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Abstract

There is no doubt that technological tools have greatly impacted our mathematics
teaching, learning and research in recent years. The exciting innovative ways of present-
ing learning, teaching and research materials on the internet have prompted educators
and researchers to rethink the importance of taking global views to solve local problems.
In this paper, we use several examples to demonstrate how some abstract mathemati-
cal concepts can be conveyed to students through graphical approach. The urgency of
conducting collaborative research because of the existence of a solution is simply not ad-
equate when computational tools are available nowadays. Furthermore, we emphasize
that technology can be implemented effectively to enhance pre-service teachers’content
knowledge. Finally, we urge all software and hardware developers to work together to
make the learning tools more uniformly accessible. After all, those starting to use techno-
logical tools should be concentrating on how mathematics content can be learned instead
of worrying too much about what software syntax or hardware keystrokes they should be
using. Only when interest in mathematics is genuinely cultivated, can one truly appreciate
mathematics and discover exciting mathematical theories.

1 Introduction

Lacking visualization and motivation on abstract mathematical concepts are typical reasons
why students lose interest in mathematics. It was an eye opening experience when a Computer
Algebra System (CAS) allowed us to do mathematics graphically and symbolically in the early
1990s; many of us were enthusiastic about how technology can impact our teaching, learning and
research in mathematics. We start with some examples in Section 1.1 to demonstrate how a CAS
can assist our teaching and learning. In Section 2, we use examples in integration theory to show
why we need to connect theoretical and computational mathematics; existence of a solution is
simply not adequate in the current technological era. In Section 3, we pick an example to show
how a Dynamic Geometry System (DGS) can be an effective tool for learning and research,
which allows us to make conjectures before analytical solutions can be realized. Requiring the



ability of making conjectures and analyzing their findings from learners is crucial for them to
continue expanding their passion in mathematics. Consequently, requiring common content
knowledge from pre-service teachers is just as important, so they can motivate more students
to be interested in mathematics in their early ages. Finally, we have seen many mathematical
computational tools, either software or hardware devices, evolve over the years. However, it
is still non-trivial for beginners to use a computational tool. Therefore, we urge all software
and hardware developers to further improve their products to make learning mathematics more
enjoyable and accessible.

1.1 Visualization Makes a Difference

For example, it is non-trivial to prove that

f(x) =
∞∑
k=1

ak cos bkπx,

where a and b satisfying the relationships of 0 < a < 1, b ∈ Z+ and ab > 1+ 3
2
π = 5.712388981,

is nowhere differentiable but continuous everywhere (see [2]). It is definitively stimulating
to students when they see the graphs of the respective partial sum,

∑10
k=1

(
1
2

)k
cos 12kπx and∑40

k=1

(
1
2

)k
cos 12kπx, and

• ask why these two respective graphs are very close (readers can use a graphical tool to
experiment with these two graphs), and

• conjecture that the graph of the infinite series
∑∞

k=1

(
1
2

)k
cos 12kπx should not be too far

away from that of
∑40

k=1

(
1
2

)k
cos 12kπx on one hand, and

• it should simulate the graph of a function that is nowhere differentiable but continuous
everywhere. We graph

∑40
k=1

(
1
2

)k
cos 12kπx below in Figure 1. This will be a good

application for students studying the infinite series of functions and the concept of uniform
convergence.

Figure 1. Simulating a nowhere differentiable function

Let’s compare the following two statements about quantifiers when students start learning
mathematical proofs:



1. For every number ε > 0 and for every number x ∈ [0, 1] there exists a positive integer N
such that for every integer n ≥ N we have

nx

1 + n2x2
< ε.

2. For every number ε > 0 there exists a positive integer N such that for every number
x ∈ [0, 1] and for every integer n ≥ N we have

nx

en2x
< ε.

For beginners, they have diffi culty in distinguishing the differences between these two state-
ments. However, using graphical approaches may assist students in understanding these two
concepts. Most students would have studied multivariable calculus before learning these con-
cepts. If we examine these two statements closely, the first one is equivalent to the concept
of pointwise convergence (when each x ∈ [0, 1] is given first). For instance, if we choose
fn(x) =

nx
1+n2x2

, we invite readers to use any graphing utility to experiment why {fn(x)} con-
verges to 0 pointwisely as n → ∞ (but not uniformly to 0). In the meantime, the second

statement is equivalent to the concept of uniform convergence. If we choose fn(x) =
nx

en2x
, we

invite readers to experiment why {fn(x)} converges to 0 uniformly as n→∞
Once students understand what is meant by uniform convergence, pointwise convergence,

and series of functions using partial sums, the Fourier series of a step function and the Gibbs
phenomenon will be a good application to reinforce the relationship between the uniform con-
vergence and the continuity of the limit function using a graphical approach (see [11]). For
instance, we consider the function

f(x) =

{
1 if x ∈ (0, π) ∪ (2π, 3π)
−1 if x ∈ (−π, 0) ∪ (π, 2π).

