Teaching finite fields with open-source CAS

Alasdair McAndrew
Alasdair.McAndrew@vu.edu.au
School of Engineering and Science
Victoria University
PO Box 14428, Melbourne 8001
Australia

Abstract

Finite fields have long been studied for their intrinsic interest, and more recently for their
uses in the definition of some modern cryptographic systems. The Advanced Encryption
Standard is based on the cryptosystem Rijndael [2], which makes extensive use of finite
fields in its computation. At Victoria University, a cryptography course has been taught
to students both locally, and transnationally using the medium of the Access Grid [1; this
course has been running for 10 years in various forms, usually with about 30-40 students
each year. Many of these students have limited exposure to modern abstract algebra,
and the use of a Computer Algebra System has been vital to aid their understanding and
assimilation of the material. Over the years we have used Maple, Maxima, Axiom and
Sage. This article concentrates on our use of the last three, and shows that for abstract
algebra, the open source systems are far superior to the alternatives.

1 Introduction to (finite) fields

A field may be broadly considered as a mathematical system in which the operations of addi-
tion, subtraction, multiplication and division (except by zero) are all defined and well-behaved:
addition and multiplication are commutative and associative, subtraction and division are the
“inverses” of addition and multiplication respectively, and addition is distributive over multi-
plication.
More formally, a field is a set X with two distinguished elements zero and one, and two
operations addition and multiplication for which
1. For any two elements x,y € X, x +y and xy are defined, and +y = y + =, 2y = yz,
(z+y)+2z=a+(y+2), and (zy)z = x(y2).
2. Zero and one are the identity elements for addition and multiplication respectively: for
allz e X, x4+ 0=z and lz = z.
3. For every x € X, there exists y = —x for which x 4y = 0, and for every 0 # x € X there
exists y = 2! for which xy = 1.
4. For every z,y,z € X, x(y + z) = zy + x2.

Alasdair.McAndrew@vu.edu.au

Examples of everyday fields are the rational numbers @Q, the real numbers R, and the complex
numbers C. These fields have an infinite number of elements.

We are more interested in finite fields, being fields in which the number of elements is finite.
Such fields are also called Galois Fields after the French mathematician Evariste Galois, who
was the first to discuss them.

One simple example consists of the residues modulo 7; that is, the integers 0, 1, 2, 3, 4, 5
and 6, with addition and subtraction modulo 7.

Addition and multiplication tables are:

+/0 1 2 3 45 6 x101 2 3 456
0/01 2 3456 0j0 0 0O0O0O0O0
111 2 3 45 6 0 1101 2 3 45 6
2123 456 01 210 2 46135
313 456 01 2 310 36 2514
414 56 01 2 3 410415 26 3
2156 01 2 3 4 51053 16 4 2
6|16 01 2 3 45 610 6 54 3 21

These tables can be seen to define a field in that all of the requirements are satisfied. Com-
mutativity and distributivity follow from the definitions of addition and multiplication; the
existence of additive inverses can be noted by observing that every row (or column) of the first
table has a single zero, the existence of multiplicative inverses by every row (or column) of the
second table—except for the zero row and column—having a single 1.

It is an elementary result that the residues of any prime number p form a finite field; such
a field is denoted GF'(p), or Z/pZ or sometimes as Z,. The tables above thus define the field
GF(7).

Finite fields can be shown to exist for any order p”, where p is prime, and for no others.
Furthermore, any two fields of the same order are isomorphic. Straightforward proofs of these
results are given by McEliece [7].

To construct a field ' = GF(p™) of order p™, first choose an irreducible polynomial p(z)
of degree n over GF(p). Then the elements of F' will be all polynomials of degree n — 1
or less; addition is performed modulo p, and multiplication is performed modulo p(z). The
irreducibility of p(z) will ensure that inverses exist.

