
Influence of using KETpic graphics on
the development of collegiate students’ proof schemes

Masataka Kaneko
nkaneko@inc.kisarazu.ac.jp
Fundamental Research

Kisarazu National College of Technology
292-0041
JAPAN

Setsuo Takato
takato@phar.toho-u.ac.jp
Pharmaceutical Sciences

Toho University
274-8510
JAPAN

Abstract

Results of our questionnaire survey and textbook research in Japan show that the use of
graphics in printed class materials and textbooks tends to be reserved. One reason is that
many teachers are worried that using specific figures captures students’ deductive reasoning
about mathematical conceptions and obstructs students’ appreciation for generality. In the
case of proofs, which are typical mathematical activities related to generality, this seems to
have become a severe problem. This paper presents the manner in which geometric models
might be effective in students’ shaping the conception of proof using some examples. The
approach is based on the classification of students’ proof schemes proposed by G. Harel.
Results show that Harel’s classification should be improved. The graphical device used
to produce figures described in this paper is KETpic, which is a macro package designed
for a computer algebra system to generate high-quality graphical images in high-quality
mathematical documents edited using LATEX.

1 Introduction

According to the results of our questionnaire survey and textbook research in Japan, the use of
graphics in printed class materials and textbooks tends to be reserved ([5]). One reason is that
many mathematics teachers might believe that using specific figures can pose an obstacle pre-
venting many students from appreciating the generality aspects of mathematical conceptions.
For example, the use of graphics in a “proof” can pose a severe problem because a proof is a
typical mathematical activity concerned with generality. Moreover, as reviewed in [1], results of
many previous studies have indicated that the complex character of proofs engenders teachers’
inadequate approach to them and students’ inadequate appreciation for them. Despite these
difficulties, many previous reports in the literature have recommended that proofs be taught
to all students and in all mathematics courses ([2][4]). To establish a promising framework
for teaching proofs, Harel ([1]) classified students’ cognitive schemes related to mathematical
proofs. Some aspects of this classification are reviewed in section 3.



This paper illustrates how geometric models (or graphical devices to produce their percepti-
ble images) can be effective in students’ shaping the conception of proof, with respect to Harel’s
classification described above. The authors seek to show that using appropriate geometric mod-
els can promote the development of students’ proof schemes with minimal obstruction of their
appreciation for generality.

The graphics described in this paper were produced using KETpic which we have been
developing. KETpic is a macro package designed for computer algebra system (CAS) to generate
high-quality graphical images (for use with CAS) in high-quality mathematical documents
(edited by LATEX). Our survey results show that more than 70 percent of collegiate mathematics
teachers in Japan use LATEX to edit their teaching materials, and minority of them frequently
insert graphics into their materials. Many respondents to our questionnaire reported that they
feel inconvenience in using existing devices for inserting graphics into LATEX documents. It is
expected that KETpic will serve as a convenient tool for that purpose.

KETpic is applicable to CASs such as Maple ([9]), Mathematica ([11]), Matlab ([10]), Scilab
([8]), and R ([6]). The corresponding libraries and some interesting examples and documenta-
tions are freely downloadable at the URL http://www.ketpic.com.

2 Brief Introduction to KETpic

When inserting graphics into LATEX documents, a graphical editor is usually used to gener-
ate artwork. Then the resulting image file (formatted in such as EPS file) is invoked from
LATEX. This method causes some inconveniences such as large file size. To alleviate these in-
conveniences, we have developed KETpic which generates LATEX readable code for high-quality
mathematical artwork with the aid of CAS.

2.1 Procedure of KETpic drawing

The procedure is presented in Fig. 1.
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Figure 1 The KETpic cycle.

In step I, we load the KETpic package into Scilab with the following command lines.

Ketlib=lib(’<folder name>:/ketpicscil5/’);

Ketinit();



In step II, plot data of the objects we want to draw are generated with Scilab-embedded KETpic
command lines, as shown below.

Fd=list(’Z=cos(X)*sin(Y)+exp(-(X^2+Y^2)/0.3)’,’X=[-3,3]’,’Y=[-3,3]’):

S1=Sfbdparadata(Fd); // Data of ridgelines and edge lines

W1=Wireparadata(S1,Fd,10,10); // Data of wire frames

In step III, the plot data are formatted into Tpic specials codes and stored in Tpic file named
“fig.tex”. Some accessories are also added. The command lines are as follows.

