
Multiple Suggestions for 
 Interactive SDE Estimation

1. Introduction
A stochastic  differential  equation  (SDE)  is  a  differential  equation in  which  one or  more terms 
represent stochastic processes. SDEs are used in various fields; their application to mathematical 
finance is well known. Our target equation is a linear SDE with constant coefficients. This equation 
is  determined  by  using  two  linear  functions;  in  other  words,  four  real  constants  control  this 
equation.  This  equation  is  simple  and  many  experts  believe  that  it  is  easily   understandable. 
However, it may be difficult for them to explain the role of each parameter to laymen.
  One of the main uses of our educational software is to understand the roles of parameters by using 
simulated modifications. First, our system estimates the values of SDE parameters with respect to a 
given set of time series data [1].  Then, a user changes the values of the parameters, which leads to 
the corresponding sample paths being created. If these values differ significantly from the correct 
values, the user will be able to perceive the difference by comparing the sample paths several times. 
First, a user may realize that the given parameters are not sufficiently accurate. After extensive trial 
and error, we expect the user to learn the roles of the parameters and to improve them accordingly. 
In our previous version of the software, the estimated parameters were highly inaccurate and the 
user was unable to improve them. The objective of this study is to facilitate the improvement of the 
parameters.
  We use an evaluation function for the correctness of the parameters in order to estimate them. The 
evaluation value is obtained from a generalized Choquet integral with respect to a two-additive 
measure. We define several types of feature values that can be used for verifying the correctness of 
the  parameters.  The two-  additive  measure  is  defined on a  set  of  feature  value  types,  and the 
integrand  is the corresponding feature value for each type. First, we try to improve these feature 
values and the generalized Choquet integral. For this integral we use Dombi's t-norm, which is a 
binary operator defined on [0,1]. This operator is a generalization of the minimum operator. In our 
new estimation, we also use Dombi's t-conorm, which is a generalization of the maximum operator. 
Assume that these binary operators are defined on a set of membership functions with respect to 
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Abstract:  We are developing educational software to estimate the parameters of 
stochastic differential equations (SDE) using a single set of time series data. Our 
target equation is a linear SDE with constant coefficients, which is determined by 
four real parameters.   In our previous version, for a single set of data, we 
obtained a single set of estimated parameters and suggestions to change them. In 
this study, we propose a method to give several sets of estimated parameters, 
assuming several situations for the first estimation. Then, we will be able to find 
a closer set of parameters, and the interactive estimation will be improved.



fuzzy sets. Then, a t-norm corresponds to  the intersection and a t-conorm corresponds to the union.
  Two-additive measures are obtained from linear regressions. All feature values are obtained by a 
modification  of  the  process  and  four  parameters.  If  the  corresponding  stochastic  process  is  a 
solution of some SDE, the evaluation values should be small when the given parameters and correct  
SDE parameters  are  similar.  For  obtaining  the  training  data,  the  SDE parameters  are  selected 
randomly, and the corresponding sample path is obtained using random numbers; subsequently, we 
obtain random parameters and the distance from the correct SDE parameters. Moreover, we control 
the distance so that it does not exceed D . In the previous version, we consider a single value of 
D , whereas in our new method, we consider several values of D ; accordingly, we obtain several 

evaluation functions. Thus, we obtain several candidates for estimating the parameters.

2. Stochastic Differential Equation and the System
  Our target SDE is a linear SDE with constant coefficients, and the objective of developing our 
system is to use it for estimating the four parameters of the SDE. A set of time series data is used for 
estimating the parameters.  In this section, we describe our system in detail. 

