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Abstract

In this paper we analyze the origins of dynamic geometry and show how some of the ancient Greek
and medieval Islamic moving geometry constructions can be created with Dynamic Geometry
software — Cabri, Sketchpad or any other program for geometry. We also show how the idea of
moving geometry contributed to the development of modern technology.

Introduction

Ancient Greek and later medieval Muslim geometers highly valued geometric constructions that
can be created using a straightedge, i.e. a ruler without marking, and compasses®. However, these
traditional and noble, as they were considered, methods, were not good enough to produce
solutions of a number of problems in geometry of this period of time. Such problems were, for
example: trisection of an angle, construction of a regular nonagon or heptagon, squaring the circle
or doubling the cube. Since these problems were quite important at this time, slightly less noble,
but reasonably efficient methods to solve them were invented. One of these methods are so-called
neusis constructions or constructions with compasses and a marked ruler. Ancient mathematicians
created a number of constructions where, by moving a segment, a line or even a larger group of
objects, a desired effect was achieved. For example, the famous construction of a heptagon by
Archimedes, considered as the most unique and elegant construction from ancient times, was
created using moving geometry. Expression moving geometry frequently occurs in manuscripts of
medieval Muslim mathematicians and it is an alternative term for the Greek word neusis (veboig).
In modern literature, the Greek term is frequently replaced by the English expression verging
construction. For the purpose of this paper we will frequently use term moving geometry, as it has a
wider connotation.

Surprisingly, neusis and other constructions with moving elements resemble activities that are the
essence of dynamic geometry software, e.g. create a geometric construction with a free element (a
point, a segment or a line) and then move the free element to obtain a solution or to check if a
hypothesis is valid.

! The work of this author on the project was partially supported by the National Science Council in Taiwan.

% The plural form compasses seems to be a bit strange in our times, but the ancient tool to draw a circle was a
combination of two sharp pins. Compass is just another word for a pin.



Another group of geometric constructions based also on moving geometry are so-called linkages.
Linkages were invented much later, but if we look at them closely, we may find the same or very
similar concepts like those in geometry of ancient Greeks. We will discuss linkages and their
applications in one of the last part of this paper.

While starting this project we had impression that writing this paper would be an easy task. The
amount of literature on the history of mathematics as well as on problems related to moving
geometry is enormous. Most of these resources present the main mathematical facts in a reasonably
clear manner. However, proofs of these facts as well as historical information often raise various
doubts, or simply are incorrect. Books and papers on the history of mathematics are often written
by authors who are historians rather than mathematicians. Sometimes architects, or even people
completely not related to mathematics attempt to write a publication related to mathematics or to
the history of mathematics. These authors quite frequently are not able to check accuracy of proofs,
and simply copy them from older publications adding some new errors along the way. On a few
occasions, where a religious context was a part of the driving force for a publication, authors
desperately tried to prove some ideas that simply do not have grounds or there are no reliable
sources to support their thesis.

After examining a number of publications on the history of mathematics, both ancient Greek as
well as medieval Muslim, we found that the most reliable sources are books by Sir Thomas Heath
written at the end of the XIX and the beginning of XX century. His monographs (see [7][8][9]) on
the history of Greek mathematics were major sources for our investigations. Most of Heath’s
publications can be obtained from Internet archives: Open Archive, Project Gutenberg, and Google
Books. Another reliable source of facts in history of mathematics is a small monograph by Cajori
(see [5]), perfectly restored by the Project Gutenberg team.

The linkages concept, although based on ancient geometry, have a few reasonably newer
publications. For this paper, the main sources on linkages were two books: Yates’s handbook on
curves (see [13]) and Kempe’s lecture on linkages (see [10]).

Geometric constructions

When we talk about a theorem or a complex object in elementary geometry we usually mean a set
of elementary objects like points, lines, circles, etc., and some relations between them. We usually
request that such object or a theorem should be constructed in some way. Constructability of an
object is a test of its existence and belonging to a specific domain of geometric objects. For
example, all objects that can be constructed using only a straightedge form a group of objects that
are constructible with a straightedge only, and this group may differ from a group of objects that
are constructible with different tools. Let us examine briefly the nature of geometric constructions
and their origins.

