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Abstract. The capabilities of graphing calculators are changing the way we teach as well as the content and 
scope of what is taught in basic mathematics. In the United States, following recommendations of the NCTM 
Standards, recursive procedures, traditionally excluded from pre-college mathematics, began to appear at 
different levels from elementary to introductory college courses. The ability to i) repeat an instruction or a set of 
instructions with a single keystroke, ii) to make the output of a calculation the input for the next, and iii) to be 
able to stop and analyze or modify an iterative process provides a tool of great interest from both the 
pedagogical and the practical point of view. At the elementary level modern elementary calculators, allow to 
easily define constant operations that can be used to discover patterns, to reinforce basic facts via the "guess and 
check" approach, to investigate the relations between basic operations or even their rate of growth, etc. It is 
however at the secondary level where recursive procedures, accessible via graphing calculators, have the 
potential for a major impact. In this presentation we show examples from different mathematical areas to 
illustrate (i) some recursive procedures, that can be easily implemented without programming, (ii) associated 
powerful mathematical models traditionally taught in upper levels to a selected group of students and now 
accessible at lower levels to most students, and finally (iii) how recursion, in some cases, provides an alternative 
problem solving approach less dependent on readymade formulas. 

 
I. Introduction 

For many decades, the teaching of mathematics had few changes in content or methodology.  
During the last twenty years, however, technology has been having an impact in the 
mathematics classroom at different levels; this is due, mainly, to two key developments.  On 
one hand, the advancements in computer algebra systems such as Mathematica, Maple, 
Derive, Matlab, that paralleled the dramatic increases in the speed and memory of personal 
computers, are having an effect on the workplace and upper level university studies.  On the 
other hand, scientific calculators were replaced in 1986 by the first generation of graphing 
calculators which included numerical and graphical capabilities.  The second generation of 
graphing calculators with true symbolic capabilities was born ten years later.  These 
calculators, relatively inexpensive, sturdy and portable, have been finding their way into the 
classroom.  In the United States, the initial endorsement for the use of computers and 
calculators in the mathematics classrooms appeared in the Curriculum and Evaluation 
Standards for School Mathematics (NCTM, 1989, 1991), and was later followed by other 
mathematical societies (MAA, 1990; AMATYC, 1995; NCTM 2000).  The integration of this 
technology in the teaching and learning of mathematics is promoting changes not only in the 
way we teach and asses, but also in the content and scope of what is taught in basic 
mathematics.  Some of the premises that in the past guided the selection of topics and 
algorithms traditionally taught are no longer valid.  Thus, iterative and recursive procedures 
that were excluded from school mathematics when programming was not required, began to 
appear in new books at different levels, from elementary to introductory college courses.  
From the beginning, the new high school curricula developed in the nineties (Core-Plus 
Mathematics Project, 1996, 1998; The University of Chicago School Mathematics Project, 
1992; The North Carolina School of Science and Mathematics, 1992) as well as new 



textbooks at the pre-college (Brown, 1992) and college levels (Ferguson, 1994; The North 
Carolina School of Science and Mathematics, 1996) included examples of iterative and 
recursive procedures and models whose solutions require the use of recursion. If in addition 
we consider that the price of hand-held graphing technology (HHGT) has since decreased 
while their capabilities have improved considerably, one might expect that fifteen years later, 
iteration and recursion would be a well established tool in precollege mathematics. However, 
our analysis of a large sample of precalculus textbooks in the last decade including the best 
sellers at the time (Quesada and Renker, 2008), showed that very little is done with iteration 
and recursion among other HHGT capabilities; at the same time that the preparation in this 
topic of pre and inservice teachers does not seem to be at the needed level (Quesada and 
Dunlap, 2011). In the USA, an increasing number of college graduates, particularly in the 
sciences and engineering, are expected to be familiar with a growing number of new 
technologies and of software packages and computer algebra systems; often, the fast pace of 
these changes, makes difficult to properly measure their impact, and to learn the best way to 
integrate them. 
 
Although graphing calculators such as the TI-84 include sequential functions, we will see that 
it is also possible to use iteration and recursion from the Homescreen thanks to two basic 
facts.  The first is the ability to repeat an operation with a single keystroke, which is the basis 
for iteration and has long been present in four-function calculators.  It should be noted that, as 
it will be seen in the examples, graphing calculators allow us to repeat a set of operations 
juxtaposed with colons.  Elementary calculators such as the TI-Explorer Plus, and the TI-73, 
allow for the definition of up to four constant operations that when used iteratively, provide a 
mechanism to discover patterns, to review basic facts via the "guess and check" approach, to 
investigate the relations between basic operations or even their rate of growth etc.  Clearly, 
iteration is an interesting tool from both the pedagogical and the practical point of view.  
Secondly, being able to make the output of a calculation the input of the next makes recursion 
accessible to anyone with a simple graphing calculator such as the TI-84.  In addition, the 
ability to manipulate different data types (such as matrices and lists) and to perform 
complicated operations with a single keystroke facilitates the introduction at the secondary 
level of important models relevant to business and industry that in the past were taught in 
upper level college courses.   
 