2.1 Stochastic Differential Equation
  In this study, we consider an SDE of the form
                    X t−X s=∫s

t
(aX r+b)dr+∫s

t
(c X r+d )dB r ,                                              (1)

where a ,b , c  and d  are real constants, dr  denotes the Lebesgue integral, and dBr  denotes the 
Ito stochastic integral with respect to the Brownian motion process B( t) .  Equation (1) can be 
expressed in a condensed form as

  dX t=(aX t+b)dt+(c X t+d )dBt .
This equation roughly indicates that the mean value of the increment in X t  is proportional to with 
(aX t+b)dt , and the corresponding variance is (c X t+d )2 dt . It is well known that equation (1) 
has a unique strong solution [2]  given by 

                       X ( t)=U (t)(X (0)+∫0
t a−c∗d

U (s)
ds+∫0

t c
U (s )

dB(s )) ,

                              U (t )=exp(∫0
t
(b−1

2
d 2)ds+∫0

t
d dB(s))  .                                        (2)

A simulated  modification  is  given  by  the  above  solution.  The  distribution  of  the  solution  is 
determined by the parameters  a ,b , c  and  d ; however, explicit values contain random elements. 
Then we need to create the modifications several times for comparison with the given data. Assume 
that  the  given  data  set  is  a  sample  path  of  the  solution  (2)  of  the  SDE in  (1),  and  that  the 
corresponding  parameters  are  a ,b , c  and  d .  The  graphs  for  the  given  data  and  simulated 
modification may have some common features, and the modification may be very similar to the 
given data after several iterations of creation.

2.2 Outline of the System
  By clicking the “Draw Original” button, four parameters are randomly defined and a sample path 
is obtained as a simulated modification (Figure 2.1). We assume that this is a given set of time 
series. At the same time, the system estimates the four parameters, and these values are listed in  the 
lower-left text boxes. For this estimation we have nine estimation methods. Here, we use a generic 
algorithm for this estimation.  The estimation essentially depends on the evaluation function. Our 



evaluation  functions  are  expressed  as 
generalized Choquet integrals with respect to a 
two-additive  measure.  The  integrands  are 
feature  values  obtained  from  a  set  of  time 
series  data  and  the  four  parameters.  In  the 
previous  version,  we  fixed  a  single  two-
additive measure. In this version, we prepared 
9 two-additive measures according to the area 
of the distance between a target parameters and 
the  correct  parameters.  In  section  4,  we will 
provide  the  relevant  details.  Thus,  we obtain 
nine  sets  of  estimated  parameters.  After 
considering  several  graphs  of  their 
modifications,  we obtain good parameters and 
bad parameters.  These may be valid indicators of the fine estimation of the parameters.

3. Restudy of Features and Choquet Integral
  In  our  previous  system [1],  the  evaluation  function  for  the  estimation  of  the  parameters  is 
expressed as a generalized Choquet integral.  The estimated parameters are generally not adequate 
enough, and this section discusses restudies of several parts of them.

3.1 Feature values.
  Let {X t}  be a modification of the solution of the SDE in (1) with some unknown parameters. We 
observe a set of time series data, {X t k

}k=1,2,. .. . This SDE is often expressed as

dX t=(a X t+b)dt+(c X t+d )dBt .                                                   (3) 
 Assume  that  (3)  is  strictly  true  in  case  dt , dX t  and  dB t  is replaced  by  tk−tk−1 , 
X ( tk )−X ( tk−1) , and B( tk )−B( tk−1) , respectively, and define

         
γk=

B (tk )−B (tk−1)

√t k−tk−1
=

X (tk )−X (tk−1) – (a X ( tk−1)+b)(tk−tk−1)

(c X ( tk−1)+d )√tk−tk−1
 

Then, the sequence {γk } is a independent and identically distributed and distributions is N (0,1)  
(iid  N (0,1) ). Using Ito's formula, the process  X t

2  is also expressed by the same type integrals, 
and we obtain another approximating sequence {γ ' k} of  iid N (0,1) . Using four properties of 
iid  N (0,1) , we create eight feature values in the previous version of the system.
  In the new version,  we no not  use  {γ ' k}  since there are  too many neglected terms.  In the 
estimation of the evaluation functions, we use differentials of feature values with respect to SDE 
parameters. In the previous version, two feature values take integer values and we cannot define 
their differentials. We do not use these feature values. We use the following seven feature values in 
the new system.