Let (SNf) (x) be the partial sum of the Fourier series for f, or (SNf) (x) = a0
2
+
∑N

n=1[an cos(nx)+
bn sin(nx)], where an and bn are the Fourier coeffi cients for f. Graphing the function f and
(SNf) (x) was not possible in the past when graphing tools were not available. Now we can
show the graphs of f and S20f(x) in (−π, 3π) below in Figure 2. We see that the convergence
of {(SNf) (x)} to f , when N → ∞, is not uniform otherwise f would have been a continuous
function. It is interesting to note that the Gibbs phenomenon was explained after the concept
of uniform convergence was developed. Hence, we may naturally conjecture that graphical and
computational tools will enable us to discover even more mathematical findings.

Figure 2. Gibbs phenomenon



2 Connecting Theoretical and Computational Mathemat-
ics

Students will desire to estimate a solution and will not be satisfied with only the existence
of a solution in current research environment where computational tools are available. So
there is the need to conduct collaborative research among experts from different areas to spark
new discoveries and pass the knowledge to the students. In the meantime, researchers in
mathematics shall consider making theories more accessible to wider audience starting from
the undergraduate-level. One way to accomplish this is to give more motivation on abstract
definitions or theories and give computation algorithms for students to explore with available
computational tools.

2.1 Beyond Riemann and Lebesgue Integrals

Let’s take a short tour on Riemann integral in an undergraduate calculus course. Recall the
definition of Riemann sum we learned in a calculus class. In short, we say a bounded real-value
function f on [a, b] is Riemann integrable if the following identity is true and the limit is a finite
number: ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(ti)(xi − xi−1),

where {x0, x1, ...xn} defines is a partition of [a, b] and ti ∈ [xi−1, xi], i = 1, 2, ...n.
We remark that a computational tool would allow us to compute the Riemann sum for a

given n (of course within the computation capability of the computation tool). Such approxi-
mation gives immediate feedback or conjecture if an integral would exist or not. To establish if
a function is Riemann integrable in an advanced calculus class, one can define upper and lower
Riemann sums respectively first, which we refer readers to any textbooks in this area for more
details. In view of the lower Riemann partial sum is an increasing sequence and the upper
Riemann partial sum is a decreasing sequence, we say a function is Riemann integrable if the
limits of these two respective partial sums are equal to each other. However, we found this
Riemann definition to be unsatisfactory because of the constant mesh b−a

n
should be required

to approach to 0 as n → ∞. For example, let’s take a look at a bounded function that is not
Riemann integrable: We define the Dirac function f : [0, 1]→ R by f(x) = 1 if x is a rational
number in [0, 1] and f(x) = 0 if x is an irrational number in [0, 1]. Intuitively, those countably
many points with height of f equaling to 1 should not affect the final answer of our integration
because we have uncountable points achieving the height of f(x) = 0. In other words, we should
expect the true value

∫ 1
0
f(x)dx = 0 in this case. Furthermore, we have many unbounded func-

tions that are obviously not Riemann integrable by Riemann definition such as f(x) = 1√
x
in

(0, 1] and f(0) = 0, that is why we call
∫ 1
0

1√
x
dx improper Riemann integrable. With the help

of the Fundamental Theorem of Calculus (FTC), we define∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx = 2.

Thus, the Lebesgue integration was born in early 1900, which allows us to handle the imperfect
situation above and arrive at the right answers for the integrations as we would have expected.



But now the Fundamental Theorem of Calculus is imperfect under Lebesgue definition. For
example the FTC under Lebesgue will read as follows:
Theorem Let F : [a, b]→ R be continuous. and F ′ be Lebesgue integrable on [a, b]. Then∫ b

a

F ′(x)dx = F (b)− F (a).

