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Abstract
It is known that Computer Algebra Systems such as Maple [9], Mathematica [10] and

etc. have assisted us greatly in numeric, algebraic and symbolic computations, which are
pivotal for our teaching, learning and research. We have also seen the impacts of 2D
Dynamic Geometry Software (DGS) such as Geometers’ SketchPad [11], Cabri II [12]
and etc in mathematics education . In this paper, we use examples to demonstrate, from
users’point of view, how the integration of CAS with a 3D DGS provides us crucial 3D
visualizations and theoretical verification needed in teaching and research in mathematics
and its applicable fields.

1 Introduction

It is often the case that research and applications in mathematical fields are originated from
real-life problems. In this paper, we demonstrate with the evolving technological tools, it
is also possible to link our mathematics discoveries to areas such as in sciences, technology
and engineering. We emphasize the importance of recognizing technological tools as research
options. We make our examples accessible to those who have mathematics knowledge up to
university level. Invest in mathematics teaching and research in higher education is essential
for cultivating students’innovation and creative thinking skills. While professional trainings
in the area of content knowledge for secondary schools (middle or high schools) are important.
It is equally important that we promote exploratory activities which allow students to think
and solve problems creatively in university levels and beyond. We select some examples to
demonstrate how technological tools allow us exploring problems from 2D to 3D and beyond,
which shows that the content can be chosen continuously going from middle, high schools to
undergraduate and graduate schools. The examples will show how different topics or concepts
that students have encountered in the past can be connected, which could link mathematics to
physics or applied sciences. Finally learners will discover how technological tools can expand
their mathematics knowledge and promote their creative thinking skills.



In current technological era, students are exposed to solving problems with various soft-
ware packages. Consequently, teachers and educators need to update themselves in seeking and
designing proper sets of problems where mathematics knowledge can be integrated in interdis-
ciplinary areas. A sound mathematics curricula should include component where exploration
is cultivated and encouraged. In particular, we observe the following areas where technological
tools have become indispensable and have assisted us greatly in teaching, learning and research.

1. The capability of performing graphic, algebraic, numeric and symbolic representations
within a CAS helps us not only for making educational conjectures but also verifying
theoretical proofs.

2. The capability of constructing multiple 2D or 3D figures within a 2D or 3D DGS allows us
conjecture if our 2D observations can be extended to ones in 3D. Some 2D or 3D scenarios
provide us crucial conjectures before theories can be formed and verified using a CAS.

3. Once learners understand fully how a 3D scenario works with the help from CAS and
DGS, they can generalize the theories to finite dimensions or beyond. For example, the
integration of multivariable calculus and linear algebra, with the help of technologies,
will inspire students to investigate area such as differential geometry. In this paper, we
give some examples to show why the integration of a CAS and a 3D DGS is crucial for
teaching, learning and research in mathematics.

2 Extend from 2D to 3D or higher if possible

By seeing the pictures shown in Figure 1(a), one may recall the Mean Value Theorem (MVT).
If we apply the Mean Value Theorem on a parametric curve, we obtain the Cauchy Mean Value
Theorem as mentioned in [6] , which we illustrate simply using Figure 1(b). We state the MVT
roughly as follows:: Given the blue smooth curve C (or the one resembles a higher parabola
opening down) in an interval containing the line segment AB, there should exist a point P on C
so that the tangent line is parallel to AB.We note that it is identical to finding the place where
we have horizontal tangent on the new green curve C ′(or the one resembling lower parabola
opening down in Figure 1(a)). In other words, the x−coordinate for which the Rolle’s Theorem
holds for the green curve is the same as the place where the MVT holds for the blue. Same
conclusion can be drawn for CMVT, see Figure 1(b). In [6], we used geometric approaches to
see how we can construct new functions where we may apply Rolle’s Theorem when proving



MVT and CMVT respectively.

