the frequency
equation for Love waves is obtained as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bc̄44cos(bkh) bc̄44sin(bkh) −e15e
kh e15e

−kh 0
0 1 0 0 −1

bc̄44 0 −e15 e15 µ1

(

n + a
2k

)

0 e15
ε11

1 1 0

0 0 ekh −e−kh 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

this implied that

µ1

(

n+
a

2k

)

cos(bkh)
(

ekh + e−kh
)

+ ekh
[

e215
ε11

e−kh − e215
ε11

cos(bkh)

− bc44sin(bkh)]− e−kh

[

e215
ε11

ekh +
e215
ε11

cos(bkh) + bc44sin(bkh)

]

= 0

which takes the form as

bc̄44tan(bkh)− µ1

(

n+
a

2k

)

+
e215
ε11

= 0 (30)

This is the dispersion equation of Love-type wave in a electrically open circuit piezoelectric
layer over a non-homogeneous half-space.

5.2 Dispersion relation for case of electrically short circuit

Eliminating the arbitrary constants Ai, (i = 1, 2, ...5), from the equations (24) to (27) and (29)
the frequency equation for Love-type waves in this case is obtained as

bc̄44µ1

(

n +
a

2k

)

cos(bkh)
(

e−kh − ekh
)

+ µ1

(

n+
a

2k

) e215
ε11

sin(bkh)
(

e−kh

+ ekh
)

− b2c̄244sin(bkh)
(

e−kh − ekh
)

+ bc̄44
e215
ε11

ekh
(

cos(bkh)− e−kh
)

−bc̄44
e215
ε11

e−kh
(

ekh − cos(bkh)
)

+ bc̄44
e215
ε11

cos(bkh)
(

e−kh − cos(bkh)
)

−2bc̄44
e215
ε11

sin2(bkh) +

(

e215
ε11

)2

sin(bkh)
(

e−kh − ekh
)

+ bc̄44
e215
ε11

cos(bkh)

×
(

ekh − cos(bkh)
)

= 0

this implied that

−bc̄44µ1

(

n+
a

2k

)

tanh(kh) + µ1

(

n+
a

2k

) e215
ε11

tan(bkh) + b2c̄244tan(bkh)

×tanh(kh) + 2bc̄44
e215
ε11

− 4bc̄44
e215
ε11

1

cos(bkh) (ekh + e−kh)

+

(

e215
ε11

)2

tan(bkh)tanh(kh) = 0



which takes the form
[

b2c̄244 +

(

e215
ε11

)2
]

tan(bkh)tanh(kh) + µ1

(

n +
a

2k

)

[

e215
ε11

tan(bkh)

− bc̄44tanh(kh)] + 2bc̄44
e215
ε11

(

1− 2

cos(bkh)cosh(kh)

)

= 0 (31)

This is the dispersion equation of Love-type wave in a electrically short circuit piezoelectric
layer over non-homogeneous half-space.

6 Particular cases

6.1 Case I

If we neglect the inhomogeneity parameter in the half-space that is a
2k

= 0 then the dispersion
equations (30) and (33) reduces to the equations, in both cases as

tan

[

kh

√

(

c2

c20
− 1

)

]

=

µ1

√

(

1− c2

c2
1

)

− e2
15

ε11

c̄44

√

(

c2

c2
0

− 1
)

(32)

and
[

b2c̄244 +

(

e215
ε11

)2
]

tan(bkh)tanh(kh) + µ1n

[

e215
ε11

tan(bkh)

− bc̄44tanh(kh)] + 2bc̄44
e215
ε11

(

1− 2

cos(bkh)cosh(kh)

)

= 0 (33)

where n =
√

1− c2

c2
1

and b =
√

c2

c2
0

− 1

Equation (32) and (33) are the dispersion equations of Love-type wave in both electrically open
and short circuit piezoelectric medium respectively over non-homogeneous half-space.

7 Numerical computation and discussion

In order to show the effects of dimensionless inhomogeneity parameters and dielectric constant
on the propagation of Love-type waves in piezoelectric layer overlying a non-homogeneous
half-space, numerical computation of Equations (30) and (33) were performed with different
values of parameter representing the above characteristics. For the computational purpose, we
represent some numerical data from Nie [21] for piezoelectric layer and from Gubbins [13] for
lower non-homogeneous medium in order to study the effect of parameters in the media.
(i) Numerical result for upper piezoelectric layer

Material parameters used in the piezoelectric layer for computation
Material c44(×109N/m2) ε11(×10−9C2/Nm2) ρ(×103kg/m3) e15(C/m

2)
PZT-4 25.6 6.45 7.5 12.7



(ii) For the non-homogeneous half-space,

Medium Rigidity(µ) (×1010N/m2) density(ρ) kg/m3

Non-homogeneous 7.10 3321

From the above numerical results, the value of
c2
0

c2
1

has been taken fixed to 0.3156 in all the

figures. The results are presented in figure 2, figure 3, figure 4 and figure 8 for piezoelectric
layer in case of open circuit and figure 5, figure 6, figure 7 and figure 9 in case of electrically
short circuit. All the curves have been plotted with vertical axis as dimensionless phase velocity
c
c0

against horizontal axis as dimensionless wave number kh. It has been found that the phase
velocity decreases as the wave number increases in each of the figures under the assumed values
of various parameters.