This is odd because the integration of F ′ should depend only on F (b) and F (a). Requiring F ′

to be Lebesgue integrable is not necessary and reflects the deficiency of Lebesgue definition. For
function such as F (x) = x2 cos

(
π
x2

)
if x 6= 0 and F (0) = 0, we know that F ′(x) = 2x cos

( π
x2

)
+

2π sin
( π
x2

)
x

if x 6= 0 and F ′(0) = 0. It is known that F ′(x) is not Lebesgue integrable in [0, 1],
and it follows from the Fundamental Theorem of Calculus that

∫ 1
0
F ′(x)dx = F (1)−F (0) = −1.

So we have a situation where we know that
∫ b
a
F ′(x)dx should exist and the correct answer

should be F (b) − F (a), and yet this is not the case under Lebesgue theory. In addition, the
Lebesgue definition can not handle many functions that are highly oscillating and unbounded
at one point. For example, if f(x) = 1

x
sin 1

x
if x 6= 0, and f(0) = 0, then

∫ 1
0
f(x)dx does not

exist in Lebesgue sense. Similarly, if f(x, y) = 1
xy
sin 1

xy
if (x, y) 6= (0, 0), and f(x, y) = 0 if

x = 0 or y = 0, then
∫ ∫

[0,1]×[0,1]f(x, y)dA is not Lebesgue integrable. There are two questions,
should these two integrals exist under a different definition? This describes why Henstock and
Kurzweil independently came up with the following idea (in 1960s) using uneven or locally fine
partitions.

2.2 Motivation of Henstock-Kurzweil Integral

Avoiding singularities are typical techniques when doing numerical integrations (see [1],[6],[8]).
We shall see how we link theoretical approaches to computational schemes below. For more
detailed explorations, we invite readers to read [10], [14]. We adopt the terminologies used
in [4],[5]. Let δ be a positive function defined on A. A partition P = {(A1, x1), ..., (An, xn)}
is called δ-fine if Ai ⊂ (xi − δ(xi), xi + δ(xi)), for i = 1, 2, ...n. We first give the definition of
Henstock-Kurzweil integration on one dimension (1D).

Definition 1 A real-valued function f is said to be Henstock-Kurzweil integrable (or simply
HK-integrable) with value I on [a, b] if for every ε > 0 there is a positive function δ on [a, b]
such that ∣∣∣∣∣

n∑
i=1

f(xi) |Ai| − I
∣∣∣∣∣ < ε (1)

for each δ-fine partition P of A, where |Ai| denotes the length of Ai, i = 1, 2, ..., n. In such case,
we write

∫ b
a
f dx or simply

∫ b
a
f.

Remarks:

1. Some of the problems we mentioned such as improper Riemann integrals and the de-
ficiency for FTC under Lebesgue definition are solved, which we will not get into the



details. In view of the fact that the HK-integration definition involves the Riemann sum,
one naturally would ask how to approximate a solution if we know the existence of an
integration.

2. We shall see the following computation methods (see equations (2) and (4)) are to take
care of one or finitely many singular points in 1D, where a function is unbounded or highly
oscillatory near the singular point. The key is to avoid the singular points by wrapping
the singular point by shrinking intervals in one dimension, or wrapping the singular points
by shrinking rectangular boxes in two dimensions (2D).

3. On one hand, shrinking the intervals or rectangular boxes, which contain singularities,
are consistent with theoretical ideas of using locally fine partitions (see [4],[5],[7]). On
the other hand, we should see the computational quadratures in one or two dimensional
below are to avoid singular points, which are what one will do in numerical integration
(see [1],[6],[8]).

First, for each positive integer m, we make use of finite sum formula,
∑n

k=1 k
m, to define a

locally fine partition. For example, if we use
∑n

k=1 k =
n(n+1)
2

to define the matrix ank =
2(b−a)k
n(n+1)

,

we see
∑n

k=1 ank = b− a. Suppose we choose a = 0, b = 1, then the uneven width ank for each
subinterval when n = 10 can be seen as follows:[

1
55

2
55

3
55

4
55

1
11

6
55

7
55

8
55

9
55

2
11

]
.

Similarly, if we pick ank =
6(b−a)k2

n(n+1)(2n+1)
, a = 0, b = 1, then the uneven widths for each subinterval

when n = 10 is [
1
385

4
385

9
385

16
385

5
77

16
385

7
55

64
385

81
385

20
77

]
.

Notice that we have chosen the widths of subintervals unevenly which allowing us to shrink the
width of the interval containing singular point. This is the key to HK-integration theory.
We consider the following quadrature in one dimension

Qn(f) =
1

2
an1f(un1) +

n∑
k=2

ank
2
(f(un,k−1) + f(unk)) (2)

where unk = a+
∑k

i=1 ani, and un,0 = a.

