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Abstract

We propose a method for computing a perturbation bound that preserves the number
of common zeros in (C×)n of a polynomial system (f1, . . . , fn), where C× = C \ {0} and
fj ∈ C[x1, . . . , xn], by using Stetter’s results on the nearest polynomial with a given zero,
Bernshtein’s theorem, and minimization techniques for rational functions such as sum of
squares (SOS) relaxations.

1 Introduction

Solving systems of polynomial equations is important in both theory and practice. Traditionally,
algebraic computation or symbolic computation treats only polynomials with exact coefficients.
Thus, algorithms for solving polynomial systems also treat only such polynomials. However, in
practical examples, the coefficients of polynomials can contain errors, because the coefficients
are obtained through measurement or can be specified with only finite precision.

On the other hand, numeric computation treats polynomials with inexact coefficients or
empirical polynomials. Therefore, symbolic and numeric computation, which is a research area
of computational algebra that combines ideas from symbolic and numeric computation, has
been of increasing interest over the past decade.

When solving a system of empirical polynomials, one might be concerned whether properties
of zeros such as the number of zeros are preserved under perturbation of coefficients. This paper



treats such a problem for a polynomial system with complex coefficients. More specifically, we
consider the following type of problem.

Given n polynomials f1, . . . , fn ∈ C[x1, . . . , xn] such that the number of common
zeros in (C×)n of the polynomial system (f1, . . . , fn), where C× = C \ {0}, compute
ε > 0 such that for every polynomial f̃j(x1, . . . , xn) (j = 1, . . . , n) with an appro-
priate norm of the vector of coefficients of f̃j − fj being less than ε, the polynomial
system (f̃1, . . . , f̃n) has the same number of common zeros in (C×)n.

When a polynomial system (f1, . . . , fn) in the above problem is linear, we can write the system
as Ax+ b, where A is an n×n complex matrix and n-dimensional complex vectors x and b. In
this case, the problem almost corresponds to the following.

Compute the distance between A and the nearest singular matrix to A. Here, the
distance between two matrices A1 and A2 is ∥A2−A1∥, where ∥ ·∥ is an appropriate
matrix norm.

The distance can be described using ∥A∥ and the condition number of A with respect to the
norm ∥ · ∥ [9].

In general cases, that is, the cases where polynomials are not restricted to linear polynomials,
we might be able to use comprehensive Gröbner bases/systems [11, 12, 13]. However, in most
cases, the computational cost is rather high and this approach is impractical. Alternatively,
we can use resultants. In [6], such a method is proposed for bivariate polynomial systems and
slightly different problems, however, if the system has more than two variables, methods based
on resultants might not be efficient.

To solve the problem, we use Bernshtein’s theorem [1]. The basic idea is as follows. Let
Qj ⊂ Rn be the Newton polytope constructed from the support of fj. For a hyperplane α in Rn,
fjα denotes the polynomial made from fj by taking terms whose exponents lie on α. Bernshtein’s
theorem (Theorem 9 in the present paper) states that if the system (f1α, . . . , fnα), where none
of f1α, . . . , fnα are zero polynomials, has no common zeros in (C×)n for any hyperplane α
in Rn, then the original system (f1, . . . , fn) has exactly the same number of common zeros in
(C×)n as the mixed volume of Q1, . . . , Qn. Furthermore, if the number of the common zeros
is greater than 0, the converse also holds. From the theorem, our problem comes down to that
of seeking the bound of perturbation of one (or finitely many) polynomial system(s) with no
common zeros.

Our first contribution is that we show that the bound of perturbation can be computed by
Stetter’s approach for the nearest polynomial problem [8], which is briefly reviewed in 3.1.2.
The detail will be described in Section 3.1. In terms of Gröbner basis, non-existence of common
zeros means that the Gröbner basis contains 1. Along this line, our problem could be solved
by something like a “perturbed” Gröbner basis or an “approximate” Gröbner basis such as [3],
but we do not go into the detail in this paper.

Our second contribution is that we show that the perturbation bound is represented by
infimum of one (or finitely many) rational function(s) with real coefficients. Thus, we can apply
minimization techniques for rational functions such as sum of squares (SOS) relaxations [4] to
compute the bound. In [7], a similar approach, that is, reducing the problem to computing the
nearest polynomials, is described, however, no computation method for the reduced problem is
proposed.



