
Mono-unary algebras and functional graphs in upper 
secondary school mathematics 

 

Helena Binterová1, Eduard Fuchs2, Marek Šulista3 
hbinter@pf.jcu.cz, fuchs@math.muni.cz, sulista@ef.jcu.cz 

1 Pedagogical Faculty of the University of South Bohemia in České Budějovice 
2 Faculty of Science of Masaryk University in Brno 

3 Faculty of Economics of the University of South Bohemia in České Budějovice 
 
Abstract: In this paper, alternative descriptions of functions are demonstrated with the use of a computer. If we 
understand them as mono-unary algebraic functions or functional graphs, it is possible, even at the school level, to 
suitably present many of their characteristics. First, we describe cyclic graphs of constant and linear functions, which 
are a part of the upper-secondary level educational curriculum. Students don't expect to see the surprising 
characteristics of such simple functions which can not be revealed using traditional Cartesian graphing. The next part 
of the paper deals with characteristics of functional graphs of quadratic functions, which play an important role in 
school mathematics and in applications, for instance in the description of non-linear processes. We show that their 
description is much more complicated. In contrast to the case with functional graphs of linear functions, it is necessary 
to use computers. Students can find space for their own individual exploration to reveal lines of interesting 
characteristics of quadratic functions, which give students a new view on this part of school mathematics. 

 
1. Introduction 
 
 In this paper, we present representations of functions as algebras with one unary operation 
and as special orientated. The theory of unary algebras is today a profoundly elaborated algebra 
theory enabling an original view on the theory of homomorphism (see for example [6] and [8]) or 
the theory of automata (see [7]) etc. Most of the concepts, which will be later introduced, can be 
used in school mathematics and it is possible to work with them on an intuitive level and to 
demonstrate to students, in a natural way, the advantages of the mathematisation of various 
situations. 
 
2. Unars and functional graphs 
 
First of all, we summarise the basic terms of the field of the theory of mono-unary algebras and 
functional graphs. Let f be a mapping of set A to itself. Then, we may consider f to be an operation 
on set A. Briefly, we call the given mono-unary algebra (A, f) the unar. We can assign 
unambiguously to this unar an orientated (directed) graph so that A is a set of vertices and from 
vertex  u there is an oriented edge to vertex v only if  v f u . We call this graph the functional 
graph respective to the unar (A, f). It is obvious then that the oriented graph is a functional graph 
only if there is just one edge from every vertex. The transition from the given mapping, the 
described unar and the respective functional graph will obviously be used commonly in the 
following text.   



A unar (A, f ) is called connected, if for each two elements Aba ,  there is a couple of non-
negative integers  m, n, so that )()( bfaf mn  . Otherwise, such a unar is called disconnected.  
A unar (B, g) is called a sub-unar of unar (A, f), if AB 0  and mapping g is a restriction of 
mapping f on set B. The maximum connected sub-unar within the meaning of the given relation is 
called a component of the unar (A, f). The connected unar consists only of one component. 
Components of the given functional graph are called orbits. The sub-unar (B, g) of the connected 
graph (A, f) is called a cycle of lenght k > 0, briefly a k-cycle, if set B consists of 
k elements 110 ,...,, kxxx  and it is true that  1)(  mm xxf  for 10  km  and 01 )( xxf k  . The 
component of the functional graph is called cyclic, or acyclic respectively depending if it contains a 
cycle or not.  
 
Let’s say that vertex a of a functional graph of the respective unar (A, f) is of degree ∞ if there is a 
progression   1n nx 


 such that 0a x  a  1n nf x x   for every n N . If vertex a A  is not of 

degree ∞, we assign to it a definitive degree in the following way: vertex a is of degree 0 if there is 
no vertex b such as  f b a , i.e. there is no edge leading to vertex a. If vertex a has no degree and 

all vertices b satisfying  f b a  have a degree, we determine the degree of vertex a as the lowest 
natural number which is greater than all degrees of the given vertices b.  Every component of a unar 
apparently contains one cycle in maximum. Every definitive orbit is cyclic.   
Let (A, f), (B, g) are unars. Mapping :h A B  is a homomorphism of a unar (A, f) to a unar (B, g), 
if  h f g h  . If h is a bijection, then unars (A, f), (B, g) are isomorphic. In this case we say that  f, 
g are conjugate. It is obvious that functional graphs of conjugate functions are isomorphic.  
 