Example 2 We define f(x) = ln(3 − 3 cosx) if x 6= 0 and f(0) = 0. We shall use the matrix
ank =

6(b−a)k2
m(m+1)(2m+1)

and apply equation (2) to estimate
∫ 1
0
f(x)dx accordingly. We note that f

is HK- integrable over [0, 1]. In order for us to increase the number of partitions on n when
using quadrature in (2) and achieve better computation accuracy, we apply the Richardson
extrapolation quadrature by incorporating Qn(f). In other words, we define

Rn(f) =
1

2
an1f(un1) +

1

3

[
4Qn(f)−Qn/2(f)

]
.



When using Digits=20 for computation and with the help of Maple 13, we find the approxima-
tions for

∫ 1
0
f(x)dx as follow:

R700(f) = −1.6224537082520067239,
R800(f) = −1.6224535349823094413,
R900(f) = −1.6224534278058672640,
R1000(f) = −1.6224533578168565515,

We note that Maple 13 gives U.S.
∫ 1
0
f(x)dx = -1.622453156+0.*I, which we have no idea how

the complex portion 0.*I comes about. When using WolframAlpha Integrals (see [9]), we get
−1.62245.

Naturally, the 1D Definition can be extended analogously to 2D as follows (see [4],[5],[7]):

Definition 3 A real-valued function f is said to be Henstock-Kurzweil integrable (or simply
HK-integrable) with value I on an interval A = [a, b]× [c, d] if for every ε > 0 there is a positive
function δ on [a, b]× [c, d] such that∣∣∣∣∣

n∑
i=1

f(xi) |Ai| − I
∣∣∣∣∣ < ε (3)

for each δ-fine partition P of A, where |Ai| denotes the area of Ai, i = 1, 2, ..., n. In such case,
we write

∫
A
f dA or simply

∫
f.

Accordingly, the quadrature (2) can be extended to two dimensions as follows:

Q2nm(f) =
m∑
l=2

n∑
k=2

ankbml
4

(f(un,k−1, vm,l−1) + f(unk, vm,l−1)+ (4)

f(un,k−1, vml) + f(unk, vml))

+
n∑
k=2

ankbm1
4

(f(un,k−1, vm1) + f(unk, vm1))

+

m∑
l=2

an1bml
4

(f(un,1, vm,l−1) + f(un1, vml))

+
an1bm1
4

f(un1, vm1),

in which un0 = a, unk = a +
∑k

p=1 anp for k = 1, 2, ..., n, vm0 = c, and vml = c +
∑l

q=1 bmq
for l = 1, 2, ...,m; note that unn = b and vmm = d.
Remarks:

1. We note that the two dimensional quadrature above allows us to approximate an inte-
gral when singularities are along x = a and y = c respectively. The first expression
in the quadrature,

∑m
l=2

∑n
k=2

ankbml
4
(f(un,k−1, vm,l−1) + f(unk, vm,l−1) + f(un,k−1, vml) +

f(unk, vml)), is a two dimensional Riemann sum using uneven partitions when f does not
touch the singularities.



2. The expression
∑n

k=2
ankbm1
4
(f(un,k−1, vm1)+ f(unk, vm1)) is the Riemann sum for (x, y) ∈

[un1, b] ×(c, vm1]. In other words, it is to take care of singularities when they are in
[un1, b] × {c}. Similarly, the expression

∑m
l=2

an1bml
4
(f(un,1, vm,l−1) + f(un1, vml)) is the

Riemann sum for (x, y) ∈ (a, un1] ×[vm1, d] or it is to take care of singularities when
they are in {a}× [vm1, d]. Finally, an1bm14

f(un1, vm1) is an approximation for the rectangle
[a, un1]× [c, vm1]

3. We also note that, in general, we choose m = n and ank = bnl as our two dimensional
computation to avoid each sub-rectangle An in the Definition 3 becoming too thin which
may cause round-off errors when m or n gets large. In other words, the shape of each
sub-rectangle is kept as a square.

For computing more sophisticated examples using our 2D quadrature (4), we refer readers
to [10], [14]. We use the following example to demonstrate how we may use (4) to detect a
double integral that might not exist.