In the past (Quesada, 2007) we have used two criteria in order to decide if a mathematical 
model or tool should be considered to be taught at a particular level. First, one should 
evaluate how useful is the model or tool considered, in light of the variety and importance of 
applications that it can be used for. Secondly, one should establish how accessible is the 
degree of complexity of the concepts and calculations needed for the level where the model is 
going to be taught. To illustrate that iteration and recursion satisfy these criteria, in this note 
we present several examples from different areas of mathematics and for different students' 
levels, that exemplify: (i) iterative and recursive procedures, as well as, recurrence relations 
that can be easily implemented without programming, in the Homescreen; (ii) the existence 
of associated powerful mathematical models, traditionally taught in upper levels to a selected 
group of students, that become accessible at lower levels to most students; and finally, (iii) 
how recursion, in some cases, provides an alternative problem solving approach less 
dependent on ready-made formulas.  
   
The syntax used in the commands and the screens provided in all the examples correspond to 
a Texas Instruments TI-Nspire, but they can be equally implemented on simpler calculators 
such as the TI-84.  The screens included, sometimes in excess, will hopefully remove any 



doubts in reproducing the solutions provided. We make the convention of denoting by Figure 
i.r (i.l, i.t, i.b) the right (left, top, bottom) side of figure i, when the figure is split accordingly. 
 
A recursive procedure can be introduced as a repetitive process in which in each step, the 
input value for any variable(s) is the output value(s) of the variable in the preceding step. 
Therefore, any recursive procedure starts by assigning initial values to the variables involved; 
this first step is called the initialization. After that, all is needed is the “command line,” which 
consists of a command or a sequence of commands concatenated by colons, specifying how 
each variable changes. In some cases, recursion can be seen as the “divide and conquer” 
approach. This is the approach in which the solution to a problem is stated in terms of the 
solution to the same problem with smaller size. For example, finding n! is the same as first 
finding (n-1)! and then multiplying this result by n. That is, the solution to the larger problem 
is expressed in terms of the solution to a smaller one.  
 
We have selected different areas in mathematics and one or more examples within each area, 
to illustrate the use of recursion in number theory, convergence, modeling, and solving 
equations. 
 

II. Applications to Number Theory 
Number Theory is a rich area for iterative procedures.  In our first example we have included 
a couple of representative algorithms, the first of which we have used to introduce the process 
of recursion for pedagogical purpose, since students are familiar with the recursive definition. 
 
Example 1. Write a recursive calculation of !, {0},a a∈ ∪� in the Homescreen. 
Solution. The factorial of a non negative integer a is defined recursively by 
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As seen in figure 1.l, both the variable a representing the current value, and the variable f that 
stores the result, are initialized with 1.  The second statement is a description of how the 
variables are modified using as input the output of the previous step, followed by a list with 
the two variable names. Using the list allows for the value of both variables to be displayed at 
each step, for otherwise only the last value calculated will be displayed. Each time the 
students hit the enter key, the commands contained in the “command line” are executed and 
the value of the number in turn with its factorial are displayed.  
 
When solving equations graphically, knowing the relative rate of growth within and between 
families of continuous functions helps to recognize the existence of hidden solutions. Hence, 
it is important to make students realize how fast the factorial function grows, and having 
them comparing and contrasting their growth with that of the other continuous functions they 
are familiar with. 
 
Our second example deals with the calculation of a square root using continuous fractions. 
This is a topic long gone from the curriculum, but a good example for recursion that some 
added interest now that the algorithm to calculate the square root has disappear from the 
curriculum. 
 
Example 2. Find 39 using continuous fractions. 



Solution. Let 239,  then 36 3,  hence (x-6)(x+6)=3x x= − = , and it follows that  
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As figure 1.r illustrates, the implementation in homescreen is obtained by first initializing the 
variable Ans with 6, and then letting Ans take the place of x, i.e., writing  
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Figure 1 
 

III. On Convergence 
Many of the important ideas from calculus arise from approximation problems, and the key 
concepts are better understood using convergent sequences that, as the next example 
illustrates, can be easily calculated via iteration. In the past we have consistently found 
students in the Advance Calculus course capable of calculating traditional limits, but lacking 
the basic conceptual understanding. We have conjectured that this may be the result of not 
exposing these students to a numerical approach for determining limits. 
 



In this section we show examples to illustrate that recursion can be used to rapidly analyze 
the local and global behavior of a function.  