Examples of linear functions and their orbits  
 
First, let’s consider a real constant function, for instance 1y . The description of a corresponding 
functional graph is “simple”, as from each point (real number) there is only one edge and all edges 
lead to number 1. Number 1 maps to itself, so in this case there is a cycle of length 1 called a loop. 
The functional graph is connected. In Figure 1, there is a Cartesian graph and an orbit representing 
this function. Let’s explore the linear function 1y x  . It is obvious that the number of orbits of 
the functional graph is, in this case, infinite. All orbits are infinite, acyclic and all of them “go 
through” a point from interval 1,0 . In Figure 2, there are two such infinite orbits.  
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1 Constant function 

- 



 
The functional graph of the linear function y x  is totally different.  In every real number, there is 
a loop, as every point maps to itself.   
We can see that the orbit of function y c  is only one and it is cyclic, while linear function y x  
has an infinite number of orbits and all of them are cyclic. If we move this function by a certain 
non-zero parameter the situation changes. Its orbits are infinite, acyclic and there are infinite 
numbers of them. However, the graphs of these functions are lines.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Function 1y x   

 
3. Functional graphs of quadratic functions 
 
Now, we can demonstrate that the description of the functional graphs of quadratic functions is 
much more complicated. Let’s deal with system  of quadratic functions 2( , , ) ( )f x t s x t s   . 
Our aim is to decompose this system into blocks of mutually conjugate functions. The description 
of this decomposition is significantly influenced by intersections of the given quadratic function 

( , , )f x t s  with identity ( )g x x , as the functional graphs will have loops in these points. Let’s 

solve the equation 2 22x x tx t s    . In the case that 1
4

s t  , the given equation has no 

solution; for 1
4

s t  , the equation has one solution; and finally for 1
4

s t  , it has two solutions. 

The blocks of the desired decomposition, i.e. blocks of mutually conjugate functions, cannot be 
determined only using the found intersections. However, it enables us to discover new findings. 
Let’s consider the function 2 1y x  . In Figure 3 are its graph, and on the right, two of countless 
orbits into which the functional graph of the given unar is decomposed. All elements  ,1x   are 
of degree 0. Element 1 has, as the only element, only one predecessor – element 0. All other 
elements of the given orbit have two predecessors. All other orbits are mutually isomorphic and in 
each of them lies an element of interval (0, 1). The following statement is important for the 
description of blocks of conjugate quadratic functions of the given system. 
  
Theorem 1. The given functions 1 1( , , )f x t s , 2 2( , , )f x t s  such that 1 1 2 2t s t s    are conjugate.  



The proof is simple. As the Cartesian graphs are mutually moved in the direction of line y = x, the 
given functional graphs are evidently isomorphic. The given functions are, therefore, conjugate. 
 
Consequence 1. According to Theorem 1, it is possible in other considerations to represent all 
parabolas  ( , , )f x t s  for which t s  equals the given constant c R  with parabola 2y x c  .  
 
Theorem 2. Let ( , )R q be a unar on set R of real numbers. We define a binary relation   on R  as 
follows: for ,x y R  we make x y , if there is a 0n N  with characteristic ( )nq x y . Then   is 
quasi-ordered (i.e. reflexive and transitive relation) on set R. This relation is antisymmetric, i.e. it is  
an order only if orbits of the given unar contain one-element „cycles“, i.e. loops. 
Proof: The reflexivity and transitivity of the defined relation is obvious. If there is in a unar ( , )R q a 
cycle of length 0k , in R there are such elements 0 1 1, ,..., kx x x   that 0110 ... xxxx k   , so that 
relation   is not antisymmetric. Antisymmetry is evidently not broken by the loops. This makes the 
statement proven. Now, we can describe one decomposition block of two mutually conjugate 
functions of the studied system  .  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 Cartesian graph and orbits of function 2 1y x   

 

Theorem 3. All functions ( , , )f x t s , where 1
4

s t  , are mutually conjugate and form one 

decomposition block.  
 