Figure 2 gives the dispersion curve of Love-type wave against dimensionless wave number
in a piezoelectric structure in the case of electrically open circuit. The dispersion curves are
plotted for selected values of inhomogeneity factor a

2k
and fixed values of dielectric constant

ε11. The values of inhomogeneity parameter for curve no.1, curve no.2, curve no.3, curve no.4
and curve no.5 have been taken as 0.0, 0.1, 0.2, 0.3 and 0.4 respectively. From this figure we
have seen that the speed of Love-type waves decreases with the increase of inhomogeneity
parameter a

2k
. Figure 5 shows the effect inhomogeneity in case of electrically short circuit.

This figure described that the phase velocity of Love-type waves increases with the increase of
inhomogeneity parameter a

2k
. These curves give the result of the dispersion equation given in

particular case I.
In figure 3 and figure 6 attempts have been made to come out with effect of dielectric

constant ε11 for Love-type wave in both the case of electrically open circuit and short circuit
respectively. The curves are plotted for different values of dielectric constant ε11 and constant
values of inhomogeneity parameter a

2k
= 0.3. The values of dielectric constant for curve no.1,

curve no.2, curve no.3, curve no.4, curve no.5 have been taken as 6.45×10−9, 6.70×10−9, 6.95×
10−9, 7.20× 10−9, 7.45× 10−9 respectively. From these figures we have seen that phase velocity
increases with the increase of dielectric constant ε11.

Figure 4 and Figure 7 represents the dispersion curves in the cases of electrically open and
short circuit respectively. The curves are plotted for different values of dielectric constant ε11
when the lower half-space is homogeneous that is a

2k
= 0.0. The values of dielectric constant for

curve no.1, curve no.2, curve no.3, curve no.4, curve no.5 have been taken as 6.45×10−9, 6.70×
10−9, 6.95 × 10−9, 7.20 × 10−9, 7.45 × 10−9 respectively. The curves of figure 4 concluded that
phase velocity increases with the increases of dielectric constant ε11. Whereas from figure 7 we
have seen that phase velocity slight increases with the increase of dielectric constant ε11.

Figure 8 represent a screen shot of graphical user interface (GUI) software in MATLAB in
the case of piezoelectric open circuit demonstrating the graph plotted in figure 2 as a sample.
This GUI generalizes the finding of the present paper by allowing one to vary the ranges
of different dimensionless parameters and also by providing different values to the various
parameters involved. This will help one to observe the variation on the phase velocity of Love-
type wave against dimensionless wave number for different sets of values. Similarly, Figure 9
represent a screen shot of graphical user interface (GUI) software in MATLAB in the case of
piezoelectric short circuit demonstrating the graph plotted in figure 5 as a sample.
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Figure 2: Dimensionless phase velocity c
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in PZT-4 system as a function of dimensionless wave
number kh of Love-type waves in electrically open case, for fixed value of dielectric constant
ε11 and different values of a
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Figure 3: Dimensionless phase velocity c
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against dimensionless wave number kh of Love-type
waves in electrically open case for constant value of inhomogeneity parameter a

2k
(= 0.3) and

different values of dielectric constant ε11.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

kh

c/
c 0

1

2

3

4

5

 

 

1.  ε
11

=6.45× 10−9  C2/Nm2 

2.  ε
11

=6.70× 10−9  C2/Nm2 

3.  ε
11

=6.95× 10−9  C2/Nm2 

4.  ε
11

=7.20× 10−9  C2/Nm2 

5.  ε
11

=7.45× 10−9  C2/Nm2 
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case of homogeneous half-space.
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ε11 and different values of a

2k
.
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Figure 6: Dimensionless phase velocity c
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against dimensionless wave number kh of Love-type
waves in electrically short case for constant value of inhomogeneity parameter a
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(= 0.3) and

different values of dielectric constant ε11.
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Figure 7: Dimensionless phase velocity c
c0

as function of dimensionless wave number kh of
Love-type waves in electrically short circuit case, for different values of dielectric constant ε11
in the case of homogeneous half-space.



Figure 8: A Graphical user interface (GUI) model showing the variation of dimensionless phase
velocity against dimensionless wave number for different values of a

2k
in case of electrically open

circuit.

Figure 9: A Graphical user interface (GUI) model showing the variation of dimensionless phase
velocity against dimensionless wave number for different values of a

2k
in case of electrically short

circuit.



8 Conclusions

Propagation of Love-type wave in a piezoelectric layered structure overlying a non-homogeneous
half-space has been studied in details. Closed form solutions for the displacements in layer and
half-space have been derived separately. Dispersion relations have been obtained separately in
the cases of electrical open circuit and short circuit. The effect of inhomogeneity parameter
and dielectric constant are shown graphically in both the cases of electrical open and short
circuit. From the above figures we may conclude that the phase velocities of Love-type waves
are considerably influenced by inhomogeneity parameter and dielectric constant.

In the case of electrically open circuit, we have seen from Figure 2 that the phase velocity
of Love-type waves decreases with the increases of inhomogeneity parameter. Whereas from
figure 3 and figure 4 we have concluded that the phase velocity increases with the increase of
dielectric constant. In the case of electrical short circuit, we have seen from figure 5 to figure 7
that the phase velocity increases with the increase of inhomogeneity parameter and dielectric
constant.
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