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Abstract:  In this paper, we share some observations we have made in some of our courses. We give some examples 

that increase students’ interest when given an opportunity to use some mathematics software exploring some concepts 

in the course content. For studying group action, which is one of the standard mathematical topics in algebra, we give 

some data to students and ask them to produce their own conjectures. Results show that our students are more willing 

to prove their own conjectures and eagerly try to explain them.  

      

1.  Introduction 
      

Like many universities, our undergraduate students take some selective courses, especially in 

their last year, to specialized fields of their interest. Then, they are asked to prepare a thesis 

concerning the content of courses. In the defense of their theses, a measurement and evaluation of 

students’ understanding of the subject is carried out. Two of these selected courses, at both of 

Karadeniz Technical University and Rize University, are Discrete Groups and Hyperbolic 

Geometry. We use Jones & Singerman’s book [6] for the first and Anderson’s book [1] for the 

second. Until recently, the content of the lessons has been theoretical and practical applications 

have not been discussed too much. After recognizing this shortcoming, we decided to provide some 

examples of our research topics that are easy to understand.  

 

2.  Course Structure 
      The history of non-Euclidean geometries is well known. Classic-Euclidean geometry is based 

on five basic axioms. Many attempts have been made to prove the fifth postulate, known as 

Playfair’s axiom, from the others, but it is understood that the fifth is free from the other four. So, a 

lot of new geometries were born based on different versions of the fifth postulate. At this point, we 

talk about the Erlangen program and Klein’s very famous description about new geometries. Klein 

proposed an idea that all these new geometries are just special cases of the projective geometry, as 

already developed by Poncelet, Möbius, Cayley and others. With every geometry, Klein associated 

an underlying group of symmetries. For example, lengths, angles and areas are preserved with 

respect to the Euclidean group of symmetries. In pedagogic terms, the program became 

transformation geometry. For a geometry and its group, an element of the group is sometimes 

called a motion of the geometry [2]. In our lessons, after this beginning, we focus on transformation 

groups (especially PSL(2, )  and Möb( )H ) and their properties. Our subsections are as follows: 

 Topological Groups 

 Topological Transformation Groups 

 Investigate properties of PSL(2, )  and Möb( )H  

 Geometric Classification of Aforementioned Groups 

 Explanation the fact that basic geometric materials (where we mean vertex, edge, area) are 

invariant under the action of transformation groups 

mailto:tkor@ktu.edu.tr
mailto:ahikmetd@ktu.edu.tr
mailto:mbesenk@ktu.edu.tr,
mailto:bahadir.guler@rize.edu.tr


 Modular Group and Its Subgroups 

 

For learners to have deeper understanding of the “action”, in our opinion the fifth and sixth 

subsections are very important which arose in the defense of thesis. Some concepts in these 

sections can be supported by using mathematics software instead of giving theorems only. 

Visualizing abstract mathematical structures such as non-Euclidean is difficult, although not 

impossible. Standard Euclidean models for non-euclidean geometries, such as hyperbolic and 

elliptic geometry, have been developed over the last century to provide visual support for those 

trying to understand the geometries [9]. 

 At this point, we also investigate some group actions in the spirit of the theory of permutation 

groups and how some graphs arise from these actions. For us the most useful example is the action 

of a modular group on the extended rational numbers. Whenever we mention it in class, we notice 

that it catches the attention of the students. In addition, such a study gives an opportunity to 

consider many elementary methods in several areas of mathematics: number theory, group theory, 

graph theory, hyperbolic geometry and combinatorics. Of course, the introduction of these concepts 

was a difficult challenge for the students at the beginning. But we advocate replacing background 

knowledge with the use of some new technologies in these topics. In our opinion, in this way our 

students experience the mathematization process experimentation, conjecture and 

explanationmore effectively. First, they produce the conjecture by means of empirical 

verification. Then, they were willing and eager to explain why the conjecture was true by them.  

 We give two examples as follows. 