Example 4 We define f(x, y) = xy

(x2+y2)2
if (x, y) ∈ (0, 1] × (0, 1] and f(x, y) = 0 if x = 0

or y = 0. We can show theoretically that the double integral,
∫ ∫

[0,1]×[0,1] f(x, y)dA, does not

exist. Here we use ank =
6(b−a)k2

n(n+1)(2n+1)
, bml =

6(d−c)l2
m(m+1)(2m+1)

,m = n in Q2nm(f), and we obtain the
following information with Maple 13:

Q2100(f) = 7.5493300830237376437,
Q2200(f) = 8.5854677103194479888,
Q2300(f) = 9.1924464266105399032,
Q2400(f) = 9.6233554239577289740.

We conjecture that the double integral
∫ ∫

[0,1]×[0,1] f(x, y)dA diverges (slowly). The divergence
is slow can be explained because the following limits of the tails are all approaching to 0, which
can be seen below when Maple 13 is used:

lim
n→∞

an1bn1
4

f(un1, vn1)

= lim
k→∞

ankbnl
4

(f(un,k−1, vn1) + f(unk, vn1))

= lim
l→∞

ankbml
4

(f(un,1, vn,l−1) + f(un1, vnl))

= 0.

In summary, the two dimensional quadrature Q2nm(f) can assist us to conjecture whether or not
a double integral exists.

Remark: We further note that since
∫ ∫

[0,1]×[0,1] f(x, y)dA diverges, it is clear that∫ ∫
[−1,1]×[−1,1] f(x, y)dA does not exist. Therefore, we cannot apply Fubini’s Theorem in this

case (using iterated integrals to compute the double integral). However, many computational
engines such as Maple or Mathematica are using iterated integration algorithms to calculate
the double integrals; for example, in the case of

∫ ∫
[−1,1]×[−1,1] f(x, y)dA, both Maple and Math-

ematica give 0, which is clearly wrong.



Discussions: The quadrature (4) is no more than a trapezoidal rule but using uneven parti-
tions, for a fixed n, we see an,k < an,k+1 when ank =

2(b−a)k
n(n+1)

. In other words, the width of each
subinterval is smaller on the left compared to that of on the right. This is to take wrap the
singularity at x = a by using shrinking intervals. We can use this quadrature (4) to take care
of all improper Riemann integrals where f is monotone and has singularity at x = a (see [10]).

1. The 1D quadrature (2) can be adapted to estimate HK integrals where integrand is highly
oscillating at one point, such as f(x) =

(
1
x

)
sin
(
1
x

)
if x ∈ (0, 1] and f(0) = 0, by countably

many extensions. Similarly, the 2D quadrature (4) can be used to handle functions such

as f(x, y) =
(
1
xy

)
sin
(
1
xy

)
if x ∈ (0, 1] × (0, 1], and f(x, y) = 0 if x = 0 or y = 0, (see

[10]).

2. The 2D quadrature (4) can also be used to handle integrals involving the Divergence Theo-

rem. For example, we consider the vector fieldF(x, y) =
{
(x2 cos( π

x2y
), 0) if (x, y) 6= (0, 0)

(0, 0) if (x, y) = (0, 0).

over A = [0, 1] × [0, 1]. Then divF = 1
xy

(
2π sin π

x2y
+ 2x2y cos π

x2y

)
if (x, y) 6= (0, 0), and

divF = 0 otherwise. We note that divF has singularities along x = 0 and y = 0, divF
is Henstock integrable (but not Lebesgue integrable) over A, and we have∫ ∫

A

divF dA =

∫
∂A

F · n , (5)

see [7]. On one hand, direct calculation shows that
∫
∂A
F ·n =

∫ 1
0
cos π

y
dy =

∫ 1
0
cos π

y
dy =

−.116770364 (with the help of Maple 13), but Maple (13) could not evaluate
∫ ∫

A
divF dA

directly. In this case, we may apply our 2D quadrature (4) to approximate
∫ ∫

A
divF dA

directly.

3 Technology Continue Shaping up Mathematics Com-
munities

3.1 Seeing is just Beginning

In this section, we discuss the impact of technological tools on our teaching and learning.
The mathematics education area is where technology immediately plays an important role in
increasing content knowledge. We understand that problems and discrepancies exist in the
programs of mathematics education from country to country, and we direct readers to [15] and
[13]. We emphasize the existing problems in this field as follows:

1. Creativity does not come from a drill or rote type of learning. The Tiger Mother sce-
nario can be seen in many communities, and we see students getting burned out after
preparing for high school and university entrance examinations respectively in many East-
ern countries. On the other hand, students from the Western countries lose interest in
mathematics as early as middle school, when they run into unqualified math teachers.
Regardless whether students are from the East or the West, mathematics is ultimately
not their passion.



