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Abstract: Some sequences of integrals have nice patterns as can be found in CAS-assisted experiments. In

the present paper, we present some interesting examples of this kind and explain useful tips about the use of

Maple. We also give a proof of a formula in Fourier analysis. It is based on the study of a sequence of integrals

and is well suited for experimental mathematics. It can replace a conventional, tricky proof based on a strange

lemma.

1 Introduction

It is a fun, to be sure, to learn established facts, but it gives more joy to discover mathematical
facts by oneself. Such a thrilling experience used to be a privilege of few talented people. Now,
however, ordinary people can feel the joy of discovery with the help of a computer algebra
system. One can perform a significant amount of compution in mathematical experiments.
Some experiments may produce only messy results, while others yield really good, beautiful
patterns. When the latter is the case, one is tempted to formulate and prove a general statement.

In the present paper, we give some examples of sequences of integrals with good patterns.
First we calculate the first one hundred or so terms of a sequence and try to find a rule. We
formulate a hypothesis based on such a CAS-assisted experiment. The next step is to prove it
in full generality and it is done by pencil and paper.

We will conclude this paper by the discussion about a formula in Fourier analysis. The
formula itself is not new and an ingenious proof is given in the famous book [4]. Indeed, it is so
ingenious that it is not clear how one can hit upon it. Only a mathematician with exceptional
intuition can do it. To teach this kind of proof has the risk of discouraging students by making
them feel inferior to talented people. Here we give an alternative, natural proof based on a
CAS-assisited experiment and well-known methods in analysis. Such an approach can be taken
by an ordinary person and does not require an inspiration of a genius. It can boost students’
self-confidence and encourages them to find something new.



2 Sequences of integrals

Problem 1 Find the value of Sn =
∫ π
0

sinn x dx for n ∈ N = {0, 1, 2, . . . }.

The following Maple commands1 generate the sequence {Sn}100n=1.

sinint:=n->int(sin(x)^n, x=0..Pi);

sinintseq:=seq(sinint(n), n=1..100);

We start the sequence sinintseq from n = 1 because the index of the first element of a list in
Maple is not 0 but 1. Here we give only the first sixteen terms for lack of space. They are:
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Odd-numbered terms are rationals and even-numbered terms are rationals multiplied by π.
That is the case for n ≥ 11, too. To see the pattern more clearly, it helps to calculate the ratio
Sn/Sn−2, not Sn/Sn−1.

evenodd:=seq(sinintseq[n]/sinintseq[n-2], n=3..100);

The result is the simple recurrence formula

Sn
Sn−2

=
n− 1

n
(1)

for 2 ≤ n ≤ 100. Here we have included n = 2 since S0 = π, S1 = 2, S2 = π/2, S3 = 4/3.
It follows immediately that we have Sn = 2(n− 1)!!/n!! if n is odd and Sn = π(n− 1)!!/n!!
if n is even at least for n ≤ 100. Recall that n!! = n(n − 2) · · · 3 · 1 if n is odd and that
n!! = n(n− 2) · · · 4 · 2 if n is even. By convention, (−1)!! = 0!! = 1.

We expect that our sequence satisfies a simple recurrence formula (1) for an arbitrary
n. We rewrite Sn into Sn =

∫ π
0

sinn−1 x(− cosx)′ dx and integrate it by parts. Then we get
Sn = (n − 1)(Sn−2 − Sn), which implies (1). The explicit expression of Sn given above holds
true for any n. Integration by parts will be used repeatedly to derive recurrence formulas in this
manuscript.

Problem 2 Calculate Jn(x) =
∫ x
0

(1 + t2)−n−1/2 dt (n ≥ 0) and find the values Jn(∞) =

limx→∞ Jn(x) =
∫∞
0

(1 + t2)−n−1/2 dt for n ≥ 1. (The limit diverges for n = 0.)

The change of variables x = tan θ (0 ≤ θ ≤ π/2) shows Jn(∞) =
∫ π/2
0

cos2n−1 θ dθ and the
method in the previous problem can be applied. Here, however, we study the integral Jn(x)
without changing variables. We employ the following Maple commands:

J:=n->int((1+x^2)^(-n-1/2), x);

for n from 0 to 50 do J(n); od;

1See [2] or [3] for basics of Maple.



They yield

J0(x) = arcsinh(x), J1(x) =
x√

1 + x2
, J2(x) =

1

3

x (3 + 2 x2)

(1 + x2)3/2
,

J3(x) =
1

15

x (15 + 20 x2 + 8x4)

(1 + x2)5/2
, J4(x) =

1

35

x (35 + 70 x2 + 56x4 + 16x6)

(1 + x2)7/2
,

J5(x) =
1

315

x (315 + 840 x2 + 1008x4 + 576x6 + 128x8)

(1 + x2)9/2
, . . .

