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Abstract:  In this paper, optimal control for linear singular fuzzy system is obtained using Simulink. To obtain the 

optimal control, the solution of MRDE is computed using Simulink approach. The Simulink solution is equivalent or 

very close to the exact solution of the problem.  An illustrative numerical example is presented for the proposed 

method.      

 

1.  Introduction 
      

A fuzzy system consists of linguistic IF-THEN rules that have fuzzy antecedent and consequent 

parts. It is a static nonlinear mapping from the input space to the output space. The inputs and 

outputs are crisp real numbers and not fuzzy sets. The fuzzification block converts the crisp inputs 

to fuzzy sets and then the inference mechanism uses the fuzzy rules in the rule-base to produce 

fuzzy conclusions or fuzzy aggregations and finally the defuzzification block converts these fuzzy 

conclusions into the crisp outputs. The fuzzy system with singleton fuzzifier, product inference 

engine, center average defuzzifier and Gaussian membership functions is called as standard fuzzy 

system [14].   

 

Two main advantages of fuzzy systems for the control and modeling applications are (i) fuzzy 

systems are useful for uncertain or approximate reasoning, especially for the system with a 

mathematical model that is difficult to derive and (ii) fuzzy logic allows decision making with the 

estimated values under incomplete or uncertain information [17]. Fuzzy controllers are rule-based 

nonlinear controllers, therefore their main application should be the control of nonlinear systems. 

However, since linear systems are good approximations of nonlinear systems around the operating 

points, it is of interest to study fuzzy control of linear systems. Additionally, fuzzy controllers due 

to their nonlinear nature may be more robust than linear controllers even if the plant is linear. 

Furthermore, fuzzy controllers designed for linear systems may be used as initial controllers for 

nonlinear adaptive fuzzy control systems where on-line turning is employed to improve the 

controller performance. Therefore, a systematic fuzzy controllers for linear systems is of theoretical 

and practical interest. Stability and optimality are the most important requirements in any control 

system. Stable fuzzy control of linear systems has been studied by a number of researchers. It is 

well-known that nowadays that fuzzy controllers are universal nonlinear controllers. All these 

studies are preliminary in nature and deeper studies can be done. For optimality, it seems that the 

field of optimal fuzzy control is totally open. 
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Singular systems contain a mixture of algebraic and differential equations. In that sense, the 

algebraic equations represent the constraints to the solution of the differential part. Singular system 

is also called as differential algebraic system. The complex nature of singular system causes many 

difficulties in the analytical and numerical treatment of such systems, particularly when there is a 

need for their control. The system arises naturally as a linear approximation of system models or 

linear system models in many applications such as electrical networks, aircraft dynamics, neutral 

delay systems, chemical, thermal and diffusion processes, large scale systems, robotics, biology, 

etc., (see [2,3,4,8]). 

 

As the theory of optimal control of linear systems with quadratic performance criteria is well 

developed, the results are most complete and close to use in many practical designing problems. 

The theory of the quadratic cost control problem has been treated as a more interesting problem and 

the optimal feedback with minimum cost control has been characterized by the solution of a Riccati 

equation. Da Prato and Ichikawa [5] showed that the optimal feedback control and the minimum 

cost are characterized by the solution of a Riccati equation. Solving the Matrix Riccati Differential 

Equation (MRDE) is a central issue in optimal control theory. The needs for solving such equations 

often arise in analysis and synthesis such as linear-quadratic optimal control systems, robust control 

systems with H2 and H  control [18] performance criteria, stochastic filtering and control systems, 

model reduction, differential games etc. One of the most intensely studied nonlinear matrix 

equations arising in Mathematics and Engineering is the Riccati equation. This equation, in one 

form or another, has an important role in optimal control problems, multivariable and large scale 

systems, scattering theory, estimation, detection, transportation and radiative transfer [6]. The 

solution of this equation is difficult to obtain from two points of view. One is  nonlinear, and the 

other is  in matrix form. Most general methods to solve MRDE with a terminal boundary condition 

are obtained on transforming MRDE into an equivalent linear differential Hamiltonian system. By 

using this approach, the solution of MRDE is obtained by partitioning the transition matrix of the 

associated Hamiltonian system [13]. Another class of methods is based on transforming MRDE 

into a linear matrix differential equation and then solving MRDE analytically or computationally 

[9,11,12]. However, the method in [10] is restricted for cases when certain coefficients of MRDE 

are non-singular. In [7], an analytic procedure of solving the MRDE of the linear quadratic control 

problem for homing missile systems is presented. The solution K(t) of MRDE is obtained by using 

K(t)=p(t)/f(t), where f(t) and p(t) are solutions of certain first order ordinary linear differential 

equations. However, the given technique is restricted to single input. 