For example, the field GF(8) can be constructed using the polynomial p(z) = 23+x+1—this
polynomial is irreducible over GF'(2). The addition table is:

+ 0 x x2 z+1 22+ 2?2+ +1 2 +1 1
0 0 T x> r+1 2+ 2+r+1 xZ+1 1
x x 0 2?4 1 x? 224+1 224+ z+1 z+1
x? x? 224z 0 22441 T z+1 1 2 +1
z+1 z+1 1 22 +r+1 0 2 +1 22 2?24z T
2?2+ 2?4z 22 T 22 +1 0 1 z+1 R |
24+l |224+z2+1 2 +1 z+1 22 1 0 T 2?4+
2 +1 2 +1 2 +z+1 1 2?4+ z+1 x 0 x2
1 1 r+1 z?+1 T 2 +x+1 2+ x? 0

and the multiplication table is

X 0 T x? z+1 2+ 2 +x+1 241 1

0 0 0 0 0 0 0 0 0

T 0 22 z+1 2?4+ R | 2 +1 1 T

x2 0 r+1 22+ 22441 2?41 1 T x2
r+1 0 22+ 22 +z+1 z?+1 1 x x? r+1
2?4+ 0 2242+1 2 +1 1 T x? xr+1 22+

224+x+11]0 22+ 1 1 T 22 z+1 224z 22+r+1

2 +1 0 1 T 22 z+1 2+ 2 +z+1 2 +1

1 0 x x2 z+1 2+ 24+l 2 +1 1

These tables can be seen to define a field in the same way as the tables for GF(7) above. This
field can be denoted Zs[z]/(z® + x + 1); this notation identifies the base prime (in this case 2)
as well as the irreducible polynomial used to define the field.

2 Finite fields in Maxima, Axiom and Sage

At Victoria University, we used first Maxima and Axiom, and then switched to Sage. Max-
ima [] is a descendant of the venerable CAS Macsyma, and in its current form has been fast
gathering adherents for its algebraic and analytic strength, and its implementation on all mod-
ern operating systems. The author is one of the principal authors of the finite fields package
for Maxima [6]. Here is an example of a simple Maxima session, which must start with loading
the gf package:

(%i1) load(gf);
We shall define the field GF(16) = Zy[z]/(z* + 2 + 1):

(%hi2) gf_set(2,4,x 4+x+1);
(%02) true

The command gf_set checks that p is prime, and the generating polynomial (in this case z* +
x + 1) is irreducible. If these conditions are satisfied, the command performs some background
calculations, and returns true. Addition, multiplication and inversion are performed with the
commands gf_add, gf_mul and gf_inv respectively. For example:

(%13) p:x~3+x+1;

(%03) o+l
(%i4) q:gf_inv(p);

(%04) 22 +1
(%15) gf _mul(p,q);

(%05) 1

In Maxima, it is only possible to work with one finite field at a time. However, in practice this
is not a major restriction.
Matrices over the field can be defined and arithmetic performed:

(%i6) M:genmatrix(lambda([i,j],gf_rand()),3,3);

2+t 2+ P+t
(%06) 2 4+1 242 B+t ar+1
2 +1 1 2+
(%17) MI:gf_matinv(M);
1 2?41 0
(%hoT) 22 4+1 22 +2 x

0 r+1 2*+a+1

(%18) gf_matmul (M,MI);
100
(%08) 010
0 01

Axiom [3] is an open-source system which started life as the commercial system ScratchPad,
produced by IBM. It has a more powerful approach to finite fields, but suffers from being less
transparent than Maxima, and harder to use and to learn. There is a native Windows version,
but it only runs in a console. Under Linux, Axiom can run in a console, or in TeXmacs, which
provides for KTEX-formatted output. Under Linux, Axiom also has a fully hypertext help
browser and graphics.

Here are the above commands in Axiom:

(1) => F:=FFP(PF 2,x"4+x+1)

(1)
FiniteFieldExtensionByPolynomial (PrimeField 2,7**4+7+1) Type: Domain
Axiom requires that a “generator” of the field be defined: an element which can be used to
generate all polynomials which constitute the field:
(2) ->x := generator()$F
(2) %A
Type: FiniteFieldExtensionByPolynomial (PrimeField 2,7**4+7+1)
Axiom uses a “dummy variable”—in this case %A—to describe all elements of the field. Now
all operations can be done as above:
(3) =>p := x"3+x+1
(3) %A+ %A+1
Type: FiniteFieldExtensionByPolynomial (PrimeField 2,7**4+7+1)
(4) =>q := 1/p
4 %A*+1
Type: FiniteFieldExtensionByPolynomial(PrimeField 2,7%*4+7+1)
The use of “types” (mathematical domains of operation) in Axiom means that operator over-
loading can be used. Since p is known to be an element of the field, the notation 1/p is
automatically defined for and produces output in the field.
Matrices within the field are easy:
(6) > M := matrix([[random()$F for i in 1..3] for j in 1..3])