A mathematician by a geometric construction will understand a group of objects that were obtained
through specific geometric operations from some starting objects. For example, when we construct
a regular hexagon we mean a construction shown in example 1.



EXAMPLE 1

Create points A and B
Create circle o(A,AB)
Create circle o(B,AB)
Create intersection point C
Create circle o(C,CB)
Create intersection point D
Create circle o(D,DC)
Create intersection point E
Create circle o(E,ED)
Create points F and G
Create segments BC, CD, DE,EF, FG, GB

In this construction points A and B are the starting points and everything created later was obtained
from these two points. Operations used here are the same operations that we use in high school
geometry — draw a segment or a line connecting two points, draw a circle with a given center and a
point on its circumference, create a point of intersection of lines and circles, etc. The only tools that
we used here are a tool to draw a line and a tool to draw a circle. Of course we can think about
geometric constructions with another set of tools but these two tools are frequently considered as
the most appropriate tools for elementary geometry. Why?

The concept of solving problems in geometry using constructions was introduced by Plato, an
ancient Greek mathematician and philosopher living around 427 — 347 B.C. Plato considered
straight line as a model for the universe — a line can be extended to infinity and divided into an
infinity number of parts. For Plato, the circle was a symbol of God or the Spirit. He considered
these two objects to be somehow sacred. For this reason he, and many later mathematicians,
insisted on using in geometric constructions exclusively the two tools: a straightedge and
compasses. These two tools became a kind of sacred, or noble, tools in elementary geometry. It is
important to note that a straightedge is a tool with one straight edge only. The other edge may not
even exist or not be straight at all. In later times, geometers also used a straightedge with two
parallel straight edges. For the purity of geometric constructions, some geometers, including
Euclid, insisted that the compasses are collapsible and are not able to transfer distances. In other
words the tools should be used exclusively to perform tasks mentioned in postulates 1, 2 and 3 of
Euclid elements.

EXAMPLE 2

Assume points A, B, C are given and suppose that
we wish to transfer distance AB to the point C.
CONSTRUCTION STEPS:

Create circle o(A,AB)

Construct an equilateral triangle AACD and extend
its sides DA and DC

Create point E, the intersection point of line AD and
circle o(A,AB)

Create circle o(D,DE)

Create point of intersection of the circle o(D,DE)
with the line CD. This will be point E”. It can be
easily demonstrated that

E°C=AE = AB.




The requirement of not transferring distances by compasses is a bit redundant as we can easily
transfer a distance between any two points to another place of the plane using geometric
construction. This construction we will frequently use in this paper. Example 2 shows how it can be
done.

As we know, Euclidean geometry was for many centuries the foundation of mathematics, art and
architecture. However, ancient Greek mathematicians, as well as later Muslim geometers were
trying for centuries to solve some problems, using constructions with straightedge and compasses
only, without any special luck. One of such problems is hidden in the Book of Lemmas® written by
Archimedes (see [7]). This problem is frequently used in modern geometry textbooks, and quite
often without even mentioning its source.

EXAMPLE 3

High school geometry problem based on the eight A

proposition from Book of Lemmas by Archimedes B
If a chord AB of a circle is extended to C, and BC is 3¢

equal to the radius of the circle, and a line is drawn
from C through the center of the circle, then
~AOF=3_B0OC

VC\

Q(

i

The proof of this fact is a simple high school exercise. The original proof given by Archimedes can
be found in the Heath’s monograph (see [7]). We can however, look at the problem from a different
point of view. Suppose that the angle ZAOF inscribed in the circle o(O,0A) was given. Can we
construct, using straightedge and compasses only, a point B such that the angle #/BOC = ZAOF/3?
One can easily recognize that at the very moment we are attempting to solve the famous problem of
trisecting a given angle using a straightedge and compasses only. For many centuries,
mathematicians as well amateurs of mathematical entertainments tried to solve this problem until
finally in 1837 Pierre Laurent Wantzel, a French mathematician, proved that this problem cannot be
solved using straightedge and compasses only (see [5]).

