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Abstract

In this paper we investigate a new type of symmetry for an arbitrary triangle, so called Sejfriedian, and we show  
elementary proofs of selected properties of Sejfriedians. This type of symmetry was obtained by Michael Sejfried in  
2008. Sejfriedian is a pair of triangles inscribed into any circle, the circle and the set of lines coming out of all vertices  
of the given triangle. It has many unusually interesting properties. The Sejfriedian gives students great opportunity for  
in-depth  study  of  the  properties  of  stereographic  projection,  spatial  inversion  and  combining  of  mathematical  
expressions.
All the pictures in the electronic version of this paper are interactive. Install GInMA software from the website
http://deoma–cmd.ru/en/Products/Geometry/GInMA.aspx
click on the Figures and investigate the constructions and interactive solutions of the problems.

1. Introduction
For at least 10 years I have dealt with geometrical problems related to the triangles, the circles and 
their  interrelationships.  This  has  allowed  me  to  build  many  interesting  constructions  and  to 
investigate their marvellous properties. So I have found the family of the circles, which I called 
"perfect circles", and the pair of the triangles inscribed in each of them called by me "amicable 
triangles". The family of "perfect circles" begins at the Fermat point and ends at the circumcenter,  
including also incircle and many other interesting circles. The incircle is here one of special cases. 
The well-known Soddy circles, Soddy line, Soddy center, Gergonne point, Gergonne line, Nobbs 
points, Oldknow point, Griffiths points and Rigby points are all based on incircle. Using "perfect 
circles" I generalized them. I formulated also a few theorems, where one of them called "Golden 
theorem" is related to golden mean. Unfortunately till today I couldn't find the equation of the locus 
of the centers of the "perfect circles".

For  personal  reasons I  cannot  take part  in ATCM 2012. I'm very pleased that  my paper  about 
"amicable triangles" and "perfect circles", published on the ATCM 2011 in Bolu and on the ICGG 
2012 in Montreal [1], aroused an interest in Vladimir Shelomovskii, who was going to develop it 
and will present today elegant proofs of the theorems related to "amicable triangles" and "perfect 
circles" using 3D-geometry and GInMa software [2].

Michael Sejfried. 

2. Definitions and denominations
Traditionally mathematicians denominate beautiful geometric constructions and objects using the 
name of the person who first discovered and described them. In accordance with this tradition and 
[1], I denominate the objects in the paper as follows.
Given any reference ABC triangle. Let’s construct three pairs of lines, as shown on Figure 1. The 
first pair connects the vertex A with the points A1 and А2, lying on the line BC and A1 is closer to B 
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than А2. The second pair connects the vertex B with the points B1 and B2, lying on the line AC and B1 

is closer to C than B2. The third pair connects the vertex C with the points C1 and C2, lying on the 
line AB and C1 is closer to A than C2. The lines AA1 , BB1 , and CC 1 intersect at three points K1, 
L1 and  M1.  The  lines AA2 ,BB2 , and CC 2 intersect  at  three  points  K,  L, and  M.  We  also 
construct  the  lines  AA3 , BB3 , and CC 3 passing  through  the  points J 1 , J 2 , and J 3 ,
intersection  of  BB2 and  CC 1 , AA1 and  CC 2 , AA2 and  BB1 , respectively.  Points 

A3 ,B3 , and C3 are located on BC , AC , and AB lines. The lines AA3 , BB3 (and CC 3 ) 
intersect at point G. If points K1, L1, M1, K, L, and M belong to one circle, the pair of the triangles 
KLM and K1L1M1 have been called Sejfried triangles, the circle have been called Sejfried circle, 
the center of Sejfried circle have been called Sejfried point, the locus of Sejfried point have been 
called Sejfried function, and all this construction have been called Sejfriedian. If Sejfried circle is 
an incircle of ABC, then Sejfriedian have been called the base Sejfriedian.

Figure 1 and all the Figures in the electronic version of this paper are interactive. Install GInMA 
software from the website
http://deoma–cmd.ru/en/Products/Geometry/GInMA.aspx
click on the Figures and investigate the constructions and interactive solutions of the problems.

