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Abstract 

In this paper we analyze the origins of dynamic geometry and show how some of the ancient Greek 
and medieval Islamic moving geometry constructions can be created with Dynamic Geometry 

software – Cabri, Sketchpad or any other program for geometry. We also show how the idea of 

moving geometry contributed to the development of modern technology. 

Introduction 

Ancient Greek and later medieval Muslim geometers highly valued geometric constructions that 

can be created using a straightedge, i.e. a ruler without marking, and compasses
2
. However, these 

traditional and noble, as they were considered, methods, were not good enough to produce 

solutions of a number of problems in geometry of this period of time. Such problems were, for 

example: trisection of an angle, construction of a regular nonagon or heptagon, squaring the circle 

or doubling the cube. Since these problems were quite important at this time, slightly less noble, 

but reasonably efficient methods to solve them were invented. One of these methods are so-called 

neusis constructions or constructions with compasses and a marked ruler. Ancient mathematicians 

created a number of constructions where, by moving a segment, a line or even a larger group of 

objects, a desired effect was achieved. For example, the famous construction of a heptagon by 

Archimedes, considered as the most unique and elegant construction from ancient times, was 

created using moving geometry. Expression moving geometry frequently occurs in manuscripts of 

medieval Muslim mathematicians and it is an alternative term for the Greek word neusis (νεῦσις). 
In modern literature, the Greek term is frequently replaced by the English expression verging 

construction. For the purpose of this paper we will frequently use term moving geometry, as it has a 

wider connotation.      

Surprisingly, neusis and other constructions with moving elements resemble activities that are the 

essence of dynamic geometry software, e.g. create a geometric construction with a free element (a 

point, a segment or a line) and then move the free element to obtain a solution or to check if a 

hypothesis is valid.  

                                                   

1
 The work of this author on the project was partially supported by the National Science Council in Taiwan.  

2
 The plural form compasses seems to be a bit strange in our times, but the ancient tool to draw a circle was a 

combination of two sharp pins. Compass is just another word for a pin. 



 

Another group of geometric constructions based also on moving geometry are so-called linkages. 

Linkages were invented much later, but if we look at them closely, we may find the same or very 

similar concepts like those in geometry of ancient Greeks. We will discuss linkages and their 
applications in one of the last part of this paper.  

While starting this project we had impression that  writing this paper would be an easy task. The 

amount of literature on the history of mathematics as well as on problems related to moving 

geometry is enormous. Most of these resources present the main mathematical facts in a reasonably 

clear manner. However, proofs of these facts as well as historical information often raise various 

doubts, or simply are incorrect. Books and papers on the history of mathematics are often written 

by authors who are historians rather than mathematicians. Sometimes architects, or even people 

completely not related to mathematics attempt to write a publication related to mathematics or to 

the history of mathematics. These authors quite frequently are not able to check accuracy of proofs, 

and simply copy them from older publications adding some new errors along the way. On a few 

occasions, where a religious context was a part of the driving force for a publication, authors 

desperately tried to prove some ideas that simply do not have grounds or there are no reliable 

sources to support their thesis.  

After examining a number of publications on the history of mathematics, both ancient Greek as 

well as medieval Muslim, we found that the most reliable sources are books by Sir Thomas Heath 

written at the end of the XIX and the beginning of XX century. His monographs (see [7][8][9]) on 

the history of Greek mathematics were major sources for our investigations. Most of Heath’s

publications can be obtained from Internet archives: Open Archive, Project Gutenberg, and Google 

Books. Another reliable source of facts in history of mathematics is a small monograph by Cajori 

(see [5]), perfectly restored by the Project Gutenberg team.  

The linkages concept, although based on ancient geometry, have a few reasonably newer 

publications. For this paper, themain sources on linkageswere twobooks:Yates’shandbookon
curves (see [13])andKempe’slectureonlinkages(see[10]).     

Geometric constructions 

When we talk about a theorem or a complex object in elementary geometry we usually mean a set 

of elementary objects like points, lines, circles, etc., and some relations between them. We usually 

request that such object or a theorem should be constructed in some way. Constructability of an 

object is a test of its existence and belonging to a specific domain of geometric objects. For 

example, all objects that can be constructed using only a straightedge form a group of objects that 

are constructible with a straightedge only, and this group may differ from a group of objects that 

are constructible with different tools. Let us examine briefly the nature of geometric constructions 

and their origins.  