Proof: Orbits of the unars of system   generally contain cycles. In the case of function ( , , )f x t s , 

1
4

s t   the corresponding unar contains no cycle, so the orbits are ordered by the given relation. 

The node graph of any function 2y x c  , 1>
4

c  is isomorphic with the graph in Figure 3. At the 

same time, it is true that in the node graph of every function ( , , )f x t s , where 1
4

s t   there is a 

least one point (intersection of a quadratic function with identity), i.e. point, in which there is a 
loop. The node graph of such function may not be isomorphic with the graphs of functions 



( , , )f x t s , 1
4

s t  , so according to Theorem 1, none of the given functions can be conjugate with 

a function not intersecting the identity. This proves the given theorem. 
 Other blocks of the studied decomposition are not easy to describe. It is not true that every 
two functions of system  intersecting the identity, for example, in two points are conjugate. The 
decomposition blocks are, in this case, much more complicated. We should consider how powerful 
functional graphs are when exploring conjugate functions. If we wanted to determine, according to 
the given definition, whether two functions 1 1 1( , , )f f x t s  and 2 2 2( , , )f f x t s  of system   are 
conjugate, we would have to prove the existence of bijection :h R R  such that it is true that  

hffh  21   . The exploration of this problem leads to the exploration of non-trivial functional 
equations. An even simpler problem than the solution of the last equation, i.e. the question of the 
interchange of bijection :h R R  with the quadratic equation stx  2)( , i.e. the validity of 
relation ))(())(( xfxf    leads to the functional equation stxfstxf  22 ))(())(( , 

0))(()(2)]([ 222  sstxftxtfxf . A non-trivial question of the solution of such a 

functional equation is, however, for quadratic equations of system  , for which 
4
1

 ts , is 

positively answered according to Theorem 3 (see for instance [1], [4] and [5]). To demonstrate this, 
we illustrate two different types of orbits of the quadratic function 2y x c  . We analyse 
particular situations regarding the classic school point of view (Cartesian graphs) and regarding 
mono-unary algebras’ point of view. We show that without the help of sophisticated computer 
software we cannot analyse completely node graphs of a purely quadratic function with students. 
Doing this, we can emphasise the usefulness of various views on the given problem, which may 
appear simple, when approached from only one point o view. According to the previous 
conclusions, an important role is played in this description by constant c. 

Sample 1: constant  
4
1

c  

Consider function
4
12  xy . The functional graph of the corresponding unar is created by one 

cyclic orbit in the touch point of the parabola with the identity (Figure 4), i.e. in point 
2
1  (the first 

obit from the left). As the function is even, also 
2
1


 
maps to this value. 

 
 
 
 
 
 
 
 
 

 
 

Figure 4 Cartesian graph and orbits of function for 
4
1

c  

– 



Then, there is the only orbit “growing” from 0 (in Figure 4 the second from the left), which is 

acyclic and infinite. Nondenumerably many orbits grow from values of interval 







4
1,0  (the third 

orbit from the left). The last type of orbits (in Figure 4 on the right) is infinite, acyclic orbits. There 

are nondenumerably many of them and they grow from values of interval 





 0,

2
1 . 