Figure 1 Sejfriedian for arbitrary triangle

3. Sejfriedian for equilateral triangle

When we rotate equilateral triangle around the center at the angle  120°, it transforms into itself. 
Hence, АC1 = ВA1 = СB1, АВ2 = ВС2 = СА2. Since the equilateral triangle is symmetric about the 
median,  АВ1 =  AС2.  Therefore  Sejfried  triangles  must  be  equilateral  triangles  and  the  points 

A3 ,B3 , and  С3 must  be  midpoints  of  BC,  AC, and  AB,  respectively.  Let  the  unit  equilateral 

triangle be given and ξ =BA1≤
1
2

.  Then

AB 2=AC 1=BC 2=BA1=CA2=CB1=ξ , (1)
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A1 A3=A2 A3=B1 B3=B2 B3=C1C3=C 2C 3=
1
2
−ξ . (2)

By the Pythagorean theorem, we obtain

AA1=AA2=BB1=BB2=CC1=CC2=√ 3
4
+( 1

2
−ξ )

2

=√1−ξ +ξ 2 . (3)

Let's denote AA1=l . We use the properties of crossing segments within the triangle and obtain the 
lengths of the parts on which the segments АА1, АА2, АА3  and similar segments are divided

AK =ξ
l

, KH 2=
(1−2ξ )(1−ξ )

(2−ξ ) l
, H 2 J 3=

(1−2ξ )l 2

1+ξ −ξ 2 , (4)

J 3 M =
(1−2ξ )ξ
(1+ξ ) l

,MA2=
ξ 2

l
, KM =1−2ξ

l
. (5)

AJ 1=
1−ξ
1+ξ

√3
2

, J 1 G=
5ξ −1
3+3ξ

√3
2

, GH 1=
1−2ξ
2−ξ

√3
3

, (6)

H 1 A3=
ξ

2−ξ
√3
2

, AG=√3
3

, A3G=√3
6

. (7)

The inradius of an equilateral unit triangle is equal to  1
2√3

. Let's denote  λ=2√3ρ , where

ρ is the radius of the Sejfried circle. We find from the condition KM =ρ √3 , that

KM =
1−2ξ

l
=ρ √3=λ

2
, 1−2ξ = λ √3

√16−λ 2
=μ , ξ =1

2
− λ √3

2√16−λ 2
=

1−μ
2

.   (8)

The last formula shows that the solution exists only if λ<4 . For the base  Sejfriedian  λ=1,

ξ = 1
2
− 1

2√5
, μ= 1

√5
. Let's  note  1−ξ

1−2ξ
=ϕ , 1−ξ

ξ =ϕ 2 , where ϕ =√5+1
2

≈1,618 , it 

is  golden mean.  If  the radius  of  the  Sejfried circle  is  equal  to  the  circumradius,  then λ=2,
ξ =0 ,μ=1. So  Sejfried  circle  passes  through  the  ABC vertices,  and  coincides  with  the 

circumcircle of the original triangle.

Figure 2 Sejfriedian for equilateral triangle
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4. Sejfriedian cross-ratios

It  is  known that  points  of  intersection  of  three  or  more  lines  are  preserved  by the  projective 
transformations.  If  U , V ,W , and  P are collinear,  then the cross ratio  is  defined similarly as

(U ,V ;W , P)=UW⋅VP
UP⋅VW

. The cross-ratio is preserved by the projective transformations. It will 

be  shown  below  that  the  Sejfriedian  for any  triangle  can  be  constructed  by  using  projective 
transformation of the Sejfriedian for equilateral triangle. Therefore, cross-ratios, calculated for the 
equilateral triangle, are right for any arbitrary triangle.
We calculate the cross-ratios for different sets of points. For each side of the triangle ABC and each 
of its median, the cross-ratios can be found using any four of the five defined points. For example,  
the side BC contains the points B ,C , A1 , A2 , and A3 . The segments of the form AА2  contain 
the sets of six points. For example, there are points  А, K, H2,  J3, M, and  А3  on the line  AА2. The 
values of some cross ratios are

(B , A1 ; A3 ,C )=
BA3⋅A1C
BC⋅A1 A3

=
0.5(1−ξ )

0.5−ξ
= 1−ξ

1−2ξ
=√ 4

3λ2 −
1
12

+1
2

.  (9)

In the case of the base Sejfriedian we have λ=1, (B , A1 ; A3 , C )=√5+1
2

=ϕ ≈1,618 .