2. One has to worry that pupils around the world are less and less interested in mathemat-
ics. The traditional education system mainly focused on the development of students’
procedural knowledge. However, educators are now recognizing the importance of devel-
opment of students’conceptual understanding through use of rich application problems
(see [13]). More and more children have access to internet and naturally they like to play
games on the internet. What if our mathematics curricula are designed in a way to allow
them to explore mathematics content knowledge while they are having fun? A successful
curriculum should be designed to inspire students’interests in mathematics and sciences
by connecting real-life problems to classrooms.

3. Many Mathematics Education Ph.D. programs in the U.S. are not producing high calibre
qualified future math teachers. Many programs were created simply providing the needs
for teachers’certification in local areas, and universities could not fill a position whose
area is in Mathematics Education. This creates a wave for people wanting to pursue a
higher degree in Mathematics Education and yet the lack of content knowledge in the
curriculum presents a serious crisis in this area.

One natural approach is to use DGS to stimulate the motivation of how one problem can be
solved before using CAS to prove if the conjecture is right. We select the following problem to
demonstrate why the development of conceptual knowledge is preferable than that of procedural
knowledge when technological tools are adopted. The problem we shall consider below can be
explored by middle schools students, where they can think of way of approximating an area. To
do so, teachers need to have knowledge of linking various disciplines when solving a problem. In
addition, teachers need to be proficient of using computational tools to obtain the final answer.
The problem is finding the area in an enclosed region. Our task is to estimate the area of
the following Figure 3(a) while we are given that the Figure 3(a) is symmetric to the line
segment EF. In view of this, it suffi ces to find the area for Figure 3(b) first.

Figure 3(a) and Figure 3(b). Area enclosed by the curves

We would like to add that either Figure 3(a) or Figure 3(b) was drawn randomly with a
DGS, many dynamic geometry software packages are capable of recovering the equations of the
curves we draw. In this case, we assume that it is given that Figure 3(b) is the union of the
equation of part of the circle, C(t), and the line segment EF. In other words, we have

C(t) = [1.328006 · cos(t)− 1.11, 1.328006 · sin(t) + 0.05], where t ∈ [1.177631935, 3.5147],
E = (−2. 346 6,−0.434 07), and F = (−0.601 22, 1. 276 7).

We note the followings:



1. We can write the line equation for EF as
[
x
y

]
=

[
−2. 346 6
−0.434 07

]
+ t

[
1. 745 4
1. 710 8

]
, where

t is a real number, or we can write it as

y = 0.980 17 · x+ 1. 867

2. The diffi culty is if we use regular horizontal or vertical partitions, we will end up partition
the area into at least two sub regions, which makes integration more diffi cult. For those
people who knows how to apply Green’s Theorem right away, this is not a diffi cult prob-
lem. However, this problem is intended for those who just finished the study of Riemann
integration in the first or second semester of calculus course.

3. The common sense approach with DGS for those people who only know definition of
integrations is to partition EF into several subintervals and draw rectangular boxes that
are perpendicular to the line EF, and when we increase the number of subintervals along
EF , we will get closer estimate for the area. We demonstrate this below by using the
Java Sketchpad (see Supplementary Material, thanks to the design by Scott Steketee).

(a) We subdivide the line segment EF into several subintervals.

(b) We form the rectangles that are perpendicular to EF and use the Riemann Sum idea
to approximate this area. As shown below, when we use n = 50, the approximated
area using the leftend Riemann sum is about 1.41.

Figure 4. Natural way of partitions

3.2 Verifying Our Conjectures

In view of how we use partitions with rectangles to approximate the enclosed area shown in
Figure 4, we naturally should choose a new basis {c1, c2} where c1 ∈

←→
EF and c2 is perpendicular

to c1. For completeness, we describe the techniques from [12]. We introduce some basic concepts
in Linear Algebra. Let B1 = {e1, e2} be the standard basis for R2, and B2 = {c1, c2} be
another basis for R2, where c1 = (cos θ, sin θ) is a unit direction vector of the line L and
c2 = (− sin θ, cos θ) is a unit vector perpendicular to c1 with θ = tan−1m.