Figures 1(a) Picture for a
Mean Value Theorem

1(b) Picture for a Cauchy
Mean Value Theorem

As mentioned in [2], we can extend the statements and proofs of MVT and CMVT to higher
dimensions, which we demonstrate these effects in Figures 2(a) and 2(b) below. Intuitively, if
a plane intersects a smooth surface, then we can find a point on the surface where its tangent
plane is in the same direction as the given plane. In [2], we extended the ideas found in 2D
and used geometric approaches to see how we can construct new functions where we may apply
Rolle’s Theorem when proving MVT and CMVT respectively.

Figure 2(a) MVT for a
plane

Figure 2(b) MVT and
horizontal tangent

Next we start with two intersecting surfaces (say an ellipsoid and a paraboloid) as we can see
in Figure 3(a). If we fix the given ellipsoid, and move the paraboloid only vertically (in this
case; more details will be given later), we would like to find a place where both surfaces are
tangent to each other. Intuitively, we expect two solutions, and we describe them as follows:

Example 1 We fix an ellipsoid of the form g(x, y, z) = x2/a2 + y2/b2 + z2/c2 = 0, where a, b,
and c are real numbers, and we consider the level surfaces for f(x, y, z) = z−mx2−ny2, where
m and n are two given positive real numbers. The higher dimension Mean Value Theorem



in this case (see [2]) can be interpreted as follows: If these two surfaces intersect, then there
exists a point (x0, y0, z0) where the paraboloid touches the ellipsoid. Mathematically, we are
looking for a constant k, and the point (x0, y0, z0) where f(x0, y0, z0) = k and g(x0, y0, z0) =
0 are tangent to each other. In other words, we are looking for a constant λ so that the
gradient vectors at (x0, y0, z0) for these two surfaces are parallel to each other or the condition
∇f(x0, y0, z0) = λ∇g(x0, y0, z0), is met. As described in [2], we use a CAS such as Maple
to solve a set of equations due to the Lagrange multiplier method and reach a set of numeric
solutions if the values of a, b, c, m and n are given first. However if we were to show
each correct answer for different a, b, c, m and n, we need to substitute numeric
values into Maple each time to generate an individual graph. In such case, a dynamic
geometry 3D software such as GInMA [6] is appreciated and helpful. The GInMA can take
symbolic possibilities into considerations and allow users to move the parameter k and see
where f(x, y, z) = k and g(x, y, z) = 0 might tangent to each other. Furthermore, the program
also permits users to choose a set of parameters, a, b, c,m and n first, and see when we will
have exactly two solutions. For m = 0.7 and n = 0.4 as shown in Figures (b) and (c), we can
rotate the pictures properly to see where these two surfaces are tangent to each other.

Figure 3(a)
MVT-orginal

Figure 3(b) First
possible solution

Figure 3(c)
MVT-solution 2

Figure 3(d) Solution
2-rotation

The example above shows there is need to integrate a CAS with a 3D DGS.



3 Creativity does not come from drills

In many mathematics education systems, college entrance examinations put a great burden for
students and teachers to focus on what should be learned and taught. For example, although
the twelfth five year guideline in China indicated that ‘the education reform is a vital step for
increasing the manpower strengthening the development of the country. Technological tools
will play an important part for this integration; due to the pressure of entrance examinations,
teachers often utilize the designated mathematics experimental periods for doing more drilled
or rote type math problems. This is a typical situation in many examination oriented countries.
If we look at some of those university entrance examination math problems, we realize that we
are teaching students skills in memorization and special techniques of solving problems. As a
result, we may have lost many potential students who cannot perform well in a test. Therefore,
it is not diffi cult to conjecture that if the depth of a course in math is too deep, students
may lose interests in studying mathematics early; on the other hand, using technological tools
when exploring graphical representations in a math topic may inspire students’ interests in
learning more mathematics. In short, we need to allow students to explore problems that are
not discussed in a regular textbook or at a traditional classroom. In the next example, we
discuss a question that we encounter when teaching integration. For Figure 4(a), we want find
the closed area bounded by a curve and a line segment, this is a situation where we need to
subdivide the region into two sub-regions if we were to use typical technique of using vertical or
horizontal partitions. Alternatively, we may use change of bases as mentioned in [4], to reach
useful results inspired by technological tools.