The rest of this paper is organized as follows. Section 2 explains the notations used through-
out this paper and the problem we consider. Section 3 describes the proposed computation
method. We divided the computation into two cases. First, we treat the case where the number
of common zeros in (C×)n of a given polynomial system is 0 and describe the relation to the
nearest polynomial with a given zero. Then, we treat the case where the number of common
zeros in (C×)n of a given polynomial system is greater than 0. Using Bernshtein’s theorem,
we reduce this case to the first case. In both cases, the problem is reduced to minimization
problems of rational functions with real coefficients. Finally, Section 4 concludes the paper by
mentioning directions for future work.

2 Preliminaries

2.1 Notations

We introduce several notations used throughout this paper. We will introduce other notations
where they are needed.

We write the ring of complex coefficient polynomials with n variables x1, . . . , xn as C[x] and a
monomial xq1

1 . . . xqn
n as xq. Hereafter, we consider nonzero polynomials in C[x] unless otherwise

stated. For f =
∑

q cqx
q ∈ C[x], we define supp(f), the support of f , as {q | cq ̸= 0} ⊂ Zn

≥0.

For a complex vector c = (c1, . . . , cm) ∈ Cm, we write the 2-norm of c,
√∑m

j=1 |cj|2, as ∥c∥.
For a polynomial f =

∑
q cqx

q, we define the 2-norm of f as ∥(cq)q∈supp(f)∥, the 2-norm of the
vector of the coefficients of f .

Let F = (f1, . . . , fn) be a polynomial system. We denote the number of common zeros of F
in (C×)n with multiplicity counted by N (F ). We consider common zeros not in Cn but those
in (C×)n because we apply Bernshtein’s theorem (Theorem 9 in the present paper) to solving
our problem.

2.2 Problem

First, we define a perturbation bound of a polynomial system to describe our problem.

Definition 1 (Perturbation bound) Let F = (f1, . . . , fn) be a polynomial system with N (F ) <
∞. A positive real number ε is said to be a perturbation bound of F when it satisfies the fol-
lowing condition: N (F ) = N (G) holds for every polynomial system G = (g1, . . . , gn) such that
supp(gj) = supp(fj) (j = 1, . . . , n) and

∑n
j=1 ∥gj − fj∥2 < ε.

Note that there is a case where a perturbation bound does not exist. That is, there is
a polynomial system (f1, . . . , fn) such that for any ε > 0, there exists a polynomial system
(g1, . . . , gn) with

∑n
j=1 ∥gj − fj∥2 < ε and N (F ) ̸= N (G). Consider the following example.

Example 2 Let f = x1 + x2 + 1 and g = x1 + 2x2 + 2, and consider the polynomial system
(f, g). The polynomial system (f, g) has no common zero in (C×)2 (the only common zero of
the system is (x1, x2) = (0,−1)). For any ε ̸= 0, 1, let fε = x1 + (1 + ε)x2 + 1. Then, the
system (fε, g) has a common zero

(x1, x2) =

(
2ε

1− ε
,
−1

1− ε

)
∈ (C×)2.



We consider the following problem.

Problem 3 For a polynomial system F = (f1, . . . , fn) with N (F ) < ∞, compute a perturbation
bound ε. Furthermore, compute B(F ) = sup{ε}, where ε runs over perturbation bounds of F .

Note that B(F ) might not exist as described in Example 2 and that B(F ) might be infinity
as follows. Consider the case where n = 1. Let F = (f), where f =

∑d
j=m ajx

j (am, ad ̸= 0).
Then, f has d−m zeros in C× and any polynomial g with supp(g) = supp(f) has also d−m
zeros in C×. Thus, B(F ) = ∞ holds. This also shows that we can solve Problem 3 easily when
n = 1.

3 Computation Method

We propose a computation method for Problem 3 in this section. Let F be a given polynomial
system. We divide the problem into two cases: the case where N (F ) = 0 (Section 3.1) and
the case where 1 ≤ N (F ) < ∞ (Section 3.2). In both cases, the computation is reduced to
computing the infimums of rational functions with real coefficients.

3.1 The Case Where N (F ) = 0

In this subsection, we consider the case where N (F ) = 0. In this case, Problem 3 is directly
related to Stetter’s results on the nearest polynomials having a given zero [8].