Sample 2:  constant 
4
10  c

 
A graph of such a quadratic function has two intersections with the identity, so there are two loops 
in the functional graph. The vertex of the parabola is not in 0, so for sure one orbit will be of the 
same type as in Sample 1. 
If constant 24.0c , we can easily calculate the intersections of function 24.02  xy  with 
function xy   using the equation 024.02  xx , and we get roots 4.01 x  a 6.02 x . In these 
values, 0.4 and 0.6, there are loops and edges from nodes − 0.4 and − 0.6 direct to these nodes 
(Figure 5). 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 Cartesian graph and orbits of function for c = 0.24 
 
The quadratic function is represented by two-cyclic orbits of this type (see Figure 5 on the left). The 
problem is, as we have already mentioned before, point 0. Another orbit type is the only orbit which 
grows just from 0 (in Figure 5 in the middle). The last orbit type of the node graph of this unar is 
infinite, acyclic orbit (in Figure 5 on the right). There are an infinite number of such orbits and they 
grow from interval  c,0 . 
Sample 3:  constant 0c  
In an analogy with the previous considerations, it is obvious that intersections with axis x, i.e. the 
values 0x  and 1x  are displayed as loops. Zero (in Figure 6 on the left) represents only one 
orbit – a loop. The second orbit type of the node graph of this unar (in Figure 6 in the middle) grows 
from value −1, which is, from the essence of the even function, the symmetric value to the other 
intersection with the identity 1x . Nondenumerably many acyclic orbits (in Figure 6 on the right) 
grow from intervals  1,0  and  ,1 . 
 

- 



Sample  4:  constant 0c  
If constant c is negative, the situation changes significantly. We can see that points in which may be 
cycles or which behave “suspiciously” are much numerous than in the previous cases: The vertex of 
the parabola; two intersections with axis x; two intersections with the identity. Up to this time, only 
loops could appear as cycles. Let’s pose a question if there are cycles of the length of two and more. 
To be able to answer it, we have to solve the following system of equations:  

bta 2  
atb 2  

where t presents a quadratic equation parameter.  
 
These equations can be simply solved by subtracting them to obtain abba  22 , assuming that 

0 ab  and we obtain 1 ba . Simple substitutions provide the results immediately. The 
other solutions are when ba  , and again, substitutions can be used. Secondary school students 
should be able to solve this system of equations. However, we can use suitable software as a 
preparation for more complicated calculations in the next more difficult problem where the 
calculation without software is not possible.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Cartesian graph and orbits of function for c = 0 
 

We solve it using mathematical software CoCoA 4.3, which was chosen because it can eliminate 
variables in systems of equations. In this case, it can transform the system of equations into a 
product of polynomials. In Figure 7, we can see the result. Using command Elim, we get a 
polynomial denoted, in Figure 7, as Ideal(-a^4 + 2a^2t - t^2 + a + t). If we use command Factor, 
program makes a decomposition into the product of two polynomials 012  taa  
and 02  taa . 

The roots of the first polynomial are 
2

341
2,1




ta  and they determine the values of two-

cycles. Next, the solution of this equation is the second polynomial 02  taa , whose roots have 

the  form 
2

411
2,1

ta 
  and determine values for one-cyclic orbits. When we ask for which 

values of constant c we can expect cycles of the length two, we can see, from the equation for the 



first roots of the first polynomial, that if 034  , i.e. for 
4
3

 ,  in our notation for the quadratic 

equation parameter 
4
3

c . This is the value discovered by Mitchell Feigenbaum in his research on 

the behaviour of quadratic function iterations. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7 Calculation of two-cycles using computer 
 

 
The presented considerations may make students think about the question of when there are also 
cycles of the length of four and more. We will try to answer this question. 
Let’s try to generalize our consideration and search for a solution of the following system of 
equations 

ba 2  
cb 2  
dc 2  
ad 2  

 
If we obtain a “reasonable” solution, we will have a relationship for cycles of length 4. 
To solve this problem, we use a mathematical program. We tried to make calculations in program 
Maple9, Derive6 and CoCoA 4.3. The third one seemed to be better for factorisation of polynomials. 
For other adjustments, we used the program Derive6. After elimination of the variables, we get a 
product of three polynomials. The first two are the same as in the case of the previous set of 
equations, 012  taa  and 02  taa , and determine the values for one-cycles and two-
cycles. The third polynomial is  