Example 2 We are given the circle of the form x2 + y2+ 2.22x − 0.1y − 0.529 = 0 and
y = 0.9802 ∗ x + 1.866, which we picked rather randomly to demonstrate that applying one
integration is not enough using usual vertical (dx) or horizontal (dy) partitions. We intend to
find the area bounded by the circle and the line as sketched in Figure 4(a). If we were to use
traditional integration technique, we will need to apply integration on two parts (due to dx and
dy). This is where we should apply the Riemann sum with respect to a slanted line (see Figure
4(b))

To link our result to a Green Theorem, we first note if F(x, y) = (P (x, y), Q(x, y)) is a

vector field, curlF =
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. We can write the Green’s Theorem in the vector form below:∫

C

F · dr =

∫ ∫
R

(curlF) ·k dA. (1)

=

∫ ∫
R

(
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− ∂P

∂y

)
dA =

∫
C

P dx+Qdy

On the other hand, by using intuitive rotation or change of bases technique, we reach a 2D
formula (as shown in [4]) which can be seen as a special cases of Green Theorem:

Theorem 3 Let C be the smooth curve w(t) = [x(t), y(t)], where t1 ≤ t ≤ t2. Let R be the
region bounded by C, the line y = mx+ b, and the perpendiculars to the line from (x(t1), y(t1))



to (x(t2), y(t2)). We denote the counterclockwise boundary curve of R by ∂R. If P and Q are
scalar fields with continuous partial derivatives satisfying ∂Q

∂x
− ∂P

∂y
= 1, then∫

C

F · dr =
∫
∂R

P dx+Qdy =

∫ ∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA (2)

=
−1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt,

Figure 4(a) Area and a
slanted line

Figure 4(b) Natral partitions
with respect to a slanted line

We now extend the idea of finding an area through rotation (or change of bases) to finding
the volume of a solid bounded by a slanted plane and a surface in 3D analogously. As expected,
it is a special case of Divergence Theorem mentioned in [4]. The detailed techniques and
computation methods were described in [1] for finding the finite volume bounded by a plane and
a quadratic. (See Figures 5(a), (b) and (c).) We address only few points where the integration
of 3D DGS and CAS have provided us crucial intuitions while exploring the problems and refer
readers for more algebraic and computational details in [1].

1. Algebraically with the help of CAS, we show the intersections between a plane and a
quadric is an ellipse if there is an intersection.

2. To carry out the integration of finding the volume of a bounded solid algebraically, we
properly choose the right coordinate on the cross section so that the center is at the center
of the ellipse. Two eigenvectors correspond to major and minor axes for the ellipse, and
the normal vector of the cross section at the center is in the same as the normal direction
of the given plane.

3. We need a CAS (such as Maple) to assist us of solving and analyzing complex solutions
before we incorporate the solutions into drawing them in 3D DGS (such as GInMA).
Subsequently, the graphics can be made dynamic in a 3D DGS.

We discuss how we may find the volume of the region bounded by a quadric and a plane
by using the Divergence theorem. We state the theorem for those who are familiar with the
theorem as follows



∫ ∫ ∫
V

divTdV =

∫ ∫
S

T · ds, (3)

where V is the solid enclosed by the surface S, divT represents the divergence of the vector

field T, and ds =

 dydz
dzdx
dxdy

 . Intuitively, the idea is to properly choose a vector field T so

that divT is a constant, say C0 6= 0, and T· m = 0, where m is the normal vector of the given
plane. Therefore, we have∫ ∫ ∫

V

divTdV = C0

∫ ∫ ∫
V

dV = C0V, (4)

which is the volume of the bounded solid multiplied by C0. On the other hand, since T· m = 0,
and the vector ds (on the plane) is collinear with m, we see that

∫ ∫
plane

T · ds = 0. Therefore
the volume of the solid of intersection is the surface integral of T over the given quadric. In
other words we compute the volume of the bounded solid by using the following

V =
1

C0

∫ ∫
S

T · ds. (5)

The computations of
∫ ∫

S
T · ds is quite technical for various quadric S. We refer readers to

[1] for complete details of finding the volumes bounded by a quadric and a plane by using the
Divergence Theorem.