Example 3. Explore the behavior of 
2

( )  as 2.
3 1

x
f x x

x

−
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− −
 

Solution. With precalculus students that have not had much numerical experience, we have 
found it advisable to start analyzing numerically the behavior of functions near a given value 
using sequences that converge to the value from the left and from the right via the Table.  
Initially, as seen in figure 2.r, we use fast sequences such as 10 np −± . later on, we ask 
students to use slower sequences such as 2 .np −±  It seems that this arbitrary approach to a 
given real number from either side, so easy to implement now thanks to the data type Table, 
helps students to better grasp the ideas of approaching to a given value.  

 

 
Figure 2 

 
Students seem to have no difficulty using the table to analyze the behavior of a function at a 
given value a, by observing the successive values of the function for each term of these 
sequences converging to a from either side, as seen in Figure 3.r.  It is always important to 
call the students’ attention to the fact that the graph of this function (Figure 2.l) seems to be 
continuous at 2, yet this value is not in its domain. 
 
Once students have had enough "hands on" experience using the Table, is easy to introduce 
the use of a recursively defined sequences to analyze the local behavior of a function.  For 
convenience, as seen in Figure 4, instead of approaching 2 first from one side and then from 
the other, we have chosen to display, via a list, the two sequences (2 10 )nf −± obtained when 

2x → from both sides. 
 
Our next example deals with the global behavior of a function. 

Example 4. Investigate the behavior of 
2

2 3( )
3 5
xf x
x
−

=
+

as .x → ±∞  

Solution. To study the global behavior of f(x) as x approaches infinity, we let x take on the 
terms of any divergent sequence.  Figure 3.c shows that, in this case, we have chosen 



{ }10 .n± The students can compare their answer with the decimal value of the closed form 

solutions 2 / 3± .   

 

Figure 3 
 
In Figure 4.l, the students can see that the graph of the function approaches the horizontal 
asymptotes 2 / 3y = ± . The middle column in the table (Figure 4.r) shows that 
as x →∞ (2 / 3) ( ) 0,f x− → confirming numerically that the function approaches 
arbitrarily 2 / 3 as .x →∞  Finally, after initializing n, the command line that is iterated 
consists simply in multiplying n by 10 and evaluating the function at the new value of n 
obtained (Figure 4.b).  

 



Figure 4 
 

A word of caution is in order, namely, some students will easily exceed the precision of the 
calculator or computer when using this approach with the subsequent truncation errors.  This, 
of course, provides an excellent opportunity to reinforce both the importance of the precision 
of the tool being used, as well as the inherent limitations of technology, however advanced it 
may be.   

When the algebraic approach to the study of limits is formally introduced in calculus, 
students who have been previously exposed to the numerical approach, use it to get a sense of 
what the answer should be and/or to test their solution.  It has been reported that the ability to 
double-check their answers seems to be of utmost importance to the students (Quesada, 
1994). 

In addition to analyzing the behavior of individual functions, at the precalculus level, students 
can start to compare the growth of different functions using this iterative approach (Demana 
& Waits, 1993). They may investigate for example the behavior of 6 / xx e  as ,x →∞ and 
determine which of the two functions grow faster. 

IV. Iterative methods to Solve Equations 
No selection of basic recursive procedures would be complete without a reference to solving 
equations via recursion. For the sake of brevity we have chosen only Newton’s algorithm and 
the bisection's method because of their opposite converging speeds.    
 
Example 5. Solve sin( / 4)x x π= − using: i) Newton’s algorithm with an error 510ε −< ; and ii) 
the bisection algorithm. 
Solution. As shown in Figure 5.l we consider the function ( ) sin( / 4)f x x x π= − − . First, a 
starting value close to the solution sought is determined by looking to its graph, in this case 
the value 1.2 is chosen to initialize 1.x Then its derivative is calculated, and the command line 



following the traditional algorithm is written as 1
2 1 2 1

1

( ) ,
'( )

f xx x x x
f x

= − → . The added 

instruction 2 1 ,x x ε− → allows the user to stop when the precision sought is reached. Students 
appreciate how fast this method converges when they compared with any of the other basic 
methods (Picard, secant,…), but in any case it is important to remark that as seen in Figure 5.l 
the result does not change after only four steps, i.e., when for the 1st time all the decimals of 
the solution remain unchanged. 
 
A group of honor students can be challenged to do a recursive program for the bisection 
method. As before a small interval, (-1.2, 0), containing the root sought is determined 
graphically. Then the coordinate m of the midpoint of the starting interval is determined, and 
the “if-then-else” command, available in the TI-Nspire, is used to decide in which endpoint of 
the interval in turn, the function has the same sign as f(m) (Figure 5.r). This end point is then 
replaced with m.  
 