Meanwhile, ancient geometers invented a number of methods to solve the trisection of an angle
problem. Each of these methods goes slightly beyond the straightedge and compasses limitations.
One of them is so called insertion principle (see [12]), or neusis construction in Greek terms
(see [8]), or moving geometry construction in medieval Islamic geometers notion (see [2]), or
verging constructions in modern terms.

Verging constructions

Let us examine a few examples demonstrating how verging constructions work. Many interesting
examples can be found in the literature. Therefore, after explaining the main concept of verging
constructions, we will concentrate on a few examples only.

® The Book of Lemmas is a collection of fifteen geometrical propositions. The original book was not preserved to our
times. However, we know it from Arabic medieval translations. A complete translation of Book of Lemmas can be
found in the Heath monograph e.g. [7].



Let us go back to the concept presented in example 3. We will show how a typical verging
construction looks and we will use Geometer’s Sketchpad to experiment with this construction.

EXAMPLE 4

Suppose that angle « is given.

Draw a circle with the center in the
vertex of the angle «. We will obtain
points A and F.

Extend segment FO in both directions.
On the extension of FO mark a point C
and draw line connecting A and C.

On the intersection of the line CA with
the circle we will obtain point B.
Create segment CP on the line CA in
such a way that C is one of its ends and
its length is equal to the radius of the
circle (see example 1 in this paper).

THE VERGING STEP: Now move the point C along the line FO until points B and P will join together.
According to the eight proposition from the Book of Lemmas angle f=a/3.

m<FOA = 61.2027°
m<COB = 21.5226°
m<FOA

m<COB

=2.844

Now, after finishing this example we can make a summary of the common meaning of a verging
construction.

A verging construction is a geometric construction where we have:

1. Aline | with a fixed-length segment marked on it — the so-called diastema, and one fixed point
P on it — the pole of the construction. Line | is sometimes called the verging ruler.

2. Two curves — one called directrix or guiding line and another one so-called catch line.

3. The fixed length segment on the line | (diastema) is located in such a way that one of its ends is
located on the directrix and the other end, which we will call a touch point, after some
manipulations of the line | should fit on the catch line.

In our example, point A is the pole, line CA is the verging ruler, segment CP is the diastema, P is
the touch point, line FO is the directrix, and circle o(O,0A) is the catch line. In this paper we will
use the following convention: the verging ruler will be represented by a dashed line; the pole will
be a red/dark point; the diastema will be shown as a thick segment, the end of diastema moving on
the guiding line will be large light-blue point.

While reading historical or even modern geometry texts we find that people often misuse the
verging construction term and sometimes use it for all geometric constructions where something is
moving. The above definition, probably the most clear and accurate definition of verging
constructions was adopted from a Wikipedia page.

The trisection of an angle is a problem that has had many different treatments and solutions. The
one that was of interest to us while writing this paper was the verging construction approach. Other
solutions can be found in the very rich literature for this problem.

Another very typical example of verging construction is the construction of a regular heptagon.
This construction was probably created by Archimedes and enclosed in a manuscript that was
partially reconstructed and translated to Arabic by Thabit ben Qurra. The original manuscript is
lost.



EXAMPLE 5. CONSTRUCTION OF REGULAR HEPTAGON F
Start with a segment AB (this will be the side of the heptagon).
Construct square DABCD with side AB, and draw its diagonal BD.
Draw circle o(B,BD)

Find the midpoint of the segment AB and construct its bisector.

On the bisector of AB select a point F. f
Draw the line AF. /
On the line AF construct a segment with F as one its end and its
length equal to the length of AB. The other end of the segment label ,
as P. I
THE VERGING STEP

Now, move point F until point P will touch the circle o(B,BD).

The angle AFB is equal 360°/14. A reasonably easy proof of this fact
can be done with trigonometry and solving an equation of order 3.

m<BFA = 24.6968°
360°

=14.577

Now let us concentrate on another geometric problem from the same period of time — the doubling
the cube problem. The construction presented here was invented by Eratosthenes, and it is a very
unusual verging construction — we have to match two points, not one like in the trisection of an
angle problem.