Figures 5(a), (b) and (c) Volumes bounded by a Paraboloid, Ellipsoid or
Hyperboloid with two sheets and a plane

Next we may adopt the Stokes’Theorem to find the volume of a solid. The Stokes’Theorem∫ ∫ ∫
V

(curlT ·N) dV =
∫ ∫

S

T× ds (6)

says that the collective measure of this rotational tendency taken over the entire solid is equal
to the tendency of the a fluid to circulate around the surface S. Alternatively, Stokes’Theorem
says ∫

M

dω =

∫
∂M

ω,



where M is an n−dimensional manifold with boundary ∂M, and ω is an (n− 1)-form. Thus if
n = 3, then M is some volume V and ∂M is the surface S of V. Since

ω = adxdy + bdxdz + cdydz,

we have
dw = azdzdxdy + bydydxdz + cxdxdydz = (az − by + cx)dxdydz,

where az = ∂a
∂z
, by =

∂b
∂y
and cx = ∂c

∂x
. Thus it follows from Stokes’Theorem that∫

V

(az − by + cx)dxdydz =

∫
S

(adxdy + bdxdz + cdydz).

If T = (a, b, c) is a vector field, then curlT =∇×T = (cy − bz, az − cx, bx − ay). If we set

η = −cdxdz − bdxdy, θ = adxdy − cdydz, ω = bdydz + adxdz,

then

dη = −cydydxdz − bzdzdxdy = (cy − bz) dxdydz,
dθ = azdzdxdy − cxdxdydz = (az − cx) dxdydz,
dω = bxdxdydz + aydydxdz = (bx − ay) dxdydz,

we see that
(∇×T) dxdydz = (dη, dθ, dω).

On the other hand, if ds = (−dydz, dxdz,−dxdy), then it is easy to see that

T× ds = (η, θ, ω),

we note∣∣∣∣∣∣
i j k
a b c

−dydz dxdz −dxdy

∣∣∣∣∣∣ = (−bdxdy − cdxdz,−cdydz + adxdy, adxdz + bdydz).

Hence ∫
M

(∇×T) dxdydz =
∫
V

(dη, dθ, dω) =

∫
S

(η, θ, ω) =

∫
S

T× ds. (7)

To figure out the volumeM, it follows from equations (6) or (7) that we need to properly select
a vector field T so that curlT or ∇×T is a constant and we use only one component of ∇×T
in equation (7) to compute the needed volume. We refer readers [1] for details of finding the
volumes bounded by a plane and a quadric using the Stokes’Theorem.

4 Geometric constructions are crucial for 2D and 3D

In the following two examples, we show how solutions obtained from geometric construction,
with a 2D or 3D DGS, are identical with those obtained analytically, algebraically and numer-
ically with a CAS. First we consider the shortest total distance problem: We are given three
disjoint curves, C1, C2, and C3. We want to find points A,B and D on the curves C1, C2, and
C3 respectively so that the total distance of AB + AD is the smallest. To be precise, we use
the following example that is described in [5]. We use the total square distance AB2 +AD2 in
our discussion thereafter.



Example 4 Let

g1(x1, y1) = sinx1 − y1
g2(x2, y2) = x22 − y2 + 2
g3(x3, y3) = (x3 − 3)2 + (y3 − 3)2 − 1

and we are given three disjoint curves, C1, C2, and C3 given by g1(x1, y1) = 0, g2(x2, y2) = 0
and g3(x3, y3) = 0 respectively. We would like to find the shortest total distance from C1 to C2
and C1 to C3 in the closed and bounded set of [−2, 5]× [−1, 4]. We show the curves C1, C2, and
C3 in Figure 6 below.