01223
3253644124432

618615124203156

232

234322543223464233245

6523425442673689281012







tattat
taatattatattatatattatatata

atatatatatatatataatataa

We tried to find roots of this polynomial with students using Derive6 and then also CoCoA 4.3. 
Taking into account the obtained results (Table 1), it is apparent that we cannot derive easily the 
relationship for cycles of length 4. Here, we have an example of a reasonable utilisation of the 
computer for creation concepts in mathematics and the demonstration of its beauty. We react to the 
current teaching situation on the secondary school level in the Czech Republic when mathematics 
is, very often, presented by teachers as a boring theory full of formulae which should be memorized 
and when students are not led to their own discoveries. The ongoing curricular reform has ambitions 
to change it and there are tendencies to change teachers’ view on the teaching and learning 
processes in mathematics lessons. Our paper is considered to be an inspiration for such a change 
 
We are fully aware that a massive 12 degree equation is not “beautiful” at the first sight, but we 
present it as we think, based on our experience, that secondary schools students have never met this 
result before. The results are for them astonishing (considering their reaction in mathematics 
lessons) and it is important to make them interpret the obtained result in the table. When working 
with students on demonstrated problems, we found out, that with a teacher as a moderator and with 
the use of a computer, the students wanted to go beyond their previous possibilities. The computer 
helped them, to a certain extent, open the way to further exploration. 
 
Going back to the description of decomposition of the node graphs of the corresponding unars and 
taking into account all mentioned considerations, we can see that the situation is not so clear and is 
more complicated and that the description of particular node graphs is not unambiguous. To 
illustrate this, we will choose various values for constant c and describe the corresponding graphs. 
Let’s choose the parameter of the quadratic equation cxy  2 , value 1c . The first root 

equation tells us that a two-cycle appears for values  
2

3141  , i.e. for 0 and −1. The node 

graph of this function is one cycle of length 2 (Figure 8) growing from the symmetric value −1 
towards value 1 because of the even nature of the function and nondenumerably many acyclic orbits. 
Other two orbits typical of the function in this form are one-cycle infinite orbits. The values of their 
nodes can be determined form the equation for the second root. 
Similarly, if we change parameter c, we obtain, apart from infinite acyclic orbits, one-cycles and 
two-cycles.  So for instance, for parameter 3c , there is a cycle of the length 2 (see Figure 8). 
The nodes of this two-cycle are the values 1 and −2, which is a two-cycle orbit similar to the case 
when 1c , but there is an edge leading from 2 to 1 from −1 to −2. The nodes of one-cycle orbit 

are calculated from the equation for the second root, these values are  
2

131  and 
2

131 . 

However, also the symmetric points  
2

131  and   
2

131  map to these values. 

These orbits are two. If we choose 2c , there appears, apart from infinite acyclic orbits, a one-
cycle orbit growing from 1 (in Figure 8 in the middle) of the same type as in the case of the function 

12  xy  with the difference that the values of its nodes are whole numbers and can be more easily 
estimated. Moreover, we will find a “new” one-cycle orbit growing from nondenumerably many 



iterations ..., 2 , 2 , which all map gradually on 0, on −2 , this on 2 and there is a cycle. The 
function is described by an two-cycle orbit and we can determine its nodes calculating the equation 

for the first root, which is 
2

51 . 