Openfile(’<folder name>:/fig.tex’);

Beginpicture(’’);

Drwline(S1,2); // ‘2’ denotes the curve thickness

Drwline(W1);

Endpicture(0);

Closefile();

In step IV, “fig.tex” is input into LATEX document using the following LATEX command lines.
\usepackage{ketpic}

\begin{document}

\input{fig}

\end{document}

Then, after the compilation, we obtain the following Figure 2.

Figure 2 Resulting figure.

2.2 Features of KETpic drawing and comparison to other devices

The KETpic drawing has some remarkable features, as listed below.

1. Manipulations of the figure can be performed easily on the user’s demand.
2. Because of using CAS, KETpic drawings are precise in terms of their shape and length.
3. Rich mathematical expressions (with the same quality as that in LATEX documents) and

various accessories (such as hatching, shading, and arrow lines) can be inserted easily.
4. The Tpic file size is astonishingly small compared to their image file counterparts. For

that reason, they are suitable for fast web-tech-based communication.
5. 3D-graphics can be drawn with precise shape. The function of hidden line (or surface)

elimination endows 3D-graphics with rich perspective ([7][11]).

As Figure 2 shows, a surface drawing of KETpic includes some extra features. One feature is
that it is not a painting but a monochrome line drawing. Moreover, KETpic represents surfaces
using only ridgelines and edge lines. Consequently, the figure quality is maintained when they
are copied. Furthermore, it will be easier for students to grasp the global shape of surfaces
compared to the case of CAS drawing (see Figure 3).
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Figure 3 Mathematica counterpart of Fig. 2.

Although students would be able to grasp the local surface structure by seeing Figure 3 on a
computer display, the global structure seems to be difficult to view. Moreover, it is extremely
difficult to guarantee the quality of this figure when it is copied to mass printed (monochrome)
materials. Therefore, such surface drawings will be inadequate for educational purposes.

3 Classification of Proof Schemes by Harel

As described in the Introduction, G. Harel classified students’ proof schemes using the classifi-
cation summarized in the following Table 1. This classification is not of proof content or proof
method but of the cognitive stage and intellectual ability in students’ mathematical develop-
ment. Although these schemes are not mutually exclusive, those in the lower rows are regarded
as more sophisticated and developed than those in the upper rows. In this section, among these
proof schemes, we review only those which are related to the context of this paper.

Table 1 Harel’s proof scheme classification

External Conviction

Empirical

Analytical

Ritual

Authoritarian

Symbolic

Inductive

Perceptual

Transformational

Axiomatic

Internalized

Interiorized

Restrictive

Intuitive Axiomatic

Structural

Axiomatizing

Contextual

Generic

Constructive

One is the Empirical proof scheme in which “conjectures are validated or subverted by
appeals to physical facts or sensory experiences”. One subcategory is an Inductive proof scheme
in which “students ascertain and persuade others about the truth of a conjecture by evaluating
it quantitatively in specific cases”. The other subcategory is a Perceptual proof scheme in which



“students convict and persuade the truth of a conjecture through perceptual observations which
are made by choosing variable objects”.

The other is the Transformational proof scheme in which “students validate conjectures
using logical deductions involving mental operations on objects and anticipations for the oper-
ations’ results”. Such operations are motivated by the need to consider the generality aspects of
the conjecture. At its most primitive level (Internalized proof scheme), the students translate
the given question into well-understood model. In the next level (Interiorized proof scheme),
the students reflect their reasoning in the internalized stage and formulate their underlying
structure as a general method of proof. In the last level (Restrictive proof scheme), students
are captured by their specific mental images, although their deductive reasoning is potentially
applicable to general cases.

Structural proof scheme “by which one thinks of conjectures and theorems as representa-
tions of situations from different realizations that are understood to share a common structure
characterized by a collection of axioms (or definitions)” is highly sophisticated. In our previous
work ([5]), we showed that using an appropriate geometric model can be helpful for students’
development into this proof scheme.

4 Using Graphics to Develop Students’ Proof Schemes

In this section, we present some examples of using graphics in the processing of proofs. The
presumable influence of such graphics use on the development of students’ proof schemes will
be analyzed.