Figure 6. Linear combination
in 2D

Method 1 (CAS Algebraic and Numeric Solution): As described in [5], we may solve
this problem by using Lagrange multipliers method. For example, if we write xi = (xi, yi), i =
1, 2, 3, our objective is to minimize the total square distance

f(x1,x2,x3) = ‖x1 − x2‖+ ‖x1 − x3‖
subject to g1(x1) = 0, g2(x2) = 0 and g3(x3) = 0, or

f(x1, y1, x2, y2, x3, y3) = (x1 − x2)2 + (x1 − x3)2 + (y1 − y2)2 + (y1 − y3)2

subject to g1(x1, y1) = 0, g2(x2, y2) = 0 and g3(x3, y3) = 0. (8)

In short, if we achieve the minimum total square distance for f, it is a necessary condition that
we find x0 = (x∗1,x

∗
2,x

∗
3) and express the gradient vector,∇g1 at a point is a linear combination

of the the other two gradients, in other words,

∇g1(x∗1) = −
λ2
λ1
∇g2(x∗2)−−

λ3
λ1
∇g3(x∗3), (9)



where λ1 6= 0. We show the result we obtained from a CAS (Maple) below. We obtain the
shortest total distance occurs when

A =

[
x1
y1

]
=

[
1.503078740
.9977080403

]
∈ C1,

B =

[
x2
y2

]
=

[
.4425626436
2.195861693

]
∈ C2,

D =

[
x3
y3

]
=

[
2.401228926
2.199079779

]
∈ C3,

and

 λ1
λ2
λ3

 =

 −4.7990507832.396307306
1.499989270

 .
It follows from our computation that indeed λ1 (∇g1 |at A ) = λ2

−→
AB+λ3

−→
AC, which can be shown

in Figure 6.
Method 2 (DGS Geometric Solution):

1. First we arbitrarily pick a point A,B′ and D′ on C1, C2 and C3 respectively, and we total
the distance AB′ + AD′.

2. We next find points B and D on C2 and C3 respectively such that AB and AD are
perpendicular to the tangent lines at B and D respectively.

3. We construct the normal vector at the point A, and we construct the midpoint of BD
and call it E.

4. As we move A along the curve C1, we observe that the total distance becomes the smallest
when the normal vector at A passes through E. Finally if we move B′ and D′ toward B
and D respectively, we achieve the required minimum as seen in Figure 7(c).

We see in this case the geometric interpretation coincides with the one obtained algebraically
and numerically, which says that if we achieve the shortest total square distance AB2 + AD2,
it is necessary that the vector 2AE can be written as a linear combination of AB and AD. In
other words, if E is not the midpoint of BD, then AB + AD can not be the minimum.

Figure 7(a) Initial geometry
construction

Figure 7(b) Selections of B and
C



Figure 7(c) Normal vector at A and the
midpoint

We extend the numerical and algebraic ideas from 2D to 3D as demonstrated in Example 6 of
[5]. Here we discuss our 3D geometric construction here:

Example 5 We are given four disjoint convex surfaces, S1, S2, S3 and S4 given by g1(x, y, z) =
0, g2(x, y, z) = 0, g3(x, y, z) = 0 and g4(x, y, z) = 0 respectively, where

g1(x, y, z) = x2 + y2 + z2 − 1,
g2(x, y, z) = x2 + (y − 3)2 + (z − 1)2 − 1,
g3(x, y, z) = z − (x2 + y2)− 2

and

g4(x, y) = (4(x− 3) + (y − 3) + (z − 1)) (x− 3)
+ ((x− 3) + 4(y − 3) + (z − 1)) (y − 3)
+ ((x− 3) + (y − 3) + 4(z − 1)) (z − 1)− 3.

We would like to find the shortest total squared distance from S1 to S2, S1 to S3,and S1 to S4
in the closed and bounded domain of [−3, 4]× [−2, 5]× [−3, 5]. We show the surfaces S1 (sphere
centered at origin), S2 (blue sphere or sphere away from the origin), S3 (a paraboloid), and S4
(an ellipsoid) in Figure 8(a).

Figure 8(a) Initial stage
for 3D case

Figure 8(b) Positions of
A,B,C,D and the centroid



1. We start with a point A on S1, and we geometrically construct the points B,C and D on
surface S2, S3, and S4 respectively so that AB is perpendicular to the normal vector at B,
AC is perpendicular to the normal vector at C and AD is perpendicular to the normal
vector at D.