We first express
[
x(t)
y(t)

]
as a vector relative to the basis B2. In other words, we need to

discover
[
p(t)
q(t)

]
so that

[
x(t)
y(t)

]
= p(t)c1 + q(t)c2, or

[
x(t)
y(t)

]
= [c1 c2]

[
p(t)
q(t)

]
(6)

=

[
cos θ − sin θ
sin θ cos θ

] [
p(t)
q(t)

]
.

This implies that [
p(t)
q(t)

]
=

[
cos θ − sin θ
sin θ cos θ

]−1 [
x(t)
y(t)

]
=

[
x(t) cos θ + y(t) sin θ
−x(t) sin θ + y(t) cos θ

]
. (7)

Step 1. The integral of [x(t), y(t)] with respect to a line L : y = mx through the origin is

A =

∫ t2

t1

q(t)p′(t)dt (8)

=

∫ t2

t1

(−x(t) sin θ + y(t) cos θ) (x′(t) cos θ + y′(t) sin θ) dt

=
1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)) (x′(t) + y′(t)m) dt

Step 2. Next, integrate a parametric curve w(t) = [x(t), y(t)], t1 ≤ t ≤ t2, with respect to a
line L : y = mx + b (let θ = tan−1m). By shifting the bounded region vertically by b, we can

then apply the same concept above to find the coordinate vector
[
p(t)
q(t)

]
of
[
x(t)− 0
y(t)− b

]
relative

to B2 below.

[
p(t)
q(t)

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x(t)− 0
y(t)− b

]
(9)

=

[
x(t) cos θ + (y(t)− b) sin θ
−x(t) sin θ + (y(t)− b) cos θ

]
.

Therefore, the integral of w(t) = [x(t), y(t)], t1 ≤ t ≤ t2, with respect to the line L :
y = mx+ b (let θ = tan−1m) is



A =

∫ t2

t1

q(t)p′(t)dt (10)

=

∫ t2

t1

(−x(t) sin θ + (y(t)− b) cos θ) (x′(t) cos θ + y′(t) sin θ) dt

=
1

1 + tan2 θ

∫ t2

t1

(−x(t) tan θ + y(t)− b) (x′(t) + y′(t) tan θ) dt

=
1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt.

We remark that since the curve w(t) travels in the direction from t = t1 to t = t2, the
value in equation (10) is positive if the curve is traversed clockwise; otherwise it is negative. If
we apply the formula on the given example above of the parametric curve C(t) = [1.328006 ·
cos(t)− 1.11, 1.328006 · sin(t) + 0.05], where t ∈ [1.177631935, 3.5147], and y = 0.980 17 · x+1.
867, we get the following result

A =
1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt = −1. 423 8.

The area is negative since we use counterclockwise direction. To restate what we have just
proved:

Theorem 5 Let C be the smooth curve w(t) = [x(t), y(t)], where t1 ≤ t ≤ t2. Let R be the
region bounded by C, the line y = mx+ b, and the perpendiculars to the line from (x(t1), y(t1))
to (x(t2), y(t2)). Then the (signed) area of R is given by

1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt. (11)

When students are exposed to vector calculus concepts, we can reinforce that the above
observation is a special case of Green’s Theorem. We link Theorem 5 with the concept of
Green’s Theorem as follows:
Let C be the smooth curve w(t) = [x(t), y(t)], where t1 ≤ t ≤ t2. Let R be the region

bounded by C, the line y = mx + b, and the perpendiculars to the line from (x(t1), y(t1)) to
(x(t2), y(t2)). We denote the counterclockwise boundary curve of R by ∂R. If P and Q are
scalar fields with continuous. partial derivatives satisfying ∂Q

∂x
− ∂P

∂y
= 1, then∫

∂R

P dx+Qdy =

∫ ∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA (12)

=
−1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt.

Note. If we write IfF(x, y) = (P (x, y), Q(x, y)) is a vector field, we note that curlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q 0

∣∣∣∣∣∣ =[
0 0

(
∂Q

∂x
− ∂P

∂y

) ]
=

(
∂Q

∂x
− ∂P

∂y

)
k. Therefore, (curlF) ·k = ∂Q

∂x
− ∂P

∂y
. In other words,



we can write the Green’s Theorem in the vector form below:∫
C

F · dr =

∫ ∫
R

(curlF) ·k dA. (13)

=

∫ ∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫
C

P dx+Qdy

=
−1

1 +m2

∫ t2

t1

(−x(t)m+ y(t)− b) (x′(t) + y′(t)m) dt.