C' B"

EXAMPLE 6

Construct segment AB

Construct two parallel lines perpendicular to
AB and passing through its ends.

Construct three identical triangles ABCD,

AB’C’D’ and AB”C”D”. U
Construct the midpoint of the last vertical

segment C”D”. This will be the point U.

Draw line passing through point B and U. <

Mark points of intersection of the line BU with A B
vertical segments as V and W, and with slant
sides of triangles as v and w.

THE VERGING STEP
Move the point B along the top horizontal R
line until points V and v make one point.
Now, move the point B~ along the top
horizontal line to get W = w. Note, after this
step you may need to correct the locations of
points V and v.

When you get V =v and W = w you will find
by measuring appropriate distances that

AB®=2DV . A formal proof of this fact can
be found in [8] and in a few other publications
on the history of mathematics.

<O
A
AB =2.0107 in.

DV =1.5955 in.

AB®=8.1286 in’
2-DV?=8.1234in’




The construction presented above works the
other way around than we needed. For a
given segment AB it produces segment DV
(smaller than AB) such that AB*= 2DV * .
However, we can easily modify this
construction to get what we really want, i.e.
DV such that DV * = 2AB®.

A specific beauty of this problem is that it -
allows us to produce two cubes in any ratio by
simply dividing the last right vertical segment
into two parts of the ratio we need. In the
above construction we had UD” = AB/2. In
the construction to the right, UD” = 2AB. We
can easily imagine the same construction
using some other proportions. <0

AB22.0107 in.
2-AB° = 16.257Nin°

O—>

A D D’ D"

The problem of duplication of a cube has quite a rich history. The number of its solutions is
incredible. Heath listed in his book more than twelve solutions by ancient Greek mathematicians
only. While reading the Heath book, one may have a feeling that ancient Greek mathematicians
held a kind of competition for solving this problem, and every day they were spending their siesta
time discussing and solving geometry problems.

We will finish the chapter on verging constructions by showing one very unusual example from the
Islamic world. It is closely related to the verging constructions, but it is not a verging construction
in the sense of the definition we formulated at the beginning of this chapter.

Islamic artists used a few techniques to develop their geometric ornaments. One of them was
dissecting a square, or a rectangle, into smaller pieces, and these pieces dissecting again, and again.
This way, design of the pattern would start from a very convenient shape that could be easily scaled
and replicated to cover a specified plane region. One of the methods of creating such a pattern was
based on the Pythagoras theorem (see [11]). The proof shown below in [11] is attributed to Abu I-
Wafa (940-998). However, this particular proof of the Pythagoras theorem was also known to the
Indian mathematicians of the same period of time.

EXAMPLE 7 CONSTRUCTION OF ISLAMIC ORNAMENT BASED ON THE PYTHAGORAS THEOREM

Start with a segment AB that is the intended side of the o / g
heptagon. D
Construct a square nABCD with side AB, and draw through

it a slant line starting from one of the corners, here it is point

B, and passing through the opposite side of the square. \(
From one of the neighboring points of B draw a line that is
perpendicular to the slant line. Point of intersections of these
two lines label as E.

The triangle AABE inside the square is a rectangular
triangle.

By constructing lines going through two the other vertices of
the square and parallel to the sides of the triangle AABE we
obtain a construction that can be easily used to prove the o)
Pythagoras theorem. / A /




Further divisions of obtained figures and replication of the
square can produce simple Islamic geometric ornaments.
Here we show one of such subdivisions.

The triangle AABE was created in such a way that segments
AE, and EH have the same length®. This means the
perpendicular sides of the triangle form ratio AE:EB = 1:2.
The segment EJ was obtained by bisecting angle <AEB.

By dividing in exactly the same way the three remaining
triangles we will develop a more complex pattern shown
below left.

The proportions of the right triangle are quite essential. If we
change them, then the pattern will have large, or small,
empty squares and may look quite unbalanced (below right).