2. We next construct the centroid of BCD, which we label it as G.

3. We note that when we move the point A, the points B,C,D and G move accordingly.

4. However, we note that only when the normal vector at A passes through the centroid, G,
will we obtain the shortest total square distance for AB+AC +AD. This can be verified
by incorporating the answers obtained from Maple into GInMA ahead of time, which
we label them by A′, B′, C ′ and D′ on S1, S2, S3, and S4 respectively. We see minimum
occurs when normal vector at A passes through G; at the same time, we should have
A = A′, B = B′, C = C ′ and D = D′.

5 Connecting mathematics to applications through tech-
nologies

If one is given a figure and any line, say y = mx+ b, it is trivial even to a middle school student
how he or she can sketch the reflection of the initial figure along the line y = mx+ b, which we
call such reflection the general inverse with respect to the given line. We can ask mathematically
how we can find the equation of the general inverse with respect to a given line. Next, we are
given a fixed point, and if the given line is a moving tangent line of a smooth curve, we ask
what will be the locus of the general inverse. This can be seen as follows: If we fix a light
source M and a given curve C (see Figure 9(a)), for each point A on the given curve, we can
find the reflection A′′ with respect to the tangent line at A. By moving the tangent line at every
point on the curve C, the locus is called orthotomic curve for C. It is mentioned in [3] that the
caustic curve can be viewed as the locus of the centers of the orthotomic normals or the evolute
of orthotomic curves.

5.1 Obtaining orthotomic surface algebraically with a CAS

We summarize how an orthotomic surface can be obtained algebraically, analogous to obtaining
an orthotomic curve in 2D, in the following steps:

1. We first start with finding the reflection of (p(s, t), q(s, t), r(s, t)) from (x(s, t), y(s, t), z(s, t))
with respect to a plane P passing through the origin ax + by + cz = 0 (we denote
n = (a, b, c) , which is the normal vector of this plane).

2. We set vector v to be the vector from the origin to (x(s, t), y(s, t), z(s, t)). We split the
vector v into its components which are normal to the plane (denoted v⊥P ) and parallel
to the plane (denoted v‖P ). i.e., v = v⊥P + v‖P , we note that v⊥P is the orthogonal

projection of v on the normal vector n = (a, b, c). The reflection

p(s, t)q(s, t)
r(s, t)

 can be written
as −v⊥P + v‖P = −v⊥P + (v − v⊥P ) = v − 2v⊥P = v||n||2−2(v·n)n

||n||2



3. After using shifting technique, letting the original given surface S be represented by

X =

x(s, t)y(s, t)
z(s, t)

 and X0 = (x0, y0, z0) be on the plane ax+ by+ cz = 0. Then the reflection

of S with respect to the plane ax+ by + cz = d can be written as

A (X −X0) +X0, (10)

where A = 1
a2+b2+c2

−a2 + b2 + c2 −2ab −2ac
−2ab a2 − b2 + c2 −2bc
−2ac −2bc a2 + b2 − c2

 is symmetric and there-
fore it is invertible.

4. This formula (8) can be reduced to 2D to find the general inverse with respect to a slanted
line y = mx+ b.

5. By fixing the light source M,and moving the tangent plane P ∗ along the given surface
S, the locus of the reflection of S with respect to the all the moving tangent plane P ∗ is
called the orthotomic surface for S.

6. In 2D, by taking the locus of the centers of the curvatures of the orthotomic curve or the
evolute of orthotomic (envelope of the orthotomic normals), we reach the caustic curve
for the curve C, which is the concept from physics. Naturally, we would ask how we can
define a caustic surface in 3D.

5.2 Obtaining orthotomic curve or surface geometrically with a 3D
DGS

We remark that in [3], we use equation (8) in Maple to derive the orthotomic curves and surfaces
for a given curve or surface. We shall describe how we can arrive the same conclusion by using
geometric constructions using a DGS. We start with the case in 2D.

1. We refer readers to Figure 9(a). Assume we are given a parabolic curve C of the form
[t, at2], where the parameter a can be input by user, and we start with a light source at
P.

2. We pick a point A on C and construct the perpendicular to the tangent line at P, which
is shown as A′ in Figure 9(a). The locus of A′ is called the pedal curve of C.