A mathematician by a geometric construction will understand a group of objects that were obtained 

through specific geometric operations from some starting objects. For example, when we construct 
a regular hexagon we mean a construction shown in example 1. 



 

EXAMPLE 1  
Create points A and B 
Create circle ○(A,AB) 
Create circle ○(B,AB) 
Create intersection point C 
Create circle ○(C,CB) 
Create intersection point D 

Create circle ○(D,DC) 
Create intersection point E 
Create circle ○(E,ED) 
Create points F and G 
Create segments BC, CD, DE,EF, FG, GB  

In this construction points A and B are the starting points and everything created later was obtained 

from these two points. Operations used here are the same operations that we use in high school 

geometry – draw a segment or a line connecting two points, draw a circle with a given center and a 

point on its circumference, create a point of intersection of lines and circles, etc. The only tools that 

we used here are a tool to draw a line and a tool to draw a circle. Of course we can think about 

geometric constructions with another set of tools but these two tools are frequently considered as 
the most appropriate tools for elementary geometry. Why?  

The concept of solving problems in geometry using constructions was introduced by Plato, an 

ancient Greek mathematician and philosopher living around 427 – 347 B.C. Plato considered 

straight line as a model for the universe – a line can be extended to infinity and divided into an 

infinity number of parts. For Plato, the circle was a symbol of God or the Spirit. He considered 

these two objects to be somehow sacred. For this reason he, and many later mathematicians, 

insisted on using in geometric constructions exclusively the two tools: a straightedge and 

compasses. These two tools became a kind of sacred, or noble, tools in elementary geometry. It is 

important to note that a straightedge is a tool with one straight edge only. The other edge may not 

even exist or not be straight at all. In later times, geometers also used a straightedge with two 

parallel straight edges. For the purity of geometric constructions, some geometers, including 

Euclid, insisted that the compasses are collapsible and are not able to transfer distances. In other 

words the tools should be used exclusively to perform tasks mentioned in postulates 1, 2 and 3 of 
Euclid elements.  

EXAMPLE 2 
Assume points A, B, C are given and suppose that 
we wish to transfer distance AB to the point C. 
CONSTRUCTION STEPS:  

Create circle ○(A,AB) 
Construct an equilateral triangle ∆ACD and extend 
its sides DA and DC 
Create point E, the intersection point of line AD and 
circle  ○(A,AB) 
Create circle ○(D,DE) 
Create point of intersection of the circle ○(D,DE) 

with the line CD. This will be point E’. It can be 
easily demonstrated that  
E’C = AE = AB.  
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The requirement of not transferring distances by compasses is a bit redundant as we can easily 

transfer a distance between any two points to another place of the plane using geometric 

construction. This construction we will frequently use in this paper. Example 2 shows how it can be 
done. 

As we know, Euclidean geometry was for many centuries the foundation of mathematics, art and 

architecture. However, ancient Greek mathematicians, as well as later Muslim geometers were 

trying for  centuries to solve some problems, using constructions with straightedge and compasses 

only, without any special luck. One of such problems is hidden in the Book of Lemmas3
 written by 

Archimedes (see [7]). This problem is frequently used in modern geometry textbooks, and quite 

often without even mentioning its source.  

EXAMPLE 3 
High school geometry problem based on the eight 

proposition from Book of Lemmas by Archimedes 
 
If a chord AB of a circle is extended to C, and BC is 
equal to the radius of the circle, and a line is drawn 
from C through the center of the circle, then 

AOF=3BOC 

 

The proof of this fact is a simple high school exercise. The original proof given by Archimedes can 

befoundintheHeath’smonograph(see[7]). We can however, look at the problem from a different 

point of view. Suppose that the angle AOF inscribed in thecircle○(O,OA) was given. Can we 

construct, using straightedge and compasses only, a point B such that the angle BOC = AOF/3? 