1. y1=∣1n∑k=1

n

γk∣2             

2. y2=∣ 1
n/2∑k=1

n /2

γk∣2+∣ 1
n/2 ∑k=n /2+1

n

γk∣2

Figure 2.1 Screenshot of the system 



3. y3=∣ 1
n /2 ∑k=1

n/2
(γk−γ̄F )

2+− 1
n/2 ∑

k=n /2+1

n
(γk−γ̄L)

2∣
4. y4=∣ 1

n/ 2(∑k=1

n/4
(γk−γ̄B)

2+ ∑
k=3 n/4+1

n
(γk−γ̄B)

2)− 1
n /2 ∑

k=n /4+1

3n /4
(γk−γ̄C )

2∣
5. y5=∣ 1

n /2∑k=1

n/2

(γ2k−γ̄E)(γ2k−1−γ̄O)∣
6. y6=∣ 1

n/2∑k=1

n/2

( γk−γ̄F)(γk+n/2−γ̄L)∣
7. y7=∣( 1

n/2∑k=1

n/2

(γk−γ̄)
2)−1∣

Here, the following definitions hold:

γ̄=
1
n∑k=1

n
γk , γ̄F=

1
n /2∑k=1

n/2
γk , γ̄L=

1
n/2 ∑

k=n/2+1

n
γk ,

γ̄B=
1

n /2(∑k=1

n/4
γk+ ∑

k=3n/4+1

n
γk) , γ̄C=

1
n/2 ∑

k=n /4+1

3n/4
γk ,

γ̄E=
1

n/2 ∑k=1

n /2
γ2 k , γ̄O=

1
n/ 2∑k=1

n /2
γ2k−1 .

 y1 , y3  and y5  are also used in our previous version. All values converge to 0 as n tends to 
infinity if “iid and N (0,1) ” are true (using the property “the mean values are zero” for y1  and 
y2, , “identically distributed” for y3  and y4 , “independence” for y5  and y6 , and “the variances 

are 1” for y7 ). 

3.2 Generalization of Choquet Integral
 Let μ be a two-additive measure is given by

                             A=∑x∈A
 x∑{x , y}⊂A

 x , y ,

where μx  and νx , y  ( x , y∈A ) are real constants. Thus, two-additive measure on an n -point set 
is defined by nn n−1/ 2 values. The generalized Choquet integral of a function f ( A[0,1] ) 
is given by

∫A
f d μ=∑x∈A

f (x )μx+∑{x , y}⊂A
f ( x)⊗ f ( y )νx , y ,

where  ⊗  is Dombi's t-norm [3] defined by

x⊗ y= 1
((1 / x−1)λ+(1/ y−1)λ)1 /λ

(in this case λ=2.5 ; see [1]).
    Let A be a finite set and a ,b be elements of A .  Let m  be a set function defined by

m(B)={α if (a∈B andb∈Bc)or(a∈Bc and b∈B)
0 otherwise

.



While  this  is  a  simple  and basic  set  function,  it  is  not  a  two-additive  measure.  Generally,  the 
Choquet integral is defined for a set function with the value correspond to the empty set is zero, and
m  clearly satisfies this property. Therefore, we can consider the Choquet integral of a function f
defined on A , which is given by

∫A f d m=∫0
∞

m({x : f (x )>r })dr
=( f (a)∨ f (b) – f (a)∧ f (b))α

.

Our Choquet integral is generalized by replacing ∧  by a t-norm. Thus, we consider that the use of 
the t-conorm term is useful. We generalize the Choquet integral as follows:

     ∫A
f d μ=∑x∈A

f (x )μx+∑{ x , y}⊂A
f ( x)⊗ f ( y )νx , y

(t ) +∑{x , y}⊂A
f (x )⊕ f ( y )νx , y

(c)
,           (4) 

 where,  ⊕  is the t-conorm defined by Dombi's t-norm, that is, the binary operator ⊕ on [0,1] is 
defined by 

x⊕ y=1−(1−x )⊗(1− y) .
The  integral  defined  by (4)  is  a  generalized  Choquet  integral  with  respect  to  the  two-additive 
measure, and the family of real numbers {μ x ,ν x , y

(t ) ,ν x , y
(c) : x , y∈A} determines the integral. 