For convenience, one may choose P (x, y) = −y
2
and Q(x, y) = x

2
.We leave it to the reader to

verify that if we apply Green’s Theorem to find the area bounded by the curve C and EF is
same as we have found by using formula (11).
Remarks:

1. Many math educators outside the U.S. will be astonished that most future middle school
math teachers in the U.S. do not need to finish calculus courses, and yet it is ironic that
the concept of Riemann sum can be understood by a middle school or even an elementary
kid. The animation in the Supplementary Material section was shown to a fifth grader
(10 years old) student in the U.S. without prior knowledge of what the animations is all
about, he replied that the animation shows that ‘more rectangles will fit the area better’.

2. It is necessary to integrate the knowledge of Linear Algebra with multivariable calculus,
because such knowledge is needed when studying Differential Geometry. We note that
formula (14) can be explored before students learn the concepts of Green’s or Divergence
Theorems, which come in almost near the end of a calculus course.

3. Author presented this problem to a group of Japanese high school teachers who posses
master degree in mathematics. Without the presence of a computational software, it
is commendable that some teachers immediately think from algebra point of view, by
finding the distance from the point on the circle to the slanted line to form the height of
a sub-rectangle, before forming the area of each sub-rectangles.

4 A Glimpse of the Future

4.1 Be a Global Mathematics Educator

Many examples from textbooks are non-realistic: why are most of the answers whole numbers?
We need to connect more of our daily life experiences to mathematics. Instead of memorizing
formulae for testing purposes, we need time for students to do projects. Students need time
to entice real-life scenarios to mathematics, and make conjectures and generalize their observa-
tions. The impact of evolving technological tools on math and science is immense; it is natural
that the National Science Foundation in the U.S. encourages proposals from the Science, Tech-
nology, Engineering and Mathematics (STEM) area. However, any similar agencies around
the world should note that to increase learners content knowledge in the area of STEM, it is
only reasonable for mathematicians, who have strong backgrounds in mathematics, to work
with people in mathematics education to come up with content that lead to more students
interested in the STEM area.



We believe that CAS and DGS will continue to impact us in teaching, learning and research
in mathematics. More specifically, we have seen examples in this paper that visualization plays
a pivotal role in stimulating students’interests in mathematics from an early age. We should
carefully select and design a wide range of real-life problems, where we may adopt problems
for students at different stages of learning. An example can be explored in middle school, high
school and again in university level. Students will expand their level of mathematics knowledge
when they move from one level to the next. Consequently, when a mathematical problem is
encountered in various stages, students can deeply enhance their conceptual understandings
and their abilities to solve related real-life problems.
Educators in the East should not only be interested in knowing how to retain or improve

their standings in international math and sciences competitions, but also think about how to
seriously inspire more students to become interested in math and sciences from early ages.
On the other hand, educators in the U.S. should no longer ignore the consequences of the
lack of mathematics content knowledge in pre-service schools trainings. Therefore, one way of
enhancing mathematics education quality in the East and the West is to continue discussing
the innovative use of technology in teaching, learning and research in mathematics.

4.2 Creating Online Math Content

We have adopted various specific software packages in CAS and DGS when exploring exam-
ples mentioned in this paper. We encourage readers to experiment with mathematics concepts
behind these examples by using their favorite software packages. It will be wonderful if we
can all concentrate on communicating mathematics among ourselves by using standard mathe-
matics equations and etc., without worrying about how to manipulate a certain computational
tool. Indeed, making a tool easier to use is still somewhat diffi cult for developers-why not
unify all the menu bars and keystrokes? Static math and science content are available in var-
ious forms, such as html, video clips over the internet (see examples in [3] for teaching and
learning purposes). Users of software packages or hand-held computation devices have won-
dered why it takes so long to develop a system where users can communicate mathematics
content with standardized mathematics symbols over the internet. The computation engines
such as CAS and DGS can be stored in a server, giving users an option of computing over the
server while companies charge the usage of our computations, just like how the usage of cell
phones is charged. It is time for all parties, mathematics educators and software and hardware
developers, to work together on a platform where learners can not only read static mathemat-
ics but also experiment with dynamic mathematics over the internet. Only when commercial
companies work together with mathematics educators to truly develop user-friendly tools, will
we able to make mathematics fun, accessible, challenging and theoretical at the same time.

Supplementary Material
• http://www.radford.edu/wyang/atcm2011
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