EXAMPLE 7A (CONT.) E“ <
We can easily imagine some other divisions of the right \

triangles in this example. One of them is shown in the
picture to the right. In this particular construction
EF=FH and FH_LAB. This makes the sides AE and AH
equal and creates the possibility for further subdivisions,
this time the kite CAEFH. Unfortunately such proportions
cannot be obtained by a straightedge and compasses only
constructions. However, such proportions of the triangle
AAEB can be easily obtained using a verging

X

J

construction.

Before we describe such a construction, let us to note
that if EF = FH then AE = EK (quick proof: if EF=FH
then AE=AH=FN=EK). Therefore, we have to create a

K
é

right triangle with AE = EK. /A

o ©

* The right triangle with AE:EB=1:2 proportions can be easily created knowing that shorter side of the triangle is equal

AE = AB+\/5/5.



THE VERGING STEP

Construct a square 0ABCD with side AB.

Find center of the base of the square, point O, and
construct the circle o(O,0A)

Select a point on the opposite side of the square, point K,
and construct a line passing through K and
perpendicular to AB. Label the point of intersection of
this line with the circle o(O,0A) as E.

Draw a line passing through points A and E. This will be
the verging ruler. Point A will be the pole of the verging
construction.

Construct segment EU equal to EK. This will be the
diastema of our construction.

Finally, move point K until U=A. According to our L
earlier calculations we have obtained the required /‘RA 0 BT
triangle. “

The verging construction shown here was developed by one of the authors while writing this paper.
It is slightly different and much simpler than solutions shown in literature (see[11] ). One of the
peculiarities of this construction is that it looks like a verging construction but it is not a verging
construction in the sense of our definition. In a verging construction we require that the diastema
must have a fixed length. Here, the segment EU changes its length as we move the point K.

Creation of curves using verging procedures

A4

C
m<FOA = 61.2027°
m<COB = 21.3446°
m<FOA

=2.867
m<COB 86

Figure 1 Conchoid of Nicomedes obtained while developing trisection of an angle

In literature related to ancient Greek geometry and medieval Islamic geometry we can find more
examples of verging constructions. It is even more interesting to see what will happen if we trace
the locus of some points in verging constructions. For example the locus of the touch point P from
example 1 will draw a line that is a part of the curve known as conchoid of Nicomedes (see fig.1).
In fact the point that we created while making the verging construction is the point of intersection
of the conchoid Nicomedes with the circle. Ancient Greek mathematicians used verging procedures
to create such curves as the conchoid of Nicomedes, or even conic sections.

Nicomedes, in order to create his conchoid, developed a special device that uses the verging
concept and is able to produce an entire family of conchoids. The principle of this device is shown
in the figure 2. It contains two sticks ER and ES, both the same length (measured here by the length



of segment CD) and on the same line QE. Point Q is the pole and point E moves along the
horizontal line. The family of conchoids was obtained by changing the location of the pole Q.

O———()

\\\R C D

S

Q

K

Figure 2 Principle of a device to draw a family of conchoids of Nicomedes

We can easily check that the curve generated by the touch point of the diastema in example 6 is
also one of Nicomedes’ conchoids (fig. 3) and the curve generated by the touch point of the
diastema in example 7A is a modified form of a strophoid (fig.4). All these observations open a
door to constructing curves using verging or quasi-verging procedures. Both ancient Greek and
later medieval Muslim mathematicians were very creative in developing methods and devices to
draw various types of curves.

In this paper, we will cite one more example that follows from example 7A. Let us start with a
definition crated around 1670.

DEFINITION OF A STROPHOID
Suppose that we have a curve f, two fixed
points A and O (the pole), and line |
passing through O and intersecting with
f in the point K. The locus of points P
and Q such that PK = QK = KA is called T
a general strophoid. S y = f(x)

(o} -2+

Example 7A is very close to the sense of this definition (see fig. 4). The only difference is that we
do not have there a point A, but we have a line DC. The rest is the same. The results can be quite
interesting, depending on how the curve f looks and how points A, O and the curve f are located.
The graphs in figures 5, 6, 7 and 8 depict a few strophoids. In each of these examples, the length of
the diastema changes when we move point K.