WA+ %A* + %A 0 %A+ 1
(5) RBA3 + %A+ %A +1 %A+ %A RA3 + %A%+ %A
%A %A KA+ %A+ KA+ 1

Type: Matrix FiniteFieldExtensionByPolynomial (PrimeField 2,7**4+7+1)

(6) =>MI := inverse(M)
A3+ RA RHA%+1 NA* +1
(6) A3+ %A NA%+ %A 1
NA? + %A 1 %A% + % A?
Type: Union(Matrix FiniteFieldExtensionByPolynomial (PrimeField
2,7kx4+74+1) , .. .)
(7) => M*NMI
1 00
(7) 010
0 01
Type: Matrix FiniteFieldExtensionByPolynomial (PrimeField 2, 7**4+7+1)
Sage [12] in many ways is the best of both worlds: it combines the ease of use of Maxima
with the power of Axiom. Its main disadvantage is its reliance on Linux; there is, at the time
of writing, no native version for Windows (although one is in active development). This is
ameliorated somewhat by running Sage from a server, rather than locally, and accessing Sage
through its browser-based “notebook” interface. Here are the above examples in Sage:
sage: F.<a> = GF(16,x"4+x+1)

sage: p = a"3+a+l
sage: q = 1/p; q
a® +1

sage: M = random_matrix(F,3,3); M

[(a®+a?+1 a®>+a+1 a®+a+1

a+a+1 ad+a? ad+ad®+1
1 a’+1 a>+a+1

sage: MI = M.inverse(); MI
a’ a® a®
a+a® a>+1 a
2 3 2
| a”+a a +1 a

sage: MxMI

[1 0 0

010

0 01

Both Sage and Axiom support domains or types: every object is an element of a domain, or
alternatively has a specific type. Once an object is defined, every future operation on that
object will inherit the original type. This makes for highly concise and elegant operations on
algebraic objects. In Maple, by comparison, there is only a rudimentary domains system, in
consequence of which operations on fields are clumsy and confusing. There is no easy built-
in way, for example, of inverting a matrix over a finite field, or of multiplying two matrices.
Although Maple is now at version 16, from version 11 when we used it, the domains system
has not been significantly enhanced. This is one of the reasons that we stopped using Maple
for the cryptography subject.

3 The finite field syllabus, and laboratory work

The syllabus of the finite field part of the cryptography subject consisted of the following topics:
1. Basic definitions and examples.
Constructing finite fields of orders p*, with k& > 2.
Arithmetic in a finite field.
Primitive elements (whose powers generate all non-zero elements of the field).
Discrete logarithms in the field: for example, if a® = a® 4+ a® in Zy[z]/(z* + x + 1) then
we can write log,(a® + a?) = 6.
6. Using tables of logarithms and powers to facilitate multiplication, inversion, and in general
raising to powers.
7. Application of finite fields to cryptography, in particular to the workings of the Advanced
Encryption Standard (AES).
For the AES, the 128-bit plaintext is divided into 16 bytes; these are placed into a 4 x 4 matrix,
column by column, and each byte is treated as an element of the field

ARl

GF(256) = Z[z]/(2® + 2* + 2* + o + 1).

At the heart of the AES is an operation called MixColumn, which multiplies the current state
of bytes by the matrix

2 311 x oo+l 1 1
vo |t 23|t x o+l 1
112 3 1 1 r x4+l
311 2 r+1 1 1 x

Decryption uses the inverse operation, denoted InvMixColumn which is a multiplication by
M~1. As we have seen above, in each of Maxima, Axiom and Sage a matrix inversion over a
finite field is simple to compute. In the definition of the AES this matrix is given as

14 11 13 9 B2+ 2+l P42 +1 x3+1
Aol |9 1113 ?+1 PHat+r B4+l B 4at+1
{13 9 14 11| |23 4a2%2+1 2+ 1 B4+ B4+l
11 13 9 14 P4+l BP+22+1 3+ 1 2+t