One can easily recognize that at the very moment we are attempting to solve the famous problem of 

trisecting a given angle using a straightedge and compasses only. For many centuries, 

mathematicians as well amateurs of mathematical entertainments tried to solve this problem until 

finally in 1837 Pierre Laurent Wantzel, a French mathematician, proved that this problem cannot be 

solved using straightedge and compasses only (see [5]).  

Meanwhile, ancient geometers invented a number of methods to solve the trisection of an angle 

problem. Each of these methods goes slightly beyond the straightedge and compasses limitations. 

One of them is so called insertion principle (see [12]), or neusis construction in Greek terms 

(see [8]), or moving geometry construction in medieval Islamic geometers notion (see [2]), or 
verging constructions in modern terms.  

Verging constructions 

Let us examine a few examples demonstrating how verging constructions work. Many interesting 

examples can be found in the literature. Therefore, after explaining the main concept of verging 

constructions, we will concentrate on a few examples only.  

                                                   
3
 The Book of Lemmas is a collection of fifteen geometrical propositions. The original book was not preserved to our 

times. However, we know it from Arabic medieval translations. A complete translation of Book of Lemmas can be 

found in the Heath monograph e.g. [7].    

f3f

F O

A
B

C



 

Let us go back to the concept presented in example 3. We will show how a typical verging 
constructionlooksandwewilluseGeometer’sSketchpadtoexperimentwiththisconstruction.  

EXAMPLE 4 
Suppose that angle  is given.  

Draw a circle with the center in the 

vertex of the angle . We will obtain 
points A and F. 
Extend segment FO in both directions.  
On the extension of FO mark a point C 

and draw line connecting A and C.  
On the intersection of the line CA with 
the circle we will obtain point B. 
Create segment CP on the line CA in 
such a way that C is one of its ends and 
its length is equal to the radius of the 
circle (see example 1 in this paper).   

THE VERGING STEP: Now move the point C along the line FO until points B and P will join together. 

According to the eight proposition from the Book of Lemmas angle =/3.    

Now, after finishing this example we can make a summary of the common meaning of a verging 

construction.  

A verging construction is a geometric construction where we have: 

1. A line l with a fixed-length segment marked on it – the so-called diastema, and one  fixed point 
P on it – the pole of the construction. Line l is sometimes called the verging ruler. 

2. Two curves – one called directrix or guiding line and another one so-called catch line. 

3. The fixed length segment on the line l (diastema) is located in such a way that one of its ends is 

located on the directrix and the other end, which we will call a touch point, after some 
manipulations of the line l should fit on the catch line.  

In our example, point A is the pole, line CA is the verging ruler, segment CP is the diastema, P is 

the touch point, line FO isthedirectrix,andcircle○(O,OA) is the catch line. In this paper we will 

use the following convention: the verging ruler will be represented by a dashed line; the pole will 

be a red/dark point; the diastema will be shown as a thick segment, the end of diastema moving on 
the guiding line will be large light-blue point.   

While reading historical or even modern geometry texts we find that people often misuse the 

verging construction term and sometimes use it for all geometric constructions where something is 

moving. The above definition, probably the most clear and accurate definition of verging 
constructions was adopted from a Wikipedia page.  

The trisection of an angle is a problem that has had many different treatments and solutions. The 

one that was of interest to us while writing this paper was the verging construction approach. Other 
solutions can be found in the very rich literature for this problem.  

Another very typical example of verging construction is the construction of a regular heptagon. 

This construction was probably created by Archimedes and enclosed in a manuscript that was 

partially reconstructed and translated to Arabic by Thabit ben Qurra. The original manuscript is 
lost.  




mFOA

mCOB
 = 2.844

mCOB = 21.5226°

mFOA = 61.2027°

P
B

OF

A

C



 

EXAMPLE 5. CONSTRUCTION OF REGULAR HEPTAGON 
Start with a segment AB (this will be the side of the heptagon). 
Construct square □ABCD with side AB, and draw its diagonal BD. 
Draw circle ○(B,BD)  
Find the midpoint of the segment AB and construct its bisector. 
On the bisector of AB select a point F.  
Draw the line AF. 

On the line AF construct a segment with F as one its end and its 
length equal to the length of AB. The other end of the segment label 
as P.   
THE VERGING STEP 
Now, move point F until point P will touch the circle ○(B,BD).  
The angle AFB is equal 360°/14. A reasonably easy proof of this fact 
can be done with trigonometry and solving an equation of order 3.  