We use the properties of the projections in the triangle ABC and get 
(B , A1 ; A3 ,C )=(С 2 , J 2 ; H 1 ,C)=
=(С3 , H 3 ;G ,C )=(С1 , K ' ; J 1 ,C )=(С1 , J 1 ; H 2 ,C )=(С2 , J 2 ; H 1 ,C )=( A , B2 ; B3 ,C ). (10)

(B , A2 ; A3 ,C )=
BA3⋅A2 C
BC⋅A2 A3

= 0.5ξ
0.5−ξ

= ξ
1−2ξ

=√ 4
3λ2 −

1
12

−1
2

.  (11)

In the case of the base Sejfriedian λ=1,  (B , A2 ; A3 ,C )=√5−1
2

=ϕ −1≈0,618.

(B , A1 ; A2 ,C )=
BA2⋅A1 C
BC⋅A1 A2

=(1−ξ )2

1−2ξ
=1

2
(1+ 8+λ2

λ √48−3λ 2
). (12)

In the case of the base Sejfriedian we have (B , A1 ; A2 ,C )=3√5+5
10

≈1,171 .

(B , A2 ; A1 ,C )=
BA1⋅A2 C
BC⋅A2 A1

= ξ 2

1−2ξ
=(1−ξ )2

1−2ξ
−1=1

2
( 8+λ2

λ √48−3λ 2
−1). (13)

In the case of the base Sejfriedian we have (B , A1 ; A2 ,C )=3√5−5
10

≈0,1708.

(B , A1 ; A3 , A2)=
BA3⋅A1 A2

BA2⋅A1 A3
= 1

1−ξ
=16−λ2−λ √48−3λ2

2(4−λ2)
. (14)

In the case of the base Sejfriedian we have (B , A1 ; A3 , A2)=
5−√5

2
≈1,382 .

(A , K ; M , A2)
−1=

AA2⋅KM
AM⋅A2 K =

(1−2ξ )(1−ξ +ξ 2)
(1−ξ )3 =1− ξ 3

(1−ξ )3=1−
(√16−λ 2−λ √3)

3

64(4−λ2)3 . (15)

In the case of the base Sejfriedian we have (A , K ; M , A2)
−1=1−ϕ −6≈0,9443 .



5. Construction of the base Sejfriedian for any reference triangle
Let's construct the base Sejfriedian for any reference triangle АВС. The circle ω coincides with the 
Sejfried circle in this case. Let I be the incenter, A3 and B3 be the points of the Gergonne triangle. 
Let D0 D1 be  incircle  diameter  which  contain the  Gergonne  point  of  the  triangle  G,  and   

D0 G>D1G . Let  us  make  the  perpendicular  to  the  plane ABC through  the  point D1 and 

choose the point D such that DD1=
D0 D1

√ D0 G
D1 G

−1
. Let the plane P be perpendicular to D0 D. It 

passes  through D1 and  crosses D0 D at  point D0 ' . When  we  use  central  projection  from 
D , the circle ω transforms into the circle ω' with the diameter D0 ' D1 belonging to the plane P. 

Point G transforms into the center О, D0 ' О=D1 О (see Appendix 3). The triangle A ' B ' C '  is 
the image of the triangle ABC. The images of the segments AA3 , BB3 , and СС3 connect the points 
of  the  triangle A ' B ' C ' with  the  points  of  tangency of  ω'  and B ' C ' , A' C ' , and A ' B ' ,  
respectively. Since  these  images  pass  through  the  center  of  the  circle,  the  triangle  A'B'C' is 
equilateral (see Appendix 2). 

We  construct  the  base  Sejfriedian  (points A1 ' , A2 ' , B1 ' , B2 ' ,C1 ' ,C2 ' )  of  equilateral 
triangle A ' B ' C ' . Next, we make central  projection from  D and found the points of the base 
Sejfriedian for triangle ABC.

Figure 3 Construction of the center of projection Figure 4 Construction of the base Sejfriedian for 
equilateral triangle

Figure 5 Central projection to the ABC plane Figure 6 The base Sejfriedian for given triangle
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6. Construction of the Sejfriedian for any reference triangle

To construct the  Sejfriedian for arbitrary λ and given triangle, we may construct corresponding 
Sejfriedian for equilateral triangle  and find the projection center  D. The center is determined by 
three parameters. For example, these parameters are: the radius of the  Sejfried  circle, the angular 
position of the point D1 (a base of the perpendicular from D) on the circle, and the distance from 
D to the plane of the circle. As a result of the projection, we obtaine the triangle. We may create  
three combined equations defining the ratio of the sides for resulting triangle. Solving this system, 

we build triangle  similar for given triangle.  We show the  Sejfriedians with λ=1
2

and λ=3
2

,

constructed by this method.  For the proofs in part 7 there is important the principle possibility of 
constructing  the  Sejfriedian  for  given  triangle  using  central  projection  of  the  Sejfriedian  for 
equilateral triangle.