3.1.1 Relaxed Problem

To compute a perturbation bound, we consider the following relaxed problem in which the
conditions supp(gj) = supp(fj) in Problem 3 are replaced with supp(gj) ⊂ supp(fj).

Problem 4 For a polynomial system F = (f1, . . . , fn) with N (F ) = 0, compute ε > 0 satisfying
the following condition: N (G) = 0 holds for every polynomial system G = (g1, . . . , gn) such
that supp(gj) ⊂ supp(fj) (j = 1, . . . , n) and

∑n
j=1 ∥fj − gj∥2 < ε. Furthermore, compute

B0(F ) = sup{ε},where ε runs over perturbation bounds of F .

The following proposition guarantees that bounds in Problem 4 exist if bounds in Problem 3
exist.

Proposition 5 Let F be a polynomial system with N (F ) = 0.

1. A positive ε for F in Problem 4 exists if and only if a perturbation bound of F exists.

2. B0(F ) exists if and only if B(F ) exists.

3. If B0(F ) and B(F ) exist, then the inequality B0(F ) ≤ B(F ) holds.

Proof. It is clear that if ε > 0 in Problem 4 exists then ε is a perturbation bound of F . Thus,
if B0(F ) exists then B(F ) exists and the inequality B0(F ) ≤ B(F ) holds. These prove the
third statement and the “only if” parts of the first and second statements.



Conversely, let ε > 0 be a perturbation bound of F . We write fj =
∑

q cjqx
q. Let δ be

min
{
ε, min

{
|c1q|2 | q ∈ supp(f1)

}
, . . . , min

{
|cnq|2 | q ∈ supp(fn)

}}
.

Note that 0 < δ ≤ ε. Let

P1 =

{
(g1, . . . , gn)

∣∣∣∣ gj ∈ C[x], supp(gj) = supp(fj),
n∑

j=1

∥gj − fj∥2 < δ

}
,

P2 =

{
(g1, . . . , gn)

∣∣∣∣ gj ∈ C[x], supp(gj) ⊂ supp(fj),
n∑

j=1

∥gj − fj∥2 < δ

}
.

We will show P1 = P2. It is clear that P1 ⊂ P2. Conversely, P1 ⊃ P2 can be proved as follows.
Take arbitrary (g1, . . . , gn) ∈ P2 and write gj =

∑
q djqx

q. From the definitions of δ and P2,
for any k (1 ≤ k ≤ n) and q ∈ supp(fk), the inequalities

|ckq|2 ≥ δ >

n∑
j=1

∥gj − fj∥2 ≥ ∥gk − fk∥2 ≥ |dkq − ckq|2

hold. Thus, |ckq| > |dkq − ckq| ≥ |ckq| − |dkq| and therefore, |dkq| > 0, that is, dkq ̸= 0 holds.
This means supp(gk) = supp(fk) and thus (g1, . . . , gn) ∈ P1. Therefore, P1 = P2 holds.

Thus, N (G) = 0 for any G ∈ P2. Therefore, δ > 0 satisfies the condition in Problem 4 and
thus the “if” part of the first statement holds. This also proves that the existence of B(F )
implies that of B0(F ).

3.1.2 Nearest Polynomials

Below, we describe a representation of B0(F ) that is convenient for computation.
For a finite set S ⊂ Zn

≥0 and z ∈ Cn, we define Z(S; z) ⊂ C[x] as {f ∈ C[x] | supp(f) ⊂
S, f(z) = 0}. For f ∈ C[x] and z ∈ Cn, we define d(f ; z) as min{∥g− f∥ | g ∈ Z(supp(f); z)},
the distance between f and f̃ measured by the 2-norm, where f̃ is the nearest polynomial to f
such that supp(f̃) ⊂ supp(f) and f̃(z) = 0. Then, the following proposition is immediate from
the definitions.

Proposition 6 Let F be a polynomial system with N (F ) = 0. Then, the following equality
holds.

B0(F ) = inf

{
n∑

j=1

d(fj; z)
2

∣∣∣∣ z ∈ (C×)n

}
. (1)

Thus, it is sufficient to compute the right-hand side of Equation (1). To do this, we use the
following theorem, which is a part of Stetter’s results [8].

Theorem 7 (Stetter) For f ∈ C[x] and z ∈ Cn,

d(f ; z) =
|f(z)|

∥(zq)q∈supp(f)∥

holds if ∥(zq)q∈supp(f)∥ ≠ 0.