3. We construct A′′ with the equation of PA′′ = 2PA′, which is consistent with our earlier
observation of v = v⊥P + v‖P = v− 2v⊥P . The locus of A′′ is the orthotomic curve of C.

While visiting Chinese Academy of Sciences in Beijing in September of 2013, a student
asked this question: If we are given an orthotomic or caustic curve, are we able to identify the
light source and the original curve. After exploring the Java applet [7], see Figure 9(c), the
answer is affi rmative. We now move to the case in 3D.

1. We start with an ellipsoid S of the form x2

a2
+ y2

b2
+ z2

c2
= 1 (seen as yellow in Figure 10

(a)), where the constants a, b, and c can be adjusted by users, and we start with a light
source at A.



2. We pick a point B on the ellipsoid S (see Figure 10(a)) and construct the perpendicular
to the tangent plane at B, which is shown as C in Figure 10(a). The locus of C is called
the pedal surface (as seen in purple in Figure 10 (a)) for the ellipsoid. With the DGS, we
can verify that AC is perpendicular to the tangent plane or parallel to the normal of the
tangent plane.

3. We construct D by using AD = 2AC, which is again consistent with our earlier obser-
vation of v = v⊥P + v‖P = v − 2v⊥P . The locus of D is the orthotomic surface for the
ellipsoid (as seen in green in Figure 10(b)).

Figure 9(a)
Orthotomic for a

parabola

Figure 9(b) Orthotomic
and caustic curves for a

circle

Figure 9(c) Evolute of orthotomic

Figures 10(a) and (b) Pedal (purple) and Orthotomic (green) surfaces with respect

to an ellipsoid (yellow)



Figures 11(a) Caustic
surface by rotation

11 (b) Caustic surface by
shifting

We remark that the caustic curves in 2D can be defined explicitly if the light source is known
and the equation of the original curve is defined. However, it is non-trivial to describe a caustic
surface in 3D. We describe here how to find the caustic surfaces with respective to a symmetry
surface such as a sphere or a cylinder. We further assume the light source is on the line of
symmetry. In such case, we apply rotation (see Figure 11(a)) and shifting (see Figure 11(b))
techniques to obtain the corresponding caustic surfaces. We observe the following
Remarks:

• If we place the light source F near the edge of the sphere and the light source is placed
along the line of symmetry as seen in Figure 11(a), the caustic surface will be rotating a
2D caustic curve (which is similar to the one in Figure 9(c)) around the line of symmetry.

• If we place the light source F near the edge of a cylinder and the light source is placed
along the line of symmetry as seen in Figure 11(b), the caustic surface will be the vertical
extensions from a 2D caustic curve (which is similar to the one in Figure 9(c)) along the
center of the circle.

Caustic surfaces are important field for optics area. Thus we hope future integration of
CAS and 3D DGS can inspire more collaborative works in cross disciplinary areas.
In general, computer software packages allow learners to explore complicated visualizations

in 3D. Once we comprehend the concepts in 3D, we can extend our observations or results to
finite dimensions when possible, and some of which can be extended to abstract spaces.

6 Conclusion

With current technological tools, an applied mathematics problem or project can be explored
from different perspectives. We can ask if a solution exists; if it exists, how to approximate such
solution. Do we use analytical answer or numerical answer before incorporating it into a DGS?
What is the most effi cient way of getting the answer? Finally, what are the real-life applications?
Therefore, educators and researchers from all disciplines should work cooperatively to design
proper set of projects for students to explore in different levels, from middle school to university
and beyond. Consequently, new concepts or knowledge learned from exploration can be acquired



naturally when students move from one level to the other. Author believes that mathematics
knowledge gained through exploration will stay with learners for life. On the other hand,
knowledge gained from preparing for an examination may last only briefly. Everyone will
agree that examination is one way but not the only way to measure students’understandings.
Technology becomes a bridge to make us rethink how to make mathematics an interesting and
a cross disciplinary subject. Through the advancement of technological tools, learners will be
able to discover more mathematics and its applications.
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