Figure 7 Sejfriedian for λ=1
2

. Figure 8 Sejfriedian for λ=3
2

.

7. Sejfriedian invariants

Theorem 1 Sejfriedian points for arbitrary λ and triangle meet the condition:
AB1

CB1
⋅

AB2

CB2
⋅

CA1

BA1
⋅

CA2

BA2
⋅

BC 1

AC 1
⋅

BC 2

AC 2
=1. (16)

Proof. The Ceva conditions for the vertices of  Sejfried triangles and point  G  may be written as 
follows:

for the vertex of J1
BC1⋅СA3⋅AВ 2

AС 1⋅ВA3⋅CB 2
=1 , (17)

for the vertex of Н2
BС1⋅AВ3⋅CA2

AС 1⋅CВ3⋅BA2
=1,  (18)
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for the vertex of J3
AB1⋅BС 3⋅CA2

СB1⋅AC 3⋅BA2
=1 , (19)

for the vertex of Н1
AB1⋅CA3⋅BC 2

СB1⋅ВA3⋅AC 2
=1 , (20)

for the vertex of J2
CA1⋅AB3⋅BC 2

BA1⋅CB3⋅AC 2
=1 , (21)

for the vertex of Н3
CA1⋅BC 3⋅AB 2

BA1⋅AC 3⋅CB 2
=1 , (22)

for the point G
CB3⋅BA3⋅AC 3

CA3⋅AB 3⋅BC 3
=1. (23)

We multiply the left and right sides of (17) – (22) equations and the square of (23) equation. Then 
we extract the square root of the result and obtain the required equality.■

Theorem 2 Sejfriedian points for arbitrary λ and given triangle meet the conditions:
BA2⋅A1C
BA1⋅A2C

=
AС 2⋅BС 1

AC1⋅BC 2
=

CB 2⋅AB1

CB1⋅AB2
=( √16−λ2+λ √3

√16−λ 2−λ √3)
2

.

Proof. We devide (12) on (13) equations and get
BA2⋅A1C
BA1⋅A2C

=
( B , A1 ; A2 , C )
( B , A2 ; A1 , C )

=
(1−ξ )2

ξ 2 =( √16−λ 2+λ √3
√16−λ2−λ √3)

2

. (24)

We get similarly

AС 2⋅BС1

AC 1⋅BC 2
=( √16−λ 2+λ √3

√16−λ 2−λ √3)
2

, (25)

CB 2⋅AB1

CB1⋅AB2
=( √16−λ2+λ √3

√16−λ 2−λ √3)
2

. (26)

In the case of the base Sejfriedian we get

BA2⋅A1C
BA1⋅A2C

=
AС 2⋅BС 1

AC1⋅BC 2
=

CB 2⋅AB1

CB1⋅AB2
=(√5+1

2 )
4

=ϕ 4≈6,854 .■

Theorem 3 (Sejfried theorem)  Sejfriedian points for arbitrary λ and given  triangle meet  the 
conditions:

AB1

CB1
⋅

CA1

BA1
⋅

BC 1

AC1
=( √16−λ 2+λ √3

√16−λ 2−λ √3)
3

, (27)

AB2

CB2
⋅

CA2

BA2
⋅

BC 2

AC 2
=(√16−λ 2−λ √3

√16−λ 2+λ √3 )
3

. (28)



AB1

CB1
⋅

CA1

BA1
⋅

BC 1

AC1
+

AB2

CB2
⋅
CA2

BA2
⋅

BC 2

AC 2
=2+ 432

(4−λ 2)3 . (29)

In the case of the base Sejfriedian we get:

 
AB1

CB1
⋅

CA1

BA1
⋅

BC 1

AC1
=ϕ 6 ,

AB2

CB2
⋅

CA2

BA2
⋅

BC 2

AC 2
=ϕ−6 . (30)

AB1

CB1
⋅

CA1

BA1
⋅

BC 1

AC1
+

AB2

CB2
⋅
CA2

BA2
⋅

BC 2

AC 2
=18 .■ (31)

Proof. Let's multiply the equations (24), (25) and (26) and multiply the product by the square of the 
equation (16). Let's make square-rooting, and we get (27). We divide the equations (16) on (27), and 
get (28). We add the equations (27) and (28), and get (29).■