Fig. 3 Locus from example 6 Fig. 4 Locus from example 7A.

EXAMPLE 8 STROPHOIDS

Fig. 5 Curve f is a line perpendicular to OA Fig. 6 Curve f is a slant line in respect to OA

Fig. 7 Curve fis a circle Fig. 8.Curve fis acircle, point A was replaced by line A




Linkages

The concept of linkages was developed quite late but its origins remain in ancient Greek geometry
and verging constructions. In verging constructions we had only one pole, one diastema and one
verging ruler. In linkages we may have a few poles, a few diastemas, and a few verging rulers. The
curves we create with linkages are more complex than those we created with a single pole and
verging procedures in the previous chapter.

Probably the very first linkage was created by James Watt (1736 —1819) while working on his
famous parallel motion project (year 1784). The objective was to produce a straight path out of two
rotational movements. The simplest form of the Watt’s linkage is shown in example 10.

EXAMPLE 10 WATT'’S LINKAGE
Bars O;P and O,Q have the same length, K is the center
of fixed-length bar PQ.

Application of Watt’s linkage in car suspension

In the Watt’s linkage we have two poles and two verging rulers, the two bars O;P and O,Q have
exactly the same length, points P, Q are free to move on the edge of a circle with center O; and O,
respectively. The bar PQ has a fixed length and its center K moves on what is supposed to be a
straight line. As we can easily see, the path of point K is almost straight on a short distance and this
was enough to apply this construction in many types of car suspensions.

EXAMPLE 11 CONSTRUCTION OF PEAUCELLIER CELL

The two points O and B are fixed (OB = a)

The two bars OX and OW have fixed length and

OX =0OW=h.

The four bars VW, VX, XY and YW have fixed length and
VW=WY=YX=XV=c

Point V moves along a circle with diameter equal to OB.

As a result of these constraints point Y moves along a straight
line perpendicular to the line OB.




The race to improve Watt’s linkage was quite obstinate and there were many interesting
developments along the way. However, the most successful linkage was developed in 1864, exactly
eighty years later, by the French officer and engineer M. Peaucellier. His linkage, known now as a
Peaucellier cell, became the source of a number of technical applications as well as developments
in mathematics and kinematics (see example 11).

One of the developments in mathematics closely related to the Watt’s linkage are so-called four-bar
linkages and coupler curves. The idea of the four-bar linkage is the same as in Watt’s linkage, but
the bars may have different lengths. This is all, but this minor change produced a large family of
curves that were classified by mathematicians, and their theory was developed.

Here is a brief idea of a four-bar linkage. We have:

1. A four-bar polygonal cycle

2. One of the bars is called a frame and it is a fixed part of the linkage
3. Another bar different than the frame is called a coupler

4. The whole device moves with respect to the frame

5. A coupler curve is a curve traced by a fixed point on a coupler.

EXAMPLE 12 CONSTRUCTION OF FOUR-BAR
LINKAGE AND A COUPLER CURVE

In this linkage
A’B = AB,
A’'C’ = AC,
B’D’ = BD,
C'D’=CD

K is the center of C'D’.

In mathematics any curve traced by a point on a linkage is referred to as a coupler curve. The
linkage can be extremely complex with many bars and even with many fixed points. Multiple
coupler curves are also discussed. The next example shows a linkage where 5 points are used to
draw coupler curves.

EXAMPLE 13 FOUR-BAR LINKAGE WITH
MULTIPLE COUPLER CURVES

In this linkage N
A'B = AB, N\
A°C’=AC, |
B’D’ = BD, | j )
C'D’=CD \
M]_Nl = Rlll.... \\ :\\ /// ///




It is obvious that research of linkages and coupler curves is quite important to the development of
modern technology. By analyzing coupler curves, we can tell if the movements of a particular part
of a device works according to our plans and needs. Analyzing coupler curves is also a way to
check if the movements of some points in a device are optimal for the person using it. For example
a bicyclist, or a rower on a boat, have to move their legs and hands in such a way that they will not
get quickly tired, and all movements will be optimal for their body.