 

Now let us concentrate on another geometric problem from the same period of time – the doubling 

the cube problem. The construction presented here was invented by Eratosthenes, and it is a very 

unusual verging construction – we have to match two points, not one like in the trisection of an 
angle problem.  

EXAMPLE 6 
Construct segment AB  
Construct two parallel lines perpendicular to 
AB and passing through its ends.  
Construct three identical triangles ∆BCD, 

∆B’C’D’ and ∆B”C”D”.   

Construct the midpoint of the last vertical 

segment C”D”. This will be the point U.  

Draw line passing through point B and U. 
Mark points of intersection of the line BU with 
vertical segments as V and W, and with slant 

sides of triangles as v and w.  

 

THE VERGING STEP 

Move the point B’ along the top horizontal 

line until points V and v make one point.  

Now, move the point B” along the top 

horizontal line to get W = w. Note, after this 
step you may need to correct the locations of 
points V and v.  
When you get V = v and W = w you will find 
by measuring appropriate distances that  
AB3 = 2DV 3. A formal proof of this fact can 

be found in  [8] and in a few other publications 

on the history of mathematics.  
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The construction presented above works the 
other way around than we needed. For a 

given segment AB it produces segment DV 
(smaller than AB) such that AB3 = 2DV 3 . 
However, we can easily modify this 
construction to get what we really want, i.e. 
DV such that  DV 3 = 2AB3.  
A specific beauty of this problem is that it 
allows us to produce two cubes in any ratio by 

simply dividing the last right vertical segment 
into two parts of the ratio we need. In the 

above construction we had UD” = AB/2. In 

the construction to the right, UD” = 2AB. We 

can easily imagine the same construction 
using some other proportions.   

 

The problem of duplication of a cube has quite a rich history. The number of its solutions is 

incredible. Heath listed in his book more than twelve solutions by ancient Greek mathematicians 

only. While reading the Heath book, one may have a feeling that ancient Greek mathematicians 

held a kind of competition for solving this problem, and every day they were spending their siesta 
time discussing and solving geometry problems.  

We will finish the chapter on verging constructions by showing one very unusual example from the 

Islamic world. It is closely related to the verging constructions, but it is not a verging construction 

in the sense of the definition we formulated at the beginning of this chapter.  

Islamic artists used a few techniques to develop their geometric ornaments. One of them was 

dissecting a square, or a rectangle, into smaller pieces, and these pieces dissecting again, and again. 

This way, design of the pattern would start from a very convenient shape that could be easily scaled 

and replicated to cover a specified plane region. One of the methods of creating such a pattern was 

based on the Pythagoras theorem (see [11]). The proof shown below in [11] is attributed to Abu I-

Wafa (940-998). However, this particular proof of the Pythagoras theorem was also known to the 

Indian mathematicians of the same period of time.  

EXAMPLE 7 CONSTRUCTION OF ISLAMIC ORNAMENT BASED ON THE PYTHAGORAS THEOREM 

Start with a segment AB that is the intended side of the 

heptagon. 
Construct a square □ABCD with side AB, and draw through 
it a slant line starting from one of the corners, here it is point 
B, and passing through the opposite side of the square. 
From one of the neighboring points of B draw a line that is 
perpendicular to the slant line. Point of intersections of these 
two lines label as E.  

The triangle ∆ABE inside the square is a rectangular 
triangle.  
By constructing lines going through two the other vertices of 
the square and parallel to the sides of the triangle ∆ABE we 
obtain a construction that can be easily used to prove the 
Pythagoras theorem.      

2∙AB3 = 16.2572 in3

DV3 = 16.2433 in3

DV = 2.5326 in.
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Further divisions of obtained figures and replication of the 
square can produce simple Islamic geometric ornaments. 

Here we show one of such subdivisions.  
The triangle ∆ABE  was created in such a way that segments 
AE, and EH have the same length4. This means the 
perpendicular sides of the triangle form ratio AE:EB = 1:2.  

The segment EJ was obtained by bisecting angle AEB.  