Example 1. Convexity (the case of linear algebra).

First, we consider the proof of the following proposition.

Presuming that A is a positive definite symmetric matrix and k is a positive
number, then the closed domain D = {x ∈ Rn|(x,Ax) ≤ k} is convex.

Because a (high-dimensional) Rn model is used, students can not perceive the actual objects
to support their reasoning. Therefore, their deduction should be based not on geometric
intuition, but on symbolic transformations. In fact, the usual mode of proof is the following.

Because A is a positive definite symmetric matrix, the inequality
(x, Ax) + (y, Ay) ≥ 2(x, Ay) (∗)

holds for any vector x and y. It suffices to show that
λx+ (1− λ)y ∈ D

for any elements x,y ∈ D and any number in 0 ≤ λ ≤ 1. In other words,
we must show that the inequality

(λx+ (1− λ)y, λAx+ (1− λ)Ay) ≤ k
holds for any x and y which satisfy the inequalities (x, Ax) ≤ k, and
(y, Ay) ≤ k. For such x and y, (x, Ay), ≤ k holds by (∗). Therefore

LHS = λ2(x, Ax) + 2λ(1− λ)(x, Ay) + (1− λ)2(y, Ay)
≤ λ2k + 2λ(1− λ)k + (1− λ)2k
= {λ2 + 2λ(1− λ) + (1− λ)2}k
= {λ+ (1− λ)}2k = k

Consequently, the proposition is proved.



The process of deduction presented above is sufficient and applicable to general inner
product space. It can therefore be regarded as being in a structural proof scheme. However,
this proof seems not to enable students to grasp the relation between surface symbolic
transformations and the underlying geometric structure. In other words, the reason why
the proposition is true can not be understood easily through this proof. Therefore, especially
for students with weak mathematical skills, this proof might serve that in the symbolic proof
scheme (which is a primitive stage in students’ mathematical development). Based on this
consideration, we give the following geometrical proof in which graphics play a crucial role.

Because A is a positive definite symmetric matrix, we can choose an orthonormal
basis v1, · · · ,vn of Rn composed of the eigenvectors of A corresponding to positive
eigenvalues λ1, · · · , λn. Any x ∈ Rn can be represented uniquely as

x = x1v1 + · · ·+ xnvn

and the following equalities hold.
Av1 = λ1v1, · · · , Avn = λnvn

Therefore, because of orthonormality, we conclude that the condition (x, Ax) ≤ k
is equivalent to λ1x

2
1 + · · · + λnx

2
n ≤ k. Consequently, what must be shown is the

following.
If λ1a

2
1 + · · ·+ λna

2
n ≤ k, and λ1b

2
1 + · · ·+ λnb

2
n ≤ k,

then λ1(λa1 + (1− λ)b1)
2 + · · ·+ λn(λan + (1− λ)bn)

2 ≤ k
As might be readily apparent, this n-dimensional problem can be reduced to a one-
dimensional problem:

If a21 ≤ k, b21 ≤ k, then (λa1 + (1− λ)b1)
2 ≤ k.

This inference can be validated directly by observation of Figure 4.

a1 b1
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λa21 + (1− λ)b21

(λa1 + (1− λ)b1)
2

λa1 + (1− λ)b1

x

y

O

Figure 4 The figure, which is primitive but essential.

Through this example, students will appreciate the importance of considering the basis
change and its influence on representation matrix because they translate an invisible problem
into a visible one. Consequently, the use of graphics can be expected to motivate the
“interiorization” of the students’ proof scheme. Furthermore, using the same quality of
mathematical expressions in figures as in the text makes it easier for students to compare
symbolic expressions and geometric structures.



Example 2. Constrained extremum (The case of multivariable calculus)

Next we consider the proof of the following theorem.

Under constraint g(x, y) = 0, presume that the function z = f(x, y) takes
its extremum value at (x0, y0). Then, at this point, the following equality
holds.

gx(x0, y0)

gy(x0, y0)
=

fx(x0, y0)

fy(x0, y0)

The usual proof is not geometric but symbolic, as shown below.