3.3 Evaluation of Distance of Parameters
  Let  A  be  the  set  of  all  feature  value types.  For  the previous  version,  A  consists  of  eight 
elements, while for the new version there are seven elements in it. Using a set of time series data,  
we obtain the corresponding feature values. That is, a set of time series data defines a function on 
A.

  For a function f , the generalized Choquet integral (4) is a linear combination of 
f (x ) , f (x )⊗ f ( y) , f ( x)⊕ f ( y) , x , y∈A .

We approximate the parameters {μ x ,ν x , y
(t ) ,ν x , y

(c) : x , y∈A} using linear regressions. Training  data 
are obtained using random numbers as follows.

T-1. Parameters a ,b , c  and d  are given using N (0,1) random numbers.
T-2. Create a simulated modification with respect to these parameters.
T-3. The random distance value r  is given: r  is uniformly distributed on [0,D ] .
T-4. Another set of random parameters a ' , b ' , c ' , d '  are given, and these satisfy the  
      relation
   √(a−a ' )2+(b−b ' )2+(c−c ')2+(d−d ' )2=r .
T-5. Calculate the feature values by using the parameters a ' , b ' , c '  and d ' , and extend 
      them using t-norm and t-conorm.
T-6. Iterate T-3 to T-5, 20 times (base iteration).
T-7. Iterate T-1 to T-6, 20 times (local iteration).

 Using this  procedure,  we obtain  400 sets  of  training  data.  Each  set  consists  of  a  36-  or  49- 
dimensional vector  y⃗( p)={( y j

( p) , y j
( p)⊗ yk

( p)): j , k≤8} ,  y⃗={( y j , y j⊗ yk , y j⊕ yk ): j , k≤7} (these 

were defined in subsection 3.1), and  r (distance of two parameter sets), where  y j
( p)  ( j≤8 ) are 

feature values used in the previous version.  Then, we obtain the coefficient vectors a⃗ '  and a⃗  and 
the constants b '  and b  that minimize
      ∑i∣ri – ( a⃗ '⋅y⃗(p)+b ' )∣2 , ∑i∣ri – ( a⃗⋅⃗y+b)∣2 .
The coefficient vectors determine the integral, and the estimation of the parameters involves the use 
of  these  integrals.  For  the  linear  regressions,  we  use  pseudo-inverse  in  the  case  where  some 



eigenvalues are almost equal to zero.  
  The following steps are performed for evaluating evaluating coefficients.
   C-1.  Using the steps T-1 to T-7, we obtain a set of training data. to create coefficient 
   C-2   Using the data set, we obtain the coefficient vectors and constant values.
   C-3.  Using the steps T-1 to T-7 again, we obtain another data set.
   C-4.  Using the coefficient vectors and constant values obtained in C-2 
          and the set of data obtained in C-3, we calculate the square errors. 

4. Multiple Suggestions
 Using  the  generalized  Choquet  integral  given  in  the  previous  section,  we  estimate  the  SDE 
parameters by using the following generic algorithm [1].  

1. The initial values of the SDE parameters are obtained by using the methods explained in 
Section 5. This vector is copied to all 100 gene vectors.

2. N(0,0.1) (independent) random numbers are added to every coefficient of all gene vectors.
3. The gene vectors are sorted in an ascending order of the evaluation functions discussed in 

the previous subsection.
4. Recombination  (we will  explain  this  step  below)  is  performed according  to  the  sorting 

result.
5. Parameters obtained after 50 iterations of 3 and 4 are considered to be the final estimated 

parameters.
The First  three gene vectors are left  intact.  The remaining gene vectors are divided into  three 
groups of the same size, and replaced by the following vectors:

0. Let {v⃗i}i=1
32  be the first 32 gene vectors, including the first 3 vectors.

1. Genes in the first group are replaced by improved vectors using the Newton method.
2. Genes in the second group are replaced by improved vectors using the gradient method. We 

use a random variable as the coefficient of the gradient.
3. Genes in the third group are replaced by {⃗v }i=1

32 , and then these values are modified using 
N(0,0.1) random numbers.