Theorem 4 Let the pair of Sejfried triangles KLM and K1 L1 M 1 be given. Then
1

KL2 +
1

KM 2 +
1

LM 2 =
1

K1 L1
2 +

1
K1 M 1

2 +
1

L1 M 1
2 . (32)

Proof.  Let us consider stereographic projection of the  Sejfriedian for  equilateral  triangle  A'B'C' 
from point D into the plane of the original triangle ABC. We consider it as the inversion with the 
center  D which  transforms  the  points  K ' ,L ' ,M ' , K 1 ' , L1 ' ,M 1 ' of  the  Sejfriedian  for 
equilateral  triangle  A'B'C' into  the  points  K , L , M , K1, L1, M 1 , respectively.  According to  the 
construction,  the  point  D0 ' belongs  to  the  circumcircle  of  regular  triangles K ' L ' M ' and 

K1 ' L1 ' M 1 ' , DD0 ' , is  perpendicular  to  the  plane K ' L ' M ' . We  use  the  property  of 
inversion and obtain

K ' L '
KL

= K ' D⋅L ' D
R2 , (33)

where R is the inversion radius. We use the following form of (33) K ' L' 2⋅R4

KL2 =K ' D2⋅L ' D2.

We add up similar relations for all sides of Sejfried triangles. We take into account that 
K ' L '=K ' M ' =L ' M '=K1 ' L1 '=K 1 ' M 1 ' =L1 ' M 1 ' .

Then we obtain

K ' L ' 2⋅R4( 1
KL2 +

1
KM 2 +

1
LM 2)=K ' D2⋅L ' D2+K ' D2⋅M ' D2+L ' D2⋅M ' D2 ,  (34)

K1 ' L1 ' 2⋅R4( 1
K 1 L1

2 +
1

K1 M 1
2 +

1
L1 M 1

2)=K1 ' D2⋅L1 ' D 2+K1 ' D 2⋅M 1 ' D2+L1 ' D2⋅M 1 ' D2 . (35)

We  note,  that  K ' D2=K ' D0 ' 2+D0 ' D 2 .  We  use  the  equation  (A3)  in  the  form 

K ' D0 ' 2+L ' D0 ' 2+M ' D0 ' 2=2 a2=K1 ' D0 ' 2+L1 ' D0 ' 2+M 1 ' D0 ' 2 and  the  equation  (A5)  in  the 
form K ' D0 ' 2⋅L ' D0 ' 2+K ' D0 ' 2⋅M ' D0 ' 2+L ' D0 ' 2⋅M ' D0 ' 2=a4 ,

K1 ' D0 ' 2⋅L1 ' D0 ' 2+K 1 ' D0 ' 2⋅M 1 ' D 0 ' 2+L1 ' D0 ' 2⋅M 1 ' D0 ' 2=a4.



We add up the equations and obtain, that the right part of the equation (34) is equal to the right part  
of the equation (35). We know that the first factors in the left side of the equations (34) and (35) are 
equal. Hence the second factors are equal.■

Theorem 5 Let the pair of Sejfried triangles KLM and K1 L1 M 1 be given. Then

KL
KM⋅LM

+ KM
KL⋅LM

+ LM
KL⋅KM

=
K 1 L1

K 1 M 1⋅L1 M 1
+

K 1 M 1

K1 L1⋅L1 M 1
+

L1 M 1

K 1 L1⋅K1 M 1
, (36)

KL2+KM 2+LM 2

S KLM
=

K1 L1
2+K1 M 1

2+L1 M 1
2

S K ' L' M '
, (37)

where S KLM (S K1 L1 M 1
) is the area of the Sejfried triangle KLM (K 1 L1 M 1) .

ctg α+ctg β +ctgγ =ctgα 1+ctg β 1+ctgγ 1 , (38)

where α ,β ,γ ,α 1 ,β 1 ,γ 1 are the angles of Sejfried triangles.

Proof. We use the equation (33) and similar, and obtain that

KL
KM⋅LM

= K ' L '⋅R2

K ' D⋅L ' D
⋅K ' D⋅M ' D

K ' M '⋅R2 ⋅L ' D⋅M ' D
L ' M '⋅R2 =

M ' A0 ' 2+A0 ' D2

K ' L '⋅R2 .