By dividing in exactly the same way the three remaining 
triangles we will develop a more complex pattern shown 
below left. 
The proportions of the right triangle are quite essential. If we 
change them, then the pattern will have large, or small, 
empty squares and may look quite unbalanced (below right).  

 

  

EXAMPLE 7A (CONT.) 
We can easily imagine some other divisions of the right 
triangles in this example. One of them is shown in the 
picture to the right. In this particular construction 

EF=FH and FHAB. This makes the sides AE and AH 
equal and creates the possibility for further subdivisions, 

this time the kite AEFH. Unfortunately such proportions 
cannot be obtained by a straightedge and compasses only 
constructions. However, such proportions of the triangle 
∆AEB can be easily obtained using a verging 
construction.   

Before we describe such a construction, let us to note 
that if EF = FH then AE = EK (quick proof: if EF=FH 
then AE=AH=FN=EK). Therefore, we have to create a 
right triangle with AE = EK.    

 

                                                   
4
 The right triangle with AE:EB=1:2 proportions can be easily created knowing that shorter side of the triangle is equal 
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THE VERGING STEP  
Construct a square □ABCD with side AB.  

Find center of the base of the square, point O, and 
construct the circle ○(O,OA) 
Select a point on the opposite side of the square, point K, 
and construct a line passing through K and 
perpendicular to AB. Label the point of intersection of 
this line with the circle ○(O,OA) as E.  
Draw a line passing through points A and E. This will be 

the verging ruler. Point A will be the pole of the verging 
construction.  
Construct segment EU equal to EK. This will be the 
diastema of our construction.  
Finally, move point K until U=A. According to our 
earlier calculations we have obtained the required 
triangle.   

The verging construction shown here was developed by one of the authors while writing this paper. 

It is slightly different and much simpler than solutions shown in literature (see[11] ). One of the 

peculiarities of this construction is that it looks like a verging construction but it is not a verging 

construction in the sense of our definition. In a verging construction we require that the diastema 
must have a fixed length. Here, the segment EU changes its length as we move the point K.  

Creation of curves using verging procedures 

 

Figure 1 Conchoid of Nicomedes obtained while developing trisection of an angle 

In literature related to ancient Greek geometry and medieval Islamic geometry we can find more 

examples of verging constructions. It is even more interesting to see what will happen if we trace 

the locus of some points in verging constructions. For example the locus of the touch point P from 

example 1 will  draw a line that is a part of the curve known as conchoid of Nicomedes (see fig.1). 

In fact the point that we created while making the verging construction is the point of intersection 

of the conchoid Nicomedes with the circle. Ancient Greek mathematicians used verging procedures 
to create such curves as the conchoid of Nicomedes, or even conic sections.  

Nicomedes, in order to create his conchoid, developed a special device that uses the verging 

concept and is able to produce an entire family of conchoids. The principle of this device is shown 

in the figure 2. It contains two sticks ER and ES, both the same length (measured here by the length 
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of segment CD) and on the same line QE. Point Q is the pole and point E moves along the 
horizontal line. The family of conchoids was obtained by changing the location of the pole Q.  

 

Figure 2 Principle of a device to draw a family of conchoids of Nicomedes 

We can easily check that the curve generated by the touch point of the diastema in example 6 is 

also one of Nicomedes’ conchoids (fig. 3) and the curve generated by the touch point of the 

diastema in example 7A is a modified form of a strophoid (fig.4). All these observations open a 

door to constructing curves using verging or quasi-verging procedures. Both ancient Greek and 

later medieval Muslim mathematicians were very creative in developing methods and devices to 
draw various types of curves.  

In this paper, we will cite one more example that follows from example 7A. Let us start with a 

definition crated around 1670.   

DEFINITION OF A STROPHOID 
Suppose that we have a curve f, two fixed 

points A and O (the pole), and line l 
passing through O and intersecting with 
f in the point K. The locus of points P 
and Q such that PK = QK = KA is called 
a general strophoid.  
 

 

Example 7A is very close to the sense of this definition (see fig. 4). The only difference is that we 

do not have there a point A, but we have a line DC. The rest is the same. The results can be quite 

interesting, depending on how the curve f looks and how points A, O and the curve f are located. 