Old    New 
Feature dim. 8 7
Coeff. dim. 36 49
Base iteration 20
Local iteration 20

D (max dist) 1, 2, 3, 4, 5, 7,
10, 15, 20      

1.0 2.0 3.0 4.0 5.0 7.0 10.0 15.0 20.0
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Old Method
New Method

(D)
Figure 3.1 Square errors for distance approximations



In  the  previous  version,  two  feature  values  are 
given  by  counting.  Therefore,  these  are  not 
differentiable (with respect to the parameters) and 
are  ignored  in  the  steps  involving  the  Newton 
method  and  gradient  method.  The  new  feature 
values are differentiable  and there are no ignored 
components in this analysis.
  Generally, linear regression approximates a given 
function by a linear function. The  function and the 
corresponding performance will depend on the data 
distribution. The example in Figure 4.1 shows that 
a regression line with respect to a small area does 
not  generally  approximate  well  in  a  wider  area. 
Our approximation of the parameters by a generalized Choquet integral involves the use of  linear 
regression, and this ability may depend on the distance of the parameters from the correct ones. We 
have to prepare several approximated functions for obtaining the distance of the parameters.

4.1 Approximations According to Error Sizes

We should change the regression functions according to the neighborhood sizes . We prepare nine 
areas  for  error  size.  By using  the  following procedure,  we obtain  nine  regression  functions  to 
approximate the distance from the correct parameters.

1. We use 9  D -values:(1.0,  2.0, 3.0, 4.0, 5.0, 7.0, 10.0, 15.0, 20.0). ([0,D] is the distance 
interval between two sets of SDE parameters.  This was explained in T-3 in subsection 3.3.)

2. For each D -value, using the steps T-1 to T-7 we obtain 400 teacher data.
3. Linear regression is used to calculate the coefficients.

For the evaluation, we obtain square errors by the following steps.
4. For the fixed D , we select a comparative parameter D '  among nine D -values not less 

than D . 
5. Using the steps T-1 to T-7 with D ' , we obtain the feature vectors and parameters, for which 

the distance from the correct one is not more than D ' .
The graphs in Figure 4.2 show errors for fixed D ' (= 5.0, 20.0). The errors takes minimal values 
when D=D '

Figure 4.1 Linear Regressions

D' = 20.0

Figure 4.2 Squire Errors for fixed Error Areas
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4.2 Estimation of Parameters 
  In the system,  for a given set of time series data, we obtain the estimated parameters. In this 
study, we consider several types of estimation methods. In the previous subsection, we discussed 
the creation of nine approximation functions for distances of parameters. At first, a rough estimation 
of  the parameters  is  made,  and a  genetic  algorithm is  used to  improve the  parameters.  In  this 
estimation,  the  system  uses  one  approximated  function  from  among  the  nine  options.  This 
estimation depends on the selected function. We can select one of  the function after trying all of 
them several times. In other words, assume that we can select the optimal parameters from the 
graph of simulated sample paths. We can improve the estimation, unlike the case where a single 
approximated function is used. Figure 4.3 shows the estimation result for 10 trials. The differences 
between distances are not very large for one set of original data. However similarities of graph 
shapes for simulated modifications of estimated parameters are quite different from each other (see 
Figure 4.4 for an example), and the extent of similarity does not change for one set of estimated 
parameters. 

5. Conclusion
  In this study, we analyzed our estimation methods. It is important is to approximate distance of 
parameters.  Our  first  estimation  of  the  parameters  is  not  always  good,  and  when  a  wrong 
approximation  area  is  used,  the  corresponding estimations  are  incorrect.  We used several  error 
distance  areas  and  increase  the  choice  of  estimated  parameters  for  the  stochastic  differential 
equation. Our next problem is the automatic selection of the approximation function.  
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