Remark 8 If we use other norms than the 2-norm, there is a minor omission in Stetter’s
results [8]. See [5] for details.

From Theorem 7, it is sufficient to compute

inf

{
n∑

j=1

|fj(z)|2

∥(zq)q∈supp(fj)∥2

∣∣∣∣ z ∈ (C×)n

}
. (2)

Note that ∥(zq)q∈supp(fj)∥ ̸= 0 if z ∈ (C×)n. We will describe a computation method for (2) in
Section 3.3.

3.2 The Case Where 1 ≤ N (F ) < ∞
In this subsection, we consider the case where 1 ≤ N (F ) < ∞. In this case, we can reduce the
problem to the case where N (F ) = 0 by using Bernshtein’s theorem [1].

3.2.1 Bernshtein’s Theorem

For a polynomial f ∈ C[x], we define the Newton polytope P(f) of f as the convex hull
of supp(f) in Rn. Let F = (f1, . . . , fn) be a polynomial system and Qj = P(fj). The mixed
volumeM(F ) is the coefficient of u1 · · ·un in the homogeneous polynomial V (u1Q1+· · ·+unQn),
where V is the Euclidean volume, and

Q1 + · · ·+Qn = {x1 + · · ·+ xn | xj ∈ Qj (j = 1, . . . , n)}

denotes the Minkowski sum of polytopes.
To reduce the case where 1 ≤ N (F ) < ∞ to the case where N (F ) = 0, we use Bernshtein’s

theorem [1]. Let α ∈ Qn \ {0}. For a compact subset S of Rn, let m(α, S) = min{⟨α,q⟩ |
q ∈ S}, where ⟨·, ·⟩ is the standard inner product on the vector space Rn. We write the set
{q ∈ S | ⟨α,q⟩ = m(α, S)} as Sα. We define fα =

∑
q∈Sα

cqx
q for f =

∑
q∈S cqx

q, where
S = supp(f), and define Fα = (f1α, . . . , fnα) for F = (f1, . . . , fn). The following theorem is due
to Bernshtein [1].

Theorem 9 (Bernshtein’s theorem (polynomial version)) Let F = (f1, . . . , fn) be a poly-
nomial system with N (F ) < ∞.

1. N (F ) ≤ M(F ).

2. If N (Fα) = 0 for all α ∈ Qn \ {0}, then N (F ) = M(F ).

3. If N (F ) = M(F ) ≥ 1, then N (Fα) = 0 for all α ∈ Qn \ {0}.

Remark 10

1. Bernshtein’s theorem is also valid for Laurent polynomials, that is, polynomials in
C[x1, . . . , xn, 1/x1, . . . , 1/xn] [1].



2. In the second statement, it is sufficient to examine only finitely many α because {Fα |
α ∈ Qn \{0}} is a finite set. For example, for each face H of the Newton polytopes P(fj)
(j = 1, . . . , n), take an α ∈ Qn \ {0} such that supp(fj) ∩H = supp(fjα). Let A be the
set of all such α. Then, {Fα | α ∈ A} = {Fα | α ∈ Qn \ {0}} holds. The results in [2]
tell us that it is not necessary to examine N (Fα) = 0 for all α ∈ A to decide whether
N (F ) = M(F ) holds.

3. The equality N (F ) = M(F ) holds for generic choices of the coefficients of polynomials
in F [1].

3.2.2 Reduction to the Case Where N (F ) = 0

We assume that 1 ≤ N (F ) < ∞ and N (F ) = M(F ). Note that the equality N (F ) = M(F )
holds in general as we write in Remark 10.

The following theorem holds. Note that the assumption that 1 ≤ N (F ) = M(F ) < ∞
implies N (Fα) = 0 for all α ∈ Qn \ {0}.

Theorem 11 Let F = (f1, . . . , fn) be a polynomial system with 1 ≤ N (F ) = M(F ) < ∞.
Let A be a finite subset of Qn \ {0} such that {Fα | α ∈ A} = {Fα | α ∈ Qn \ {0}}. Then,
B(F ) = min{B(Fα) | α ∈ A} holds.