Sage comes with commands to transfer between elements of a binary field and their decimal
equivalents, so students can see for themselves how the two matrices are related. First define
the field and the matrix:

sage: F.<a> = GF(256,x"8 + x"4 + x"3 + x + 1)

sage: M=matrix([[2,3,1,1],[1,2,3,1],[1,1,2,3],([3,1,1,2]11)
Then turn the matrix into elements of the field:

sage: MF = map_threaded(lambda i: F.fetch_int(i),M)
Invert the matrix:

sage: MIF = MF.inverse()
and convert from field elements to integers:

sage: map_threaded(lambda i:ZZ(i.int_repr()) ,MIF)

14 11 13 9

9 14 11 13
139 14 11
11 13 9 14

For small fields, for example GF(16) = Zs[z]/(2* + x + 1), multiplication and division can
be implemented by a table of powers of a primitive element:

izt x 7 T 7 x ? x
1z |4 z+1 |7|23+2+1]10 2 +r+1 1322 +22+1
20225 224+2x |8 241 11 w4+l 4x 14 3+ 1
312316 |a3+2219| 2242 |12|23+224+2+1]15 1

Since all multiplication is performed modulo z* + z + 1, it follows that 2* = 2 + 1 in this field.
This allows us to represent every power as a polynomial with degree 3 or less. Alternatively,
every non-zero element of the field can be represented as a power of x. Then, for example:

(P +a) (2 + 2+ 1) =" =2 =" =2+ + L.

Since 2 = 1 all powers can be reduced modulo 15. Divisions, logarithms and powers can all
be performed with reference to this table.

However, such a table is inefficient for large fields, and other methods, not easily performable
by hand, must be used. This is where the use of a CAS is invaluable. Having experimented
by hand with small fields, students can perform operations on fields large enough to be of
cryptographic significance with the CAS.

Students are invited to explore two other cryptographic systems which use finite fields, the
Hill cipher and the Chor-Rivest knapsack cryptosystem.

The Hill cipher

The Hill cipher works by converting the plaintext into a matrix of elements in the field, and
multiplying that matrix by a fixed “key matrix” M. Using the ring Zsg of integers modulo 26,
with an encryption matrix

14 19 16
M=1{24 7 3
21 14 O

then encrypting the plaintext THISISMYTEXT is done by first placing the plaintext column by
column into a matrix, and replacing each letter by its value modulo 26 (so A =0, B =1, up to
Z = 25). Then Hill encryption can be done by multiplying this matrix by the key matrix. In
this case:

T S ME 19 18 12 4 14 19 16| |19 18 12 4 16 12 3 13
HIYX|= |7 8 24 23| =124 7 3 7T 8 24 23| =123 0 8 6
I STT 8§ 18 19 19 21 14 0 § 18 19 19 20 2 0 11

The ciphertext is obtained by reading off this last matrix column by column, and converting
back to letters, producing QXUMACDIANGL.

The conceptual simplicity of this cipher means that it is amenable to work with finite fields.
For example, using the AES field GF(2®) as defined previously, instead of mapping letters to
numbers in the range 0-25 as above, an ASCII character can be mapped onto the field by
raising a primitive element to the ASCII value. So, for example, with the primitive element x,
and the character ’?’, which has ASCII value 63, the corresponding field element is

253 =T+ 25+ 1.

Suppose the key matrix M is

28 20 19 20 2T+t Sttt 4a
M= |z'" 22 28| =|2"4+2*+2% 2" +25+25+23+2 22+234+22+1
x? g2 gl r+1 b+t 1 4+ r+1

A plaintext, for example: Two oranges? can be encrypted as follows:
sage: pl = "Two oranges?"
sage: pn = map(lambda i:ord(i),pl) # Turn the plaintext into a list of numbers
sage: pm = transpose(matrix(4,3,pn))
Turn the list into a matrix
sage: P = map_threaded(lambda i: x"i,pm)
Turn every element of the matrix into an element of the field
matrix([[x~6, x~20, x~19],[x~17, x~22, x~18],[x"25, x~23, x~14]])
Make encryption matrix
sage: C = M*P # This is the encryption step
sage: cm = map_threaded(lambda i: ZZ(i.int_repr()),C)
Replace each element of C with its integer value
sage: transpose(cm).list()
[179, 32,164, 165, 89, 229, 74, 240, 108, 18, 190, 123]
This last list is the ciphertext. It can be turned back into 8-bit ASCII characters if the
display can handle them.

sage: M

The Chor-Rivest knapsack cryptosystem

Knapsack problems have long been used to create cryptosystems [9]. They all work by turning
a hard problem into an easy one by some algebraic or number theoretical computation. In the
Chor-Rivest system, the knapsack problem is, from a given modular sum, to determine which
elements have produced the sum. This system hides everything within computations over a
finite field.