Obviously n = 0 is an exception: arcsinhx = log
(
x +
√
x2 + 1

)
. From now on, we consider

only positive values of n. The denominators are (1 + x2)n−1/2. Set Kn(x) = (1 + x2)n−1/2Jn(x).
It is a polynomial whose degree is obtained by

K:=n->(1+x^2)^(n-1/2)*int((1+x^2)^(-n-1/2), x);

s:=seq(K(n), n=1..50);

s2:=seq(degree(s[n]), n=1..50);

We see that the degree of Kn(x) is 2n− 1. The coefficient of the leading term is complicated.
We calculate the ratio of its values for n+ 1 and n by

s3:=seq(lcoeff(s[n+1])/lcoeff(s[n]), n=1..49);

Then we find that the ratio is 2n/(2n+ 1).
Now let us prove the observation given above for an arbitrary n. Recall that the logarithm

is integrated by
∫

log x dx =
∫
x′ log x dx = x log x− x+ C. This technique works for Jn(x) =∫∞

0
t′(1 + t2)−n−1/2 dt and we get

Jn(x) = x(1 + x2)−n−1/2 + (2n+ 1)

∫ x

0

t2(1 + t2)−n−3/2 dx.

Since t2 = (1 + t2)− 1, we get Jn(x) = x(1 + x2)−n−1/2 + (2n+ 1)[Jn(x)− Jn+1(x)]. It implies

Jn+1(x) =
2n

2n+ 1
Jn(x) +

1

2n+ 1
x(1 + x2)−n−1/2. (2)

Usually a recurrence formula is accompanied by an initial condition, but (2) can do without
one because J1(x) = x(1 + x2)−1/2 + 0 · J0(x) = x(1 + x2)−1/2. We can calculate J1(x) even if
we do not know J0(x). We have K1(x) = x and (2) implies

Kn+1(x) =
2n

2n+ 1
(1 + x2)Kn(x) +

x

2n+ 1
. (3)

It follows that Kn(x) is a polynomial of degree 2n − 1 consisting of odd powers of x. The
coefficient of x2n−1, which we denote by an, is given by an = (2n − 2)!!/(2n − 1)!!. Since
Jn(x) = (1 + x2)−n+1/2Kn(x) = (1 + x2)−n+1/2(anx

2n−1 + · · · ), we have Jn(∞) = an.

Problem 3 Assume a > 0. Find the value of Ln =
∫ 1

0
xa(log x)n dx for n ∈ N.

Let us define the function L in n by the following Maple commands. We fix a for the time
being.



assume(a>0);

L:=n->int(x^a*log(x)^n, x=0..1);

We find that L0 = 1/(a + 1), L1 = −1/(a2 + 2a + 1), L2 = 2/(a3 + 3a2 + 3a + 1), L3 =
−6/(a4 + 4a3 + 6a2 + 4a+ 1). The denominators are powers of a+ 1, so the expression for L(n)
would be simplified by factorization. We apply

for n from 0 to 50 do factor(L(n)); od;

and the denominators are certainly (a+1)n+1 and the numerators seem to be (−1)nn! (although
factorials of large numbers are difficult to identify). In other words, it seems that

Ln =

∫ 1

0

xa(log x)n dx =
(−1)nn!

(a+ 1)n+1
. (4)

It reminds us the well-known exercise in calculus “Find the n-th derivative of the function
y = 1/(1 + x)”. Of course, the answer is y(n) = (−1)nn!/(1 + x)n+1. That is, (4) says

L0 = L0(a) =
1

a+ 1
, Ln = Ln(a) =

dn

dan
L0(a). (5)

Why is that so? It is explained by differentiation under the integral sign. Indeed, since dαt/dt =
αt logα, we have ∂xa/∂a = xa log x. It implies

dn

dan
L0(a) =

dn

dan

∫ 1

0

xa dx =

∫ 1

0

∂n

∂an
xa dx =

∫ 1

0

xa(log x)n dx = Ln(a).

Problem 4 Find the value of

In =

∫ π

0

sinn x

(a+ ip cosx)n+1
dx

for a > 0, p ∈ R, n ∈ N.

The evaluation of these integrals is difficult even for Maple. A simple observation greatly
alleviates the burden on the computer. It is easy to see that In is homogeneous of degree
−n− 1 in (a, p) and we have

In =
1

an+1
Jn, Jn =

∫ π

0

sinn x

(1 + iq cosx)n+1
dx, q =

p

a
.