 

Simulink is a MATLAB add-on package that many professional engineers use to model dynamical 

processes in control systems. Simulink allows to create a block diagram  representation of a system 

and run simulations very easily. Simulink is really translating block diagram into a system of 

ordinary differential equations. Simulink is the tool of choice for control system design, digital 

signal processing (DSP) design, communication system design and other simulation applications 

[1]. This paper focuses upon the implementation of Simulink approach to compute optimal control 

for linear singular fuzzy system. 

 

Although parallel algorithms can compute the solutions faster than sequential algorithms, there 

have been no report on Simulink solutions for MRDE. This paper focuses upon the implementation 

of Simulink approach for solving MRDE in order to get the optimal solution. 

 



This paper is organized as follows. In section 2, the statement of the problem is given. In section 3, 

solution of the MRDE is presented. In section 4, numerical example is discussed. The final 

conclusion section demonstrates the efficiency of the method. 

 

 

2.  Statement of the Problem 

 
 Consider the linear singular fuzzy system [15,16] that can be expressed in the form: 

 

 R
i
 : If xj is Tji(mji, ji), i = 1,...,r and j = 1,...,n, then 

 

                                                     Ei x (t)=Aix(t)+Biu(t),   x(0)=x0,                                              (2.1) 

 

where the matrix Ei is  singular, x(t)  
n
 is a generalized state space vector and u(t) 

m
 is a 

control variable. Ai 
nxn

 and Bi 
nxm

 are known as coefficient matrices associated with x(t) and 

u(t) respectively, x0 is given initial state vector and m ≤ n.  

 

If all state variables are measurable, then a linear state feedback control law 

                                                     u(t)= – R
– 1

 Bi
T
 (t)                                                                 (2.2) 

can be obtained to the system described by equation (2.1), where 

 

                                             (t)= Ki(t)Eix(t),                                                                       (2.3)                                                                

 

Ki(t) 
nxn

 matrix such that Ki(tf)= Ei
T
 S Bi. 

 

In order to minimize both state and control signals of the feedback control system, a quadratic 

performance index is usually minimized: 

    tf 

J= ½  x
T
(tf)Ei

T
SEix(tf)+ ½  [x

T
(t)Qx(t)+u

T
(t)Ru(t)]dt, 

     0 

where the superscript T denotes the transpose operator, S 
nxn

  and Q 
nxn

 are symmetric and 

positive definite (or semidefinite) weighting matrices for x(t),  R 
mxm

  is a symmetric and 

positive definite weighting matrix for u(t). It will be assumed that sEi – Ai  ≠ 0  for some s. This 

assumption guarantees that any input u(t) will generate one and only one state trajectory x(t). 

 

It is well known in the control literature that to minimize J is equivalent to minimize the 

Hamiltonian equation  

 

H(x(t),u(t), (t))= ½ [x
T
(t)Qx(t)+u

T
(t)Ru(t)]+ 

T
(t)[Aix(t)+Biu(t)] 

 

The necessary conditions for optimality is 

 

H/ u =0 



implies that 

 

Ru(t)+Bi
T
 (t)=0 and  H/  x= Ei

T
 (t) 

 

                                                Ei
T
 (t) = – Qx(t) –  Ai

T
 (t)                                                    (2.4) 

 

H /  = Ei x (t) 

 

 Ei x (t) = Aix(t)+Biu(t)] 

and from (2.2), we have 

                                                    Ei x (t) = Aix(t) – BiR
– 1

Bi
T
 (t).                                              (2.5) 

 

Equations (2.4) and (2.5) can be written in a matrix form as follows : 

 

                                          Ei     0        x (t)      =     Ai   – BiR
– 1

Bi
T
        x(t)                    

                                          0     Ei
T
      (t)             –Q       – Ai

T
            (t)        

 