The graphs in figures 5, 6, 7 and 8 depict a few strophoids. In each of these examples, the length of 

the diastema changes when we move point K. 
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Fig. 3 Locus from example 6 

 

Fig. 4 Locus from example 7A. 

. 

EXAMPLE 8 STROPHOIDS 

 

Fig. 5 Curve f is a line perpendicular to OA 

 

Fig. 6 Curve f is a slant line in respect to OA 

 

Fig. 7 Curve f is a circle 

 

Fig. 8.Curve  f is a circle, point A was replaced by line A 
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Linkages   

The concept of linkages was developed quite late but its origins remain in ancient Greek geometry 

and verging constructions. In verging constructions we had only one pole, one diastema and one 

verging ruler. In linkages we may have a few poles, a few diastemas, and a few verging rulers. The 

curves we create with linkages are more complex than those we created with a single pole and 

verging procedures in the previous chapter.  

Probably the very first linkage was created by James Watt (1736 –1819) while working on his 

famous parallel motion project (year 1784). The objective was to produce a straight path out of two 
rotationalmovements.ThesimplestformoftheWatt’slinkageisshowninexample10.  

EXAMPLE 10 WATT’S LINKAGE 
Bars O1P and O2Q have the same length, K is the center 
of fixed-length bar PQ.  

 

 

 
Application of Watt’s linkage in car suspension 

IntheWatt’slinkagewehavetwopolesandtwovergingrulers,thetwobarsO1P and O2Q have 

exactly the same length, points P, Q are free to move on the edge of a circle with center O1 and O2 

respectively. The bar PQ has a fixed length and its center K moves on what is supposed to be a 

straight line. As we can easily see, the path of point K is almost straight on a short distance and this 
was enough to apply this construction in many types of car suspensions.  

EXAMPLE 11 CONSTRUCTION OF PEAUCELLIER CELL 
 

The two points O and B are fixed (OB = a)  
The two bars OX and OW have fixed length and  
OX = OW = b.  
The four bars VW, VX, XY and YW have fixed length and  
VW = WY = YX = XV = c 
Point V moves along a circle with diameter equal to OB.  
As a result of these constraints point Y moves along a straight 
line perpendicular to the line OB.   
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The race to improve Watt’s linkage was quite obstinate and there were many interesting

developments along the way. However, the most successful linkage was developed in 1864, exactly 

eighty years later, by the French officer and engineer M. Peaucellier. His linkage, known now as a 

Peaucellier cell, became the source of a number of technical applications as well as developments 
in mathematics and kinematics (see example 11). 

OneofthedevelopmentsinmathematicscloselyrelatedtotheWatt’slinkageareso-called four-bar 

linkages and coupler curves. The idea of the four-barlinkageisthesameasinWatt’slinkage, but 

the bars may have different lengths. This is all, but this minor change produced a large family of 
curves that were classified by mathematicians, and their theory was developed.  

Here is a brief idea of a four-bar linkage. We have: 

1. A four-bar polygonal cycle 

2. One of the bars is called a frame and it is a fixed part of the linkage 

3. Another bar different than the frame is called a coupler 

4. The whole device moves with respect to the frame  

5. A coupler curve is a curve traced by a fixed point on a coupler.  

 

EXAMPLE 12 CONSTRUCTION OF FOUR-BAR 
LINKAGE AND A COUPLER CURVE 

 
In this linkage  

A’B ’= AB,  
A’C’ = AC,  
B’D’ = BD,  
C’D’ = CD 
K is the center of C’D’.  

 

In mathematics any curve traced by a point on a linkage is referred to as a coupler curve. The 

linkage can be extremely complex with many bars and even with many fixed points. Multiple 

coupler curves are also discussed. The next example shows a linkage where 5 points are used to 

draw coupler curves.  

EXAMPLE 13 FOUR-BAR LINKAGE WITH 
MULTIPLE COUPLER CURVES 

 

In this linkage  
A’B ’= AB,  
A’C’ = AC,  

B’D’ = BD,  
C’D’ = CD 
M1N1 = R1I1….  
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It is obvious that research of linkages and coupler curves is quite important to the development of 

modern technology. By analyzing coupler curves, we can tell if the movements of a particular part 

of a device works according to our plans and needs. Analyzing coupler curves is also a way to 

check if the movements of some points in a device are optimal for the person using it. For example 

a bicyclist, or a rower on a boat, have to move their legs and hands in such a way that they will not 

get quickly tired, and all movements will be optimal for their body.  