Here is a slightly simplified version (the complete system includes a permutation, which we
have omitted for ease of description):

1. Choose a finite field Z,[z]/f(x) of order ¢ = p", with f(z) being the irreducible polyno-
mial. Let g(z) be a primitive element in the field.
For each i € Z/pZ, determine the discrete logarithms a; = log,,(z +).
Choose a random integer d so that 0 < d < p" — 2.
Compute ¢; = (a; +d) mod (p" — 1) for all 0 < i < p — 1.
Then your public key is ([co, ¢1, - .., ¢p-1], p, h) and your private key is [f(z), g(z), d].

Guk oo

Messages are binary strings m; of length p with exactly h ones. Encryption is implemented by
computing
p—1
C= Zmici mod (p" — 1).
i=0
Decryption requires the following steps:
1. Compute r = (C' — hd) mod (p" — 1).
2. Compute u(x) = g(z)" (mod f(x)).
3. Compute s(x) = u(z) + f(x).

4. Factor s(x) into linear factors
h

sz) =[x +1)
j=1
where each t; € Z,. The values of the t; in the factorization are the positions of the 1’s
in the message.
For further discussion of this cryptosystem, with proofs of its validity, see [§], chapter 8. Here
is an example in Sage with small values:

sage: p =17
sage: h =4
sage: F.<x> = GF(p~h,name="x")
sage: f = F.modulus()
sage: g = F.multiplicative_generator()
sage: g.multiplicative_order()

2400
sage: a = [discrete_log(x+i,g) for i in range(p)]
sage: d = randint(0,p~h-2)

c

sage: [ZZ(Mod (i+d,p"h-1)) for i in a]
Here’s an encryption:

sage: m = [0,1,1,1,0,0,1]

sage: C = sum(x*y for x,y in zip(m,c))
and decryption:

sage: r = ZZ(mod(C-h*d,p~h-1))

sage: u=g'r

sage: factor(u.polynomial()+f)

(x +1)(x + 2)(x + 3)(x + 6)

This is straightforward and natural, and Sage provides an elegant translation from the theoret-
ical description to a practical example. In comparison, using Maple [4] requires a large amount
of work writing necessary procedures first.

4 Pedagogical considerations

In this section we discus the educational theories behind our use of computer algebra systems.
Our base philosophy is that of constructivism, which in education refers to a student-centred
model of learning: students “construct” their own models of the subject, and each student
moves through its various topics in whatever manner supports their construction. This has the

virtue that any given student will have the necessary background to comprehend the current
topic. Conversely, behaviourist teaching assumes that knowledge exists outside of the student,
and it is the teacher’s job to transfer the knowledge to the student. The second model is of
course the most popular, because it is far easier for the teacher. See Scheurman [I0] for a
discussion.

Behaviourist teaching is of course particularly difficult for mathematics; students must build
conceptual “schema” of the concepts before they can be fully assimilated into the student’s own
body of knowledge. See for example, Skemp [11].

Although the uses of lectures, tutorials and computer laboratories are seemingly a fairly
traditional behaviourist approach, our teaching of finite fields owes much to the constructivist
model. Understanding any single topic may mean understanding all the theoretical underpin-
nings of it, but also an appreciation of the effects of a particular algorithm, and how a change
in a value, or of the construction of a field, may affect the result of an algebraic operation.
The use of a simple example, as provided by the Hill cipher, allows the students to gain insight
into the topics, without the overhead of the complete mathematical theory of finite fields. The
laboratories are carefully designed to focus not so much on the theory but on practice: what
happens if you change the value of a variable—how is the result affected?” We encourage the
students to be subjective; this helps them construct their own models of the topics.