Proof. The assumption that 1 ≤ N (F ) = M(F ) < ∞ implies that N (Fα) = 0 for all α ∈ A.
Let 0 < ε ≤ B(F ) and take an arbitrary α ∈ A. For this α, take an arbitrary polynomial

system F̃ = (f̃1, . . . , f̃n) such that supp(f̃j) = supp(fjα) (j = 1, . . . , n) and
∑n

j=1 ∥f̃j − fjα∥2 <
ε. Furthermore, take a polynomial system G = (g1, . . . , gn) such that

gj =
∑
q∈Sjα

c̃qx
q +

∑
q∈Sj\Sjα

cqx
q,

where Sj = supp(fj), fj =
∑

q cjqx
q, and f̃j =

∑
q c̃qx

q.

Noting that Gα = F̃ = F̃α and supp(fj) = supp(gj) (j = 1, . . . , n), we have

n∑
j=1

∥gj − fj∥2 =
n∑

j=1

∥gjα − fjα∥2 =
n∑

j=1

∥f̃jα − fjα∥2 =
n∑

j=1

∥f̃j − fjα∥2 < ε.

Thus, 1 ≤ N (G) = N (F ) < ∞ holds. The inequality 1 ≤ N (G) < ∞ and Bernshtein’s
theorem imply N (Gα) = 0. Since Gα = F̃ , we have N (F̃ ) = N (Gα) = 0 = N (Fα). Therefore,
ε ≤ B(Fα). Thus, ε ≤ min{B(Fα) | α ∈ A}.

Conversely, let 0 < ε ≤ min{B(Fα) | α ∈ A}. Take an arbitrary polynomial system
G = (g1, . . . , gn) such that supp(fj) = supp(gj) (j = 1, . . . , n) and

∑n
j=1 ∥gj − fj∥2 < ε. Since

supp(fj) = supp(gj) (j = 1, . . . , n) holds, we have {Gα | α ∈ Qn \ {0}} = {Gα | α ∈ A}. The
inequalities

n∑
j=1

∥gjα − fjα∥2 ≤
n∑

j=1

∥gj − fj∥2 < ε

imply N (Gα) = 0 for all α ∈ A. Thus, the equality N (G) = M(G) follows from Bernshtein’s
theorem. The equalityM(G) = M(F ) holds because supp(fj) = supp(gj) (j = 1, . . . , n) holds.



The assumption that M(F ) = N (F ) thus implies N (G) = N (F ). Therefore, the inequality
ε ≤ B(F ) holds.

From Theorem 11, computation of B(F ) is reduced to those for B(Fα) (α ∈ A). As written
in the proof, the assumption that 1 ≤ N (F ) = M(F ) < ∞ implies N (Fα) = 0. Thus, the case
where N (F ) ≥ 1 is reduced to the case where a polynomial system has no common zeros in
(C×)n.

Similar to the case where N (F ) = 0, the following proposition holds.

Proposition 12 Let F = (f1, . . . , fn) be a polynomials system with 1 ≤ N (F ) < ∞.

1. min{B0(Fα) | α ∈ A} exists if and only if min{B(Fα) | α ∈ A} exists.

2. The inequality min{B0(Fα) | α ∈ A} ≤ min{B(Fα) | α ∈ A} holds if the both sides of the
inequality exist.

Proof. The statements follow from Proposition 5.

Thus, Problem 3 is reduced to Problem 4. More precisely, instead of min{B(Fα) | α ∈ A},
we compute

min{B0(Fα) | α ∈ A} = min

{
inf

z∈(C×)n

n∑
j=1

|fjα(z)|2

∥(zq)q∈supp(fjα)∥2

∣∣∣∣ α ∈ A

}
. (3)

3.3 Minimization of Rational Functions

As described in Sections 3.1.2 and 3.2.2, computation of a perturbation bound of a polynomial
system F = (f1, . . . , fn) is reduced to

1. computing B0(F ), which is equal to the infimum of the square of the distance between
F and perturbed polynomial systems F̃ = (f̃1, . . . , f̃n) of F with supp(f̃j) ⊂ supp(fj)
(j = 1, . . . , n) and N (F̃ ) ≥ 1, when N (F ) = 0, or

2. computing finitely many B0(Fα) (α ∈ A), where each B0(Fα) is equal to the infimum of the
square of the distances between Fα and perturbed polynomial systems F̃α = (f̃1, . . . , f̃n)
of Fα with supp(f̃j) ⊂ supp(fjα) (j = 1, . . . , n) and N (F̃α) ≥ 1, when 1 ≤ N (F ) < ∞.