It is enough to calculate Jn. It is done by

assume(q, real);

J:=n->factor(int(sin(x)^n/(1+I*q*cos(x))^(n+1), x=0..Pi));

for n from 1 to 20 do J(n); od;



The output is

J(1) = −2
1

(i− q) (i+ q)
, J(2) =

1

2

π

(q2 + 1)3/2
,

J(3) =
4

3

1

(i− q)2 (i+ q)2
, J(4) =

3

8

π

(q2 + 1)5/2
,

J(5) = −16

15

1

(i− q)3 (i+ q)3
, J(6) =

5

16

π

(q2 + 1)7/2
, . . .

The odd-numbered and even-numbered terms show a little different patterns. It suggests that
a recurrence formula relates In to In−2. If q = 0 and a = 0, then Jn is nothing but Sn in
Problem 1. We can guess that Jn = Sn/(q

2 + 1)(n+1)/2 and that

In =
Sn

(a2 + p2)(n+1)/2
. (6)

Let us derive a recurrence formula. Integration by parts gives

In =

∫ π

0

(− cosx)′ sinn−1 x

(a+ ip cosx)n+1

= (n− 1)

{∫ π

0

sinn−2 x

(a+ ip cosx)n+1
dx− In

}
+

∫ π

0

i(n+ 1)p sinn cosx

(a+ ip cosx)n+2
dx.

The integrals are derivatives of In−2 and In with respect to a and p up to some factors. We get(
p
∂

∂p
+ n
)
In =

1

n

∂2

∂a2
In−2 (n ≥ 2). (7)

It is easy to check that In = Sn(a2 + p2)−
n+1
2 satisfies (7).

There remains the problem of uniqueness of In. Given In−2, isn’t there another function in
that satisfies (7)? If that is the case, we have p(In)p + nIn = p(in)p + nin, where the subscript
p denotes the differentiation in p. Set f = In − in, then pfp = −nf and f = const.p−n as is
proved by separation of variables. Since f is bounded near p = 0, the constant factor must be
zero and we have In = in.

3 Fourier analysis

In this section, we study the following formula in Fourier analysis2.

Theorem 5 For all a > 0 and t ∈ Rn, we have∫
Rn

e−2πa|x|e−2πit·x dx = cn
a

(a2 + |t|2)(n+1)/2
, (8)

where cn = Γ[(n+ 1)/2]/(π(n+1)/2)3.

2To readers unfamiliar with this branch of mathematics, we recommend [1] as a good introduction.
3The value of the gamma function can be calculated by using Γ(z + 1) = zΓ(z), Γ(1/2) =

√
π, Γ(1) = 1.



Its proof in [4], pp.6-7 is based on the unfamiliar formula

e−β =
1√
π

∫ ∞
0

e−u√
u
e−β

2/4u du, β > 0. (9)

It appears suddenly out of nowhere and only gifted mathematicians can think of such a trick.
We would like to find how a layperson can prove Theorem 5 with the help of a computer4.

We employ the polar coordinates. Set x = rξ, ξ ∈ Sn−1. Then dx = rn−1dξ, where dξ is the
surface-are element of Sn−1. Let us denote the left-hand side of by (8) by I. Then a formula
of Laplace transform gives

I =

∫
Sn−1

dξ

∫ ∞
0

rn−1e−2πare−2πirt·ξdr

=

∫
Sn−1

(n− 1)!

{2π(a+ 2πit · ξ)}n
dξ.

By rotation, we can replace the vector t by (|t|, 0, . . . , 0) without changing the value of the
integral. Indeed, let ρ : Sn−1 → Sn−1 be a rotation5 which maps the north pole t(1, 0, ..., 0) to
t/|t|. Set ξ = ρ(η). Then dξ = dη and t · ξ = |t|ρ(t(1, 0, ..., 0)) · ρ(η) = |t|t(1, 0, ..., 0) · η = |t|η1.
Therefore we obtain (still using the letter ξ for the new variable)

I =

∫
Sn−1

(n− 1)!

{2π(a+ 2πi|t|ξ1)}n
dξ.

Let us introduce the angles θ1, . . . , θn−2 ∈ [0, π] and θn−1 ∈ [0, 2π] by

ξ1 = cos θ1, ξ2 = sin θ1 cos θ2, ξ3 = sin θ1 sin θ2 cos θ3, . . . ,

ξj = sin θ1 sin θ2 · · · sin θj−1 cos θj, . . . ,

ξn−1 = sin θ1 sin θ2 · · · sin θn−1 cos θn−1,

ξn = sin θ1 sin θ2 · · · sin θn−1 sin θn−1.

We have dξ =
∏n−1

j=1 sinn−1−j θjdθj and

I =
(n− 1)!

(2π)n

∫ 2π

0

dθn−1

(
n−2∏
j=2

∫ π

0

sinn−1−j θj dθj

)∫ π

0

sinn−2 θ1 dθ1
(a+ i|t| cos θ1)n−1

. (10)

We can complete the proof of Theorem 5 by using the results of Problems 1 and 4. .
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