An example of this is our approach to discussing inversion. The theoretical background
can be daunting to the student with a limited background in abstract algebra, with unfamiliar
terminology, and many new equations, some of which can be confusingly similar to each other.
But using an algorithmic and exploratory approach to explore and demonstrate this operation
provides students with a greater insight into its definition, its properties, and its use. One
insight is that inversion can be used to build an operation which mimics arithmetic division. By
experimenting with different expressions in the computer labs, students can see for themselves
how inversion actually works in a finite field.

Student satisfaction, as measured with formal questionnaires, informal discourse, classroom
assessment tasks, and test results, has been very high. Many students enter the subject with
reservations as to their ability to handle the mathematics involved. The combination of the
mathematics with the use of a CAS enables the students to succeed at what initially appears
to be a very difficult subject. Almost without exception students are initially concerned that
the amount of mathematics—and the unfamiliarity of the topics—may hinder their progress.
And they are delighted when they realize that they can make sense of the mathematics, and
perform cryptographic computations. This delight is reflected strongly in their comments on the
final evaluation questionnaires. These questionnaires have consistently returned scores which
rank among the highest of any subject, and students have been effusive in their praise. The
students’ delight in mastery of the material means that the subject is always recommended to
other students, and so has always been well-subscribed. We feel that this subject is in many
ways an exemplar of the use of a CAS: we do not eschew rigour or explanation, but in realizing
that with weak backgrounds we cannot expect our students to master the fundamentals in good
time, but need the help of the CAS to perform some of the messier computations, and allow
for experimentation, without getting lost and frustrated in pages of messy algebra.

5

Conclusions

Finite fields provide a vital building block for modern encryption systems (and also for error-
correcting coding). It is vital then, that students of those disciplines obtain a clear and deep
understanding of their construction, arithmetic properties and associated algorithms. However,
from a teaching perspective, there is the trouble that many students, especially those from a
computer science or engineering course, may have little or no exposure to modern abstract
algebra. The use of a computer algebra system, such as have been demonstrated above, can
be hugely helpful in enabling the students to experiment with finite fields and to gain a deep
appreciation of them without wrestling with all the algebra by hand.

References

[1]
2]

Access Grid at http://www.accessgrid.org/, retrieved on June 24, 2012

Joan Daemen, Vincent Rijmen, The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002

Tim Daly et al, “Axiom: The Scientific Computation System” at http://
axiom-developer.org/index.html

L. Hernandez Encinas, J. Munioz Masqué, and A. Queiruga Dios, “Maple Implementa-
tion of the Chor-Rivest Cryptosystem”, Computational Science—ICCS 2006, ed V. N.
Alexandrov, 2006, published as Lecture Notes in Computer Science vol. 3992, pp 438-455
Mazima, a Computer Algebra System, Version 5.25.1 (2011) at http://maxima.
sourceforge.net/

Fabrizio Caruso, Jacopo D’Aurizio, and Alasdair McAndrew, “Efficient Finite Fields in
the Maxima Computer Algebra System”, Arithmetic of Finite Fields, 2nd International
Workshop, published in Lecture Notes in Computer Science vol. 5130, pp 62-76

Robert J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Academic
Publishers, Boston 1987

Alfred Menezes, Paul van Oorschot and Scott Vanstone, “Handbook of Applied Cryptog-
raphy”, CRC Press, 5th printing, 2001

Andrew Odlyzko, “The rise and fall of knapsack cryptosystems”, Cryptology and Compu-
tational Number Theory, American Mathematical Society, 1990, pp 7588

Geoffrey Scheurman, “From Behaviorist to Constructivist Teaching”, Social Education,
Vol. 62, No. 1 pp 6-9, Jan 1998

Richard Skemp, “The Psychology of Learning Mathematics”, Lawrence Erlbaum, 1987
William A. Stein et al. Sage Mathematics Software (Version 4.7.1), The Sage Development
Team, 2011, http://www.sagemath.org

http://www.accessgrid.org/
http://axiom-developer.org/index.html
http://axiom-developer.org/index.html
http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
http://www.sagemath.org

	Introduction to (finite) fields
	Finite fields in Maxima, Axiom and Sage
	The finite field syllabus, and laboratory work
	Pedagogical considerations
	Conclusions