 

Fig. 11Modern machinery uses extensively various types of linkages  

(image from http://lefthandedcyclist.blogspot.com/) 

 

Fig. 12 Construction of many types of gears is based on the same elements of moving geometry  

 invented and used by ancient Greek mathematicians  

Gears 

In a modern machinery we can find many parts that were constructed using ancient Greek moving 

geometry. One example of this are various gears (see fig. 12). If we examine closely their shape, 

we will find a number of well-known mathematical curves – epitrochoids, hypotrochoids, cycloids, 

epicycloids, ellipses, spirograph curves, etc.  Let us briefly take a closer look at some of them. We 

will concentrate on a simple epitrochoid with only a few bumps. An epitrochoid is a curve created 

by a point attached to a circle moving inside of another circle. The point can be attached to the 
circle edge, or to its interior, or to a bar attached to the circle. 

http://lefthandedcyclist.blogspot.com/


 

EXAMPLE 14 CONSTRUCTION OF AN EPITROCHOID 
In this example we use two circles – a large one with the radius R and 
a small one with the radius r=R/3.  
The small circle is rolling inside the large circle without sliding. 
Therefore, the length of arc BB’ is exactly the same as the length of 
arc B’F.  

Point G is attached to the ray C’F. Depending on the distance of 
point G from the center of the small circle we can get a number of 
various curves.    
Below are shown three more types of epitrochoids: 

1. Left G=F 
2. Middle GC’=2r 
3. Right GC’ > 2r 

 

  

While constructing gears one of the problems is to find how quickly they will wear out while 

working. This requires to be able to find a tangent line (it shows the direction of the friction power) 

and the normal line (the direction of the pressure power on a gear) to a point on the curve. Both 
lines can be easily constructed.   

EXAMPLE 15 TANGENT AND NORMAL LINES TO AN EPITROCHOID 
Draw a straight line through the points G and B’. It can be proved that this line is normal to the curve in 

point G. Draw a perpendicular line through the point G to the normal line GB’. This will be the tangent 
line. The enclosed pictures show this construction for various points on the curve.  
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As we all know, parts of machinery are developed by various mechanical devices, where rather 

mechanical constraints are used than a mathematical formula of a created object. Therefore, we can 

think about a linkage that can be used to create various shapes of gears. One such example is shown 
below.  

EXAMPLE 16 A LINKAGE TO CONSTRUCT 
EPITOROCHIDS 
In this linkage points A and B are fixed points, all other 
points are movable. 
All blue/dark segments have fixed length. All gray segments 
are rubber bands. The angle a changes from 0 to 360° (point 
Q is used to simulate this change). 
The parallelogram AEPF has fixed lengths of its sides equal 
to the lengths of AD – ED and AC – FC respectively. 

The vertex P of the parallelogram is used to draw the curve. 
Depending on the lengths of segments DE and FC, different 
shapes of an epitrochoid are obtained.   

  

Summary 

In this paper, we started from verging constructions in ancient Greek geometry. Then we explored 

the way the concept of moving geometry developed throughout the centuries. We started from very 

simple geometric constructions where one bar was moving along a line, or on a curve, and we went 

to complex constructions, so-called linkages, where many, sometimes hundreds, bars are moving. 

We explored also curves traced by selected points on our constructions (coupler curves). It is 

obvious that research both of linkages and coupler curves is quite important to the development of 

modern technology. By analyzing coupler curves we are able to tell if the movements of selected 

parts on a device work according to our plans and needs. InWatt’s linkage it was important to

obtain a straight-line movement on a short distance. However, to produce a very precise straight-

line movement on a longer distance we needed a Peaucellier cell. In a modern bike it is important 

for a bicyclist to have movements optimized so his energy while driving his bike will be not wasted 

for unnecessary movements. Modern industrial robots need even higher precision of movements 

and optimization of the number of parts and their shapes. All this creates a great need to explore 

moving geometry. 
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