Example 2.1   We give our students some properties of Farey Graph obtained by the action of a 

modular group on the extended rational numbers. The following is a theorem from the content: 

Theorem 2.1   [4], [7], [8] Let r s  and x y  be reduced rationals. Then the following three 

conditions are equivalent: 

 i. r s  and x y are adjacent vertices in Farey Graph; 

 ii. 1ry sx   ; 

 iii. r s  and x y are adjacent terms in Farey sequence.  

 

 Here, for each integer 1m  , the Farey sequence- mF of order m consists of all rational numbers 

x y with y m , arranged in increasing order. For example 4F  is: 

 

1 1 1 1 1 2 3 5 4
, , ,0,  ,  ,  ,  ,  ,1  ,  , , 

3 4 4 3 2 3 4 4 3
   

 

 The proof of this theorem requires much more background than provided in this level of the 

course. However, to visualize the graph, we have represented the edges of the graph as hyperbolic 

geodesics in the upper half plane; that is, as Euclidean semi-circles or half-lines perpendicular to . 

Students know that two vertices r s  and x y can be combined by an edge if the condition 

1ry sx    is satisfied. The first task for our students is drawing this shape. Here, we suppose 

that 0 , 1
r x

s y
  . For simplicity we restrict these Farey sequences to  0,1mF  . So, we have: 



 1 0,1  :                                    
,

  0 1F  

 2

1
0,1  :                                  0 1

, ,2
F   

 3

1 1 2
0,1  :                           0 1

, , , ,3 2 3
F  

 4

1 1 1 2 3
0,1  :                   0 1

, , , , , ,4 3 2 3 4
F       

 5

1 1 1 2 1 2 3 3 4
0,1  :    0 1

, , , , , , , , , ,5 4 3 5 2 3 5 4 5
F          

                                                                      

 

 To draw the Farey graphs (with respect to the value of m ) for the associated mF - Farey sequence 

 1m  , we use an algorithm which generates the monotone increasing kF - Farey sequences 

 1 k m  . The MATLAB code for this algorithm is provided as follows. 

 

Program 2.1  
function fareygraf(m) 

F=0; 

format rat 

for i=1:m 

   for r=0:i 

     for s=0:i 

        for x=0:i 

            for y=0:i 

                 if r*y-s*x==1|r*y-s*x==-1 

                     if r/s<=1 

                        if x/y<=1 

                     F=[F;r/s]; 

                    F=[F;x/y]; 

                        end 

                     end 

                 end 

              end 

        end 

    end 

        end 

F=sort(F); 

n=length(F); 

syms x y 

ezplot('x+0*y=0',[0,1,0,1]) 

hold on 

ezplot('x+0*y=1',[0,1,0,1]) 

  for i=1:n-1 

A=(F(i)+F(i+1))/2; 

B=abs(F(i)-A); 



y=strcat('(x-','a)^','2+','y^','2=','b^2'); 

yg=subs(y,{'a','b'},[A,B]); 

ylim([0 0.8]) 

ezplot(yg,[0,1,0,1]) 

title('') 

hold on 

pause(0.005) 

  end 

end 

 

However, since the condition 1ry sx    is satisfied by the values ,r s  in the 
kF - Farey 

sequences, we can dispense with this part of the code in the program. Consequently, the following 

simplified code can be used: 

 

Program 2.2  
function fareygraf(m) 

F=0; 

format rat 

for i=1:m 

        for x=0:i 

            for y=0:i 

                        if x/y<=1 

                          F=[F;x/y]; 

                        end 

           end 

       end 

F=sort(F); 

n=length(F); 

syms x y 

ezplot('x+0*y=0',[0,1,0,1]) 

hold on 

ezplot('x+0*y=1',[0,1,0,1]) 

  for i=1:n-1 

      A=(F(i)+F(i+1))/2; 

      B=abs(F(i)-A); 

      y=strcat('(x-','a)^','2+','y^','2=','b^2'); 

     yg=subs(y,{'a','b'},[A,B]); 

        ylim([0 0.8]) 

        ezplot(yg,[0,1,0,1]) 

       title('') 

       hold on 

       pause(0.005) 

end 

end 

 

The goal in the above is to emphasize that the use of extraneous lines of code will slow down a 

program. Hence, the above algorithm implemented in the program will run faster. In this way, we 

are speeding up the rendering of the graph. Following this stage, we prepare a MATLAB GUI 

(Graphical User Interface) of program.  