Assuming that R  ≠ 0 , from (2.3) we have 

(t)= Ki (t) Ei x(t)+ Ki(t) Ei x (t) 

and 

                                       Ei
T
 (t) = Ei

T
Ki (t)Ei x (t) + Ei

T
Ki(t)Ei x (t)                                         (2.6) 

 

Using the equations (2.3)  –  (2.5) in (2.6), we obtain 

  

          [Ei
T
Ki (t)Ei + Ei

T
Ki(t)Ai + Ai

T
Ki(t)Ei +Q  – Ei

T
Ki(t) BiR

– 1
Bi

T
Ki(t)Ei ] x(t) = 0              (2.7) 

 

Since equation (2.7) holds for all non-zero x(t), the term pre-multiplying x(t) must be zero. 

Therefore, we obtain the following MRDE for the linear singular system (2.1) 

 

                    Ei
T
Ki (t)Ei + Ei

T
Ki(t)Ai + Ai

T
Ki(t)Ei +Q  – Ei

T
Ki(t) BiR

– 1
Bi

T
Ki(t)Ei = 0              (2.8) 

 

In the following section, the MRDE (2.8) is going to be solved for Ki(t) in order to get the optimal 

control of the singular system. 

 

3.  Solution of MRDE by Simulink 
 

Simulink is an interactive tool for modelling, simulating and analyzing dynamic systems. It enables 

engineers to build graphical block diagrams, evaluate system performance and refine their designs. 

Simulink integrates seamlessly with MATLAB and is tightly integrated with state flow for 

modelling event driven behavior. Simulink is built on top of MATLAB.  A Simulink model for the 

given problem can be constructed using building blocks from the Simulink library. The solution 

curves can be obtained from the model without writing any codes. 

 



A Simulink model is constructed  for the following system of two differential equations as shown 

in Figure 1. 

 

 x (t) = – x(t) +1,   x(0) = – 1 

y (t) = – y(t) +1,   y(0) = 1. 

 

 

 

 
 

Figure 1: Simulink Model 

 

 

As soon as the model is constructed, the Simulink parameters can be changed according to the 

problem. The solution of the system of differential equation can be obtained in the display block by 

running the model. 

 

3.1 Procedure for Simulink Solution 

 

 Step 1. Select the required number of blocks from the Simulink Library. 

 

Step 2. Connect the appropriate blocks. 

 

Step 3. Make the required changes in the simulation parameters. 

 

Step 4. Run the Simulink model to obtain the solution. 

 

 



4.  Numerical Example 
 

Consider the optimal control problem: 

Minimize 

    tf 

J= ½  x
T
(tf)Ei

T
SEix(tf)+ ½  [x

T
(t)Qx(t)+u

T
(t)Ru(t)]dt, 

     0 

subject to the linear singular fuzzy system R
i
 : If xj is Tji(mji, ji), i = 1, 2 and j = 1, 2,3, then 

 

                                                     Ei x (t)=Aix(t)+Biu(t),   x(0)=x0 ,                               

where 

 

S=  1.1517  0.1517     Ei =    1     0       A1=  –1     1     A2 =  –2     2     Bi =   0     R=1, Q =  1    1 

       0.1517      1       ,            0     0    ,            0   –2   ,            0    –4   ,           1   ,                  1    1   . 

 

The numerical implementation could be adapted by taking tf =2 for solving the related MRDE of 

the above linear singular fuzzy system with the matrix A1 . The appropriate matrices are substituted 

in MRDE. The MRDE is transformed into differentia algebraic equation (DAE) in k11 and k12. The 

DAE can be changed into a system of differential equations by differentiating the algebraic 

equation. In this problem, the value of k22 of the symmetric matrix K(t) is free and let k22=0. Then 

the optimal control of the system can be found out by the solution of MRDE. 

 

4.1 Solution Obtained Using Simulink 

 

The Simulink model is constructed for MRDE. The Simulink model is shown in Figure 2. The 

numerical solution of MRDE is calculated by Simulink and displayed in Table 1. The numerical 

solution curve of MRDE by Simulink is illustrated in Figure 3. 

 

 
 

Figure 2 : Simulink Model for MRDE 



 

 

 
 

Table 1: Simulink Solution of MRDE        Figure 3: Simulink Curve for MRDE 

 

 