 
Table 1  Determination of polynomials using program CoCo A 4.3 

 
Use R::=Q[abcdefght]; 
I:=Ideal(a^2-t-b,b^2-t-c,c^2-t-d,d^2-t-e,e^2-t-f,f^2-t-g,g^2-t-h,h^2-t-a); 
Elim(b..h,I); 
Factor(a^256 - 128a^254t + 8128a^252t^2 - 64a^252t - 341376a^250t^3 + 
8064a^250t^2 + 10668000a^248t^4 - 504000a^248t^3 - 264566400a^246t^5 + 
2016a^248t^2 + 20832000a^246t^4+..…………………171 pages of calculations………………………-
14680t^11 - 60a^7t^3 + 86a^6t^4 - 170a^5t^5 + 752a^4t^6 - 1008a^3t^7 + 
2722a^2t^8 - 2698at^9 + 5368t^10 + 6a^7t^2 - 8a^6t^3 + 90a^5t^4 - 196a^4t^5 + 
274a^3t^6 - 856a^2t^7 + 962at^8 - 1944t^9 - 2a^7t + 2a^6t^2 - 26a^5t^3 + 
34a^4t^4 - 102a^3t^5 + 262a^2t^6 - 334at^7 + 698t^8 + 8a^5t^2 - 8a^4t^3 + 
44a^3t^4 -68a^2t^5 + 120at^6 - 248t^7 - 16a^3t^3 + 20a^2t^4 - 48at^5 + 84t^6 + 
4a^3t^2 - 4a^2t^3 + 20at^4 - 28t^5 - 8at^3 + 8t^4 + 1, 1], [a^12 - 6a^10t + 
15a^8t^2 + a^9 - 3a^8t - 20a^6t^3 - 4a^7t + 12a^6t^2 + 15a^4t^4 + 6a^5t^2 - 
18a^4t^3 - 6a^2t^5 + a^6 - 2a^5t + 3a^4t^2 - 4a^3t^3 + 12a^2t^4 + t^6 - 4a^4t + 
4a^3t^2 - 6a^2t^3 + at^4 - 3t^5 + 5a^2t^2 - 2at^3 + 3t^4 + a^3 - a^2t + at^2 - 
3t^3 - 2at + 2t^2 + 1, 1], [a^2 + a - t + 1, 1]] 
 
Making a complete and exhausting appraisal of the whole process raises the question of whether 
there can also appear four-cycles or more-cycles? It is sure that such orbits represent the given 
unars, but we are not able to determine their shape.   
There is a possibility to solve this equation numerically for different values of t too and plot the 
results with different kinds of software. We do not present that due to the limited extent of the 
paper.   
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 8  Cartesian graph and orbits of function for 1c  
 

There is the question of the use of directed graphs of mono-unary algebras in the context of real 
value functions. We have evidence of there phases in the development of functional thinking – the 
creation of quantitative links and causal phenomena, the intuitive use of obtained experience, and 



the phase of systematic work with functions. In our opinion, supported with our experience, all 
there phases are not seized adequately. Results of international comparisons (TIMSS and PISA) 
show that Czech students struggle with understanding of the concept of function. The reason may 
be the mentioned formal way of teaching.  The presented view on functions opens possibilities how 
to enable students to understand it more deeply, it hides a new view on Cartesian and nod graphs of 
functions and their mutual comparisons Moreover; such algebra is said [2] to correspond to the 
topology. 
All the previously mentioned previous considerations show that the presented problem is not trivial. 
For this reason, we have demanded its exhausting description, but only tried to show to readers the 
complexity of the whole problem. We tried to demonstrate in the example of quadratic functions the 
beauty of mathematics which offers various views on the same problem. From one point of view, 
the problem is trivial within the scope of the school mathematics. From another point of view, the 
problem is difficult demanding a deeper insight into the problem. It enables students to see another 
view on mathematics and gives space for individual mathematical experimenting using a computer. 
The presented problems are suitable for special facultative seminars and for talented students who 
participate in the mathematics Olympics. 

 
4. Conclusion 
 
Recently, a powerful tool has appeared in education and this tool is the computer which enables 
mathematics teachers to show and present their students previously unforeseen possibilities of 
mathematical experimenting, linking various educational subjects, mathematical “vision” of the real 
world etc. Iterations can help to model many phenomena occurring in the real world and they have a 
close connection with the theory of chaos and fractals and can be applied in technical sphere, 
economics or IT technologies. 
A didactical utilization of the above mentioned approaches consists, among other, in the following 
directions: a discrete description of various functions in sets of real and complex numbers, a 
relationships between discreet and continuous mathematical structures, stimulation of special-
interest activities of students and their motivation by simple applications from the real life, the use 
of computer, creation of tasks for gifted students, etc. 
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