Using the implicit function theorem, the differential of the curve g(x, y) = 0

is computed as
dy

dx
= −gx

gy
. Function z = f(x, y), restricted to the curve

g(x, y) = 0, can be regarded as a function of only one variable x. Then, by
the formula of differential for composite function, its differential with respect
to x is computed as

dz

dx
= fx + fy

dy

dx

At the extremum point (x0, y0),
dz

dx
must be 0. Therefore the following holds:

fx − fy
gx
gy

= 0

This leads to the conclusion.

This proof might raise a difficulty similar to that shown for Example 1. Moreover, in our
experience, it is not so easy for many students to grasp the situation they must consider.
Therefore, we can offer the alternative geometric approach, as described below.

First, we show Figure 5 to support students’ cognition using 3D-graphics capability of
KETpic. Here we choose a simple example in which

g(x, y) = x+ y − 3, f(x, y) =
√
xy + 0.5.

z = f(x, y)

g(x, y) = 0

Figure 5 Figure used to support students’ cognition.



Then we give the following geometric proof.

We must search for the point of extreme height in the thick curve in Figure 5. As
Figure 6 shows, at such extreme points, the thick curve is expected to be tangent to
a curve on the graph of z = f(x, y) with some constant height.

Figure 6 Essential figures.
Because contours of z=f(x,y), f(x,y)=c for some c, is tangent to g(x,y)=0. In other
words, the gradient vector ∇f(x0, y0) is parallel to ∇g(x0, y0), or ∇f(x0, y0) =
λ∇g(x0, y0) for some scalar λ, the proposition is validated.

Because the figures shown above portray only one simple example, the proof presented above
might be regarded as a perceptual one. However, using more general examples might prevent
students from easily understanding the fundamental geometric structure of the theorem.

Example 3. Stochastic variable change (The case of probability distribution)

Finally, we consider the proof of the following proposition.

Presuming that a smooth function y = f(x) transforms the probability
distribution p(x) with respect to a stochastic variable x to the probability
distribution q(y) with respect to another variable y, then if y = f(x) has
several (local) inverse functions xi = ϕi(y), the following equality holds.

q(y) =
∑
i

p(ϕi(y))
dϕi(y)

dy

Because the schematic situation is similar to those presented in the previous examples, we
omit the detailed proof and instead give some comments related to the graphics used in the
process of proof. First, we remark that the probability distribution (z = p(x), q(y)) is of
different character from the stochastic variables x, y. Therefore, we needed to use the 3D
graphics as shown in Fig. 6. Furthermore, we remark that this figure must be drawn so
that the following conditions are satisfied.

(1) z = p(x) is the composite of z = q(y) and y = f(x). Therefore, the hatched regions
in the figure must have the same “height”.



(2) The area of the hatched region in yz-plane (indicated as q(y)dy) must be the same
as the total area of hatched regions (one of which is indicated as p(x)dx) in xz-plane.

z = q(y)

dy

q(y)dy

z = p(x)

y = f(x)
dx

p(x)dx

x

y

z

Figure 7 Stochastic variable change.

As shown in the previous examples, the specific choice of simple functions as q(y) and f(x)
seemed to obstruct students’ development beyond perceptual proof scheme. Therefore, we
used a similar figure which had been drawn by hand, in which the shape of graphs was
complicated. Nevertheless, it was not easy for us to draw figure in which the conditions
described above are satisfied. Moreover, lack of precision raised some confusion in some
students’ reasoning. Use of the KETpic capability for generating precise graphics enabled
us to provide appropriate figures for students. Moreover, by presenting this figure in printed
material, students were able to use it to reflect repeatedly upon the meaning of the
proposition.

5 Concluding Remarks

The examples presented in this paper indicated that the students’ ability to access the structure
of proof content and the students’ appreciation for the generality of proof method present a
tradeoff relation. Although the use of simple figures (or geometric models) helped students
to grasp the structure of proof content, it might prevent students from developing their proof
schemes beyond an empirical level.

In that sense, some improvement (or reorganization) is necessary in Harel’s classification of
proof schemes from the perspective of graphics use. The KETpic scheme is expected to provide



appropriate environments for this improvement because it enables both the intensive use of
mathematical expressions (by virtue of the use of LATEX) and the flexible use of mathematical
artwork (from the use of CAS).
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