KM
KL⋅LM

= K ' M '⋅R2

K ' D⋅M ' D
⋅K ' D⋅L ' D

K ' L '⋅R2 ⋅M ' D⋅L' D
L ' M '⋅R2 =

L ' A0 ' 2+A0 ' D 2

K ' M '⋅R2 .

LM
KM⋅KL

= L' M '⋅R2

L' D⋅M ' D
⋅K ' D⋅M ' D

K ' M '⋅R2 ⋅K ' D⋅L ' D
K ' L'⋅R2 =

K ' A0 ' 2+A0 ' D2

L ' M '⋅R2 . (39).

We add the expressions in the left and right parts of the equation (36) and use (A3). We obtain, that 
the equation (36) is correct. 
If two triangles are inscribed in a circle, the ratio of their areas is equal to the ratio of the products  

of  sides.  This  follows  from the  formula  for  the  area  of  triangle S= abc
4 R

.  Consequently,  the 

equation (36) may be transformed into the equation (37).

It is known, that for any triangle we have ctgα +ctg β +ctg γ= a2+b2+с2

4 S
.  Consequently,  the 

equation (37) may be transformed into the equation (38).■

8. Appendixes

Appendix 1. Properties of equilateral triangle
In this section, we consider equilateral triangle ABC and point P belonging to the circumcircle  
ABC. Let the side of ABC is equal to a. We derive appropriate equations.



Let us order the distances to the vertices. Let us take AP≤BP≤CP. It is known, that in this case 
we have AP +BP=CP. The angle between AP and BP is 120º, hence

AP 2+BP2+AP⋅BP=a2 , (A1)

CP2−AP⋅BP=a2 . (A2)
We add up the equations (A1) and (A2) and get

AP2+BP2+СP2=2a2 . (A3)
Raising the equation (A2) in the square, we get

(CP⋅( AP+BP)−AP⋅BP)2=a4 , (A4)

CP2⋅AP 2+CP2⋅BP 2+AP2⋅BP2=a4 . (A5)

The sines of the angles between АР, ВР, and СР are equal to √3
2

, hence the sum of the squares of 

the distances from P to the lines containing the sides of triangle ABC is equal to 3
4

a2 .

Appendix 2. Gergonne point coincides with the incenter
Let the Gergonne point coincides with the center of the inscribed circle of the triangle. We prove  
that the triangle is equilateral. 

Proof. The radii of the inscribed circle are perpendicular to the sides at the points of contact, so they 
lie  on  the  altitudes  of  the  triangle.  Therefore,  the  orthocenter  is  concur  with  the  incenter. 
Consequently,  the  nine-point  circle,  passing  through  the  bases  of  heights,  is  the  same  as  the 
inscribed  circle.  Hence,  the  midpoints  of  the  triangle  sides  are  concur  with  the  height  bases. 
Therefore, the heights coincide with the medians. This is only possible for equilateral triangle.■

Appendix 3. Projection of a circle into a circle
Let right triangle ABD ( AB⊥ BD)  be given in space and it's height is BC ⊥ AD. The circle ω 
with the diameter AB lies on a plane perpendicular to BD , the circle ω'  with the diameter 

BC lies on a plane perpendicular to AD. Let us prove that central projection from point D  
transforms the circle ω  into the circle ω'.  That is, any point E of the circle ω corresponds to the 
point F of the circle ω' such that the points D, E and F are collinear.

Proof.  Let us construct the sphere with the diameter  AB (and with the center of  O') and the 
sphere with the diameter BD (and with the center of Q). The plane of the circle ω is tangent to the 
second  sphere  at  point B and  is  perpendicular  to  the  diameter  of  the  sphere  BD. The 
intersection curve of the spheres is a circle belonging to the plane perpendicular to O ' Q. Since 

O ' Q is  the  average  line  of  the  triangle ABD , the  plane  of  this  circle  is  perpendicular  to 
AD. In  accordance  with  the  definition,  the  circle  ω'  transforms  into  the  circle  ω  under 

stereographic projection from point  D. In accordance with the properties of the stereographic 
projection, the circle ω transforms into ω' under central projection from point D.



Using the properties of  crossing segments,  we find that  the beam DG intersects the segment 

BC at its mid-point O if and only if BD=AB√ AG
BG

−1 . ■

Figure 9 Projection of a circle into a circle

8. Conclusion
The second author has just started to delve into the amazing properties of Sejfriedian and there are 

many properties that have not been proved. For example, AK
AK 1

⋅ BL
BL1

⋅CM
CM 1

=1 . We have a lot of 

interesting research ahead.
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