In each case, it is sufficient to compute one or finitely many quantities of the following type:

inf

{
n∑

j=1

|fj(z)|2

∥(zq)q∈supp(fj)∥2

∣∣∣∣ z ∈ (C×)n

}
. (4)

Put z = (z1, . . . , zn) = (s1 + t1 · i, . . . , sn + tn · i), where sj, tj ∈ R (j = 1, . . . , n). Then,

|fj(z)|2 = fj(s1 + t1 · i, . . . , sn + tn · i) · fj(s1 − t1 · i, . . . , sn − tn · i),
∥(zq)q∈supp(fj)∥2 =

∑
(q1,...,qn)∈supp(fj)

(s21 + t21)
q1 · · · (s2n + t2n)

qn ,

where fj(x) =
∑

q cqx
q for fj(x) =

∑
q cqx

q. Thus,
∑n

j=1 d(f̃j; z)
2 ∈ R(s1, . . . , sn, t1, . . . , tn)

when we regard sj and tj (j = 1, . . . , n) as variables. Thus, we can apply minimization
techniques for rational functions such as sum of squares (SOS) relaxations [4] to computing a
guaranteed lower bound of (4).



3.4 Algorithm

We summarize the computation method in an algorithmic style.

Algorithm 13
Input: A polynomial system F = (f1, . . . , fn) and N (F ) < ∞. When N (F ) ≥ 1, we require
the condition N (F ) = M(F ).
Output: A perturbation bound ε for F .

(1) If N (F ) = 0 go to Step (2).

Otherwise go to Step (3).

(2) Compute ε with 0 < ε ≤ B0(F ) and return ε.

(3) Construct A ⊂ Qn \ {0} such that {Fα | α ∈ Qn \ {0}} = {Fα | α ∈ A}.
Compute ε with 0 < ε ≤ min{B0(Fα) | α ∈ A} and return ε.

In Steps (2) and (3), to compute guaranteed lower bounds of B0(F ) and B0(Fα), we use
minimization techniques for rational functions such as sum of squares (SOS) relaxations [4]. In
Step (3), to construct A, see Remark 10 (2).

Example 14 Consider the polynomial system F = (f1, f2) = (2x1 + x2 − 1, x1 + 2x2 − 1).
The Newton polytopes P(f1) and P(f2) are the triangle whose vertices are (0, 0), (1, 0), and
(0, 1), which correspond to the monomials 1, x1, and x2, respectively. F satisfies the condition
N (F ) = M(F ) = 1. We can take A = {(1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (−1,−1)}. Then,
Fα and B0(Fα) (α ∈ A) are as follows.

F(1,0) = (x2 − 1, 2x2 − 1), F(−1,0) = (2x1, x1), F(0,1) = (2x1 − 1, x1 − 1),
F(0,−1) = (x2, 2x2), F(1,1) = (−1,−1), F(−1,−1) = (2x1 + x2, x1 + 2x2),

B0(F(1,0)) = B0(F(0,1)) =
7− 3

√
5

2
= 0.145898 . . . ,

B0(F(−1,0)) = B0(F(0,−1)) = 5, B0(F(1,1)) = 2, B0(F(−1,−1)) = 1.

Thus, min{B0(Fα) | α ∈ A} = (7− 3
√
5)/2. Indeed, the polynomial system

(g1, g2) =

(
2x1 +

5 + 3
√
5

10
x2 −

5 +
√
5

10
, x1 +

5 + 2
√
5

5
x2 −

5 + 3
√
5

10

)
has the unique zero (x1, x2) = (0, (

√
5−1)/2) ̸∈ (C×)2 and ∥g1−f1∥2+∥g2−f2∥2 = (7−3

√
5)/2.

4 Conclusion

We propose a computation method for a perturbation bound preserving the number of common
zeros in (C×)n of a polynomial system F = (f1, . . . , fn). The method reduces the problem to
computing the distance to the nearest polynomial having a zero in (C×)n. This reduction is
done directly when N (F ) = 0 and through Bernshtein’s theorem when 1 ≤ N (F ) < ∞. The
distance can be computed by using Stetter’s results and minimization techniques of rational
functions.

Extending the computation method to a perturbation bound preserving the number of
common zeros in Cn is a direction of future research. The results in [10] will be utilized.
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