In the case of the TI-84, where inequalities are evaluated with 0=false or 1=true, one can 
take advantage of the Boolean constant k to decide which half of the current subinterval 
contains the zero using the command line: 
 

((l+r)/(2))→m:f(m)*f(l)>0→k:k*r+(1-k)*m→r:k*l+(1-k)*l→l:{l,r,r-l} 
 

Figure 5 
 

V. On Modeling Population Growth 
Example.   
1.  It has been estimated that the rate of growth of the population in a southern Canadian town 

during the last ten years has been of 6% per year.  If the town currently has 
20,000 members, what will be its size in four years assuming the same rate of growth?  
When will the population double? 



2.  After three years of steady growth, some changes on the environment reduce the growth to 
4%, what will be the size of the population one year later?  

3.  Suppose that in addition to the initial population of 20,000 and rate of growth of 6% an 
average of  600 immigrants is settling in the community at the end of every year.  What will 
the population be in three years? 

4.  Let the initial values of the population, the rate of growth and the amount of incoming 
immigrants be unchanged.  If now the rate of growth begins to increase at a rate of 0.25% 
every year, what will the population be in four years?  If in addition to an increase in the 
population rate, an annual decrease of 3% on the average of immigrants is expected, what 
will the population be in ten years?  

5.  Finally, if all the conditions in part four remain, estimate how long will the population 
take to reach between 110,000 and 120,000. 

 
Solution.  As figure 6.a illustrates, in a simple recursive approach, the variable Ans (that saves 
the result of the last calculation performed) can be used to store the amount at the end of each 
step; this becomes the basis for calculating the result in the next step.  The process, as seen in 
figure 6.a, can be refined to include the variables p for population and t for time.  After these 
variables are initialized, the body of the recursive process is inputted as the line of 
commands.  It consists of the equations to update the values of the variables.  The last 
calculation shows that it will take 12 years for the population to double, which confirms the 
rule of 72. 
   
The answer to the second question, found in figure 6.b, illustrates how the discrete nature of 
the process facilitates a recall from the stack of commands (via copy and paste in the TI-
Nspire) and an update of the rate of growth in the recursive equations before continuing the 
iteration.   
 

Figure 6.a Figure 6.b 
 
Similarly, to answer the third question, the initialization command is first recalled and 
executed, then the body of recursive equations is recalled and the amount of yearly 
immigrants, namely 600, is added to the calculation of p (see 2nd part of figure 6.b). 
 



Figure 7 

The first part of question four requires the introduction of a new variable r for the changing 
rate of growth. Figure 1.c illustrates the initialization of r and the necessary updates for the 
recursive equations.  Next, the amount of immigrants becomes variable in the second part of 
question four, hence, a new variable a and the corresponding updates for a in the recursive 
equations are introduced (Figure 1.c). 
 
Clearly, the equation depicting the solutions to the last part of the problem will be 
complicated for secondary. However, it is possible to get an estimate of when the population 
will reach some given amount. For this, we look at the scatter plot of a set of the (time, 
population) values obtained and determine the regression curve that best fit the data, in this 
case as expected is an exponential function (Figure 8.t). Finally, as seen in Figure 8.b, we 
have estimated the answer graphically by intersecting y=115,000 with the graph of the 
exponential function obtained.  
 
Several remarks are in order.  First, the simplicity of this approach is striking when contrasted 
with the algebraic equations traditionally needed to find the solution, particularly of question 
four.  Any doubts about this can be easily overcome by obtaining the equations needed for 
question four, and then comparing the level of algebraic sophistication used with that needed 
to obtain the recursive solution using this approach.  Secondly, it has been said that to be able 
to write a program to solve a problem, one must have a good grasp of the solution.  In order 
to solve a problem recursively, the student needs to identify the variables involved, their 
initial values, and the rules by which they change; just as they would need in order to write a 
program but with a minimal amount of syntax. Finally, the discrete nature of the iterative 
process facilitates the analysis, testing and modification of the solution.   
 

 



 
Figure 8 

 
This approach can be used to analyze the growth of any population; but, it is not surprising 
that many secondary students are particularly interested when studying the growth of money 
under compound interest. As in the previous problem one may introduce variable yearly 
deposits as well as changing interest rates. 
 

VI. Conclusion 
The examples shown in this paper were selected to give a sense of the possibilities for using 
iteration and recursion throughout the mathematics curriculum at different levels.  They 
certainly do not exhaust the topic; recursive solutions to systems of equations, Markov 
chains, recursive relations, fractals, and many others, can be easily found through the 
curriculum.   
    
Familiarity with iterative/recursive techniques will provide students with four main benefits.  
First of all versatility, since as we have seen, these tools can be used to solve a great variety 
of problems in different areas.  Secondly, the accessibility to powerful models traditionally 
taught at upper levels to students of basic mathematics.  Thirdly, as we saw in the last 
example, they can provide a simpler alternate problem solving approach.  Last but not least, it 
is a good pedagogical tool since allows to easily analyze, test, and modify a solution. 
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