 Here the graphical user interface of related Farey graphs for 5m   and 15m   is given by the 

following two figures respectively: 

 

 
 

Figure 2.1  Related Farey graph with 5m   

 

 
 

Figure 2.2  Related Farey graph with 15m   



 When the students are prompted to make comments on the figures they produce, they answered 

the following: “the edges don’t cross to each other”. Then we want them to prove their conjecture 

and suggest that probably the easiest way to do this is to produce an algorithm for coding in 

MATLAB. Encouraging our students, we emphasize the importance of computer support for 

solving combinatorial problems referring, for example, to the four-color problem. It was proven in 

1976 by Kenneth Appel and Wolfgang Haken and was the first major theorem to be proved using a 

computer [5].  

 On the other hand, we note that theoretical proof of our problem is not too difficult. We also 

reproduce it from [7] as follows: 

  

Theorem 2.2   No edges of Farey graph cross in the upper half-plane.  

 

Proof.   We suppose that two edges cross in  : : Im 0H z z   . Because of transitive action, we 

may assume that one of them is the edge Re( ) 0z   joining 0  and  , so other must join rationals 

v  and w  where 0v w  . By Theorem 2.1, v  and w  are consecutive in some mF , which is 

impossible since 0  will intervene.  

 

 Let us look at the second example. 

Example 2.2  Another problem is the investigation of solution sets of some congruence equations. 

  

 As usual, in a graph containing vertex and edge conditions, then we examine circuit conditions. 

We call these circuits as triangle, quadrilateral, pentagon, etc. (or n-gon more generaly) according 

to its number of sides. In general, these circuit conditions appears as a congruence equations. For 

example, in Farey graph, the figure contains a triangle if and only if 2 1 0 (mod )u u n   such that 

( , ) 1u n  . Other congruence equations in some other graphs are: if 2 1 0 (mod )u n  for 2-gon, 
22 2 1 0 (mod )u u n   for quadrilateral, 23 3 1 0 (mod )u u n   for hexagon [3]. Here, making 

calculations easier we choose a prime p for n . Thus, the question turns to be, which prime 

numbers provide these equations? 

 At this point, the task of our students is finding these primes using a computer. 

 For the congruence equation 2 1 0 (mod )u u n   , the program is: 

 

Program 2.3 
function sonuc=pnorm3(u) 

    if u==1 

        disp('u must be different from 1'); 

    else 

p=0; 

s=u^2+u+1; 

f=factor(s) 

z=length(f); 

          for i=1:z 

               if gcd(f(i),u)==1 

                   if f(i)~=3 

                 p=[p;f(i)]; 

                   end 



               end 

          end 

              g=length(p); 

               p=p(2:g); 

               if length(p)==0 

               sonuc='For this value of u there is no prime p'; 

               elseif length(p)==1 

               sonuc='For this value of u there is only one prime p'; 

               else 

          sonuc=p; 

               end 

    end 

 

 For the congruence equation 2 1 0 (mod )u u n   , the program is: 

 

Program 2.4 
function sonuc=pnorm4(u) 

      if u==1 

          sonuc='u must be different from 1'; 

      else 

p=0; 

s=u^2-u+1; 

f=factor(s); 

z=length(f); 

          for i=1:z 

               if gcd(f(i),u)==1 

                   if f(i)~=3 

                 p=[p;f(i)]; 

                   end 

               end 

          end 

              g=length(p); 

               p=p(2:g); 

               if length(p)==0 

               sonuc='For this value of u there is no prime p'; 

               elseif length(p)==1 

               sonuc='For this value of u there is only one prime p'; 

               else 

          sonuc=p; 

               end 

    end 

 

 Hence, MATLAB GUI of program is given by the following figure: 



 
 

Figure 2.3  Related Figure for Example 2.2 

 

 As a result, here, with this GUI, when students entered the appropriate u values and then they see 

that, prime values p satisfied 1 (mod3)p  . In the above figure the button “Push for Slide” gives 

them visual actuality for p values for someu . 
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