Fig. 11Modern machinery uses extensively various types of linkages
(image from http://lefthandedcyclist.blogspot.com/)

Fig. 12 Construction of many types of gears is based on the same elements of moving geometry
invented and used by ancient Greek mathematicians

Gears

In a modern machinery we can find many parts that were constructed using ancient Greek moving
geometry. One example of this are various gears (see fig. 12). If we examine closely their shape,
we will find a number of well-known mathematical curves — epitrochoids, hypotrochoids, cycloids,
epicycloids, ellipses, spirograph curves, etc. Let us briefly take a closer look at some of them. We
will concentrate on a simple epitrochoid with only a few bumps. An epitrochoid is a curve created
by a point attached to a circle moving inside of another circle. The point can be attached to the
circle edge, or to its interior, or to a bar attached to the circle.


http://lefthandedcyclist.blogspot.com/

EXAMPLE 14 CONSTRUCTION OF AN EPITROCHOID alpha = [45.00000°
In this example we use two circles —a large one with the radius R and  -apha-3 = —135.00000°
a small one with the radius r=R/3.
The small circle is rolling inside the large circle without sliding.
Therefore, the length of arc BB’ is exactly the same as the length of
arc B’F.
Point G is attached to the ray C’F. Depending on the distance of
point G from the center of the small circle we can get a number of
various curves.
Below are shown three more types of epitrochoids:

1. LeftG=F

2. Middle GC’=2r

3. Right GC’ > 2r

alpha =45.00000° alpha =45.00000° alpha =145.00000°
—alpha-3 = -135.00000° —alpha;3=-135.00000° -alpha-3 = -135.00000°

While constructing gears one of the problems is to find how quickly they will wear out while
working. This requires to be able to find a tangent line (it shows the direction of the friction power)
and the normal line (the direction of the pressure power on a gear) to a point on the curve. Both
lines can be easily constructed.

EXAMPLE 15 TANGENT AND NORMAL LINES TO AN EPITROCHOID

Draw a straight line through the points G and B’. It can be proved that this line is normal to the curve in
point G. Draw a perpendicular line through the point G to the normal line GB’. This will be the tangent
line. The enclosed pictures show this construction for various points on the curve.

alpha = 34.00000° alpha = 50.00000° alpha ={190.00000




As we all know, parts of machinery are developed by various mechanical devices, where rather
mechanical constraints are used than a mathematical formula of a created object. Therefore, we can
think about a linkage that can be used to create various shapes of gears. One such example is shown
below.

EXAMPLE 16 A LINKAGE TO CONSTRUCT
EPITOROCHIDS

In this linkage points A and B are fixed points, all other
points are movable.

All blue/dark segments have fixed length. All gray segments
are rubber bands. The angle a changes from 0 to 360° (point
Q is used to simulate this change).

The parallelogram AEPF has fixed lengths of its sides equal
to the lengths of AD — ED and AC — FC respectively.

The vertex P of the parallelogram is used to draw the curve.
Depending on the lengths of segments DE and FC, different
shapes of an epitrochoid are obtained.

Summary

In this paper, we started from verging constructions in ancient Greek geometry. Then we explored
the way the concept of moving geometry developed throughout the centuries. We started from very
simple geometric constructions where one bar was moving along a line, or on a curve, and we went
to complex constructions, so-called linkages, where many, sometimes hundreds, bars are moving.
We explored also curves traced by selected points on our constructions (coupler curves). It is
obvious that research both of linkages and coupler curves is quite important to the development of
modern technology. By analyzing coupler curves we are able to tell if the movements of selected
parts on a device work according to our plans and needs. In Watt’s linkage it was important to
obtain a straight-line movement on a short distance. However, to produce a very precise straight-
line movement on a longer distance we needed a Peaucellier cell. In a modern bike it is important
for a bicyclist to have movements optimized so his energy while driving his bike will be not wasted
for unnecessary movements. Modern industrial robots need even higher precision of movements
and optimization of the number of parts and their shapes. All this creates a great need to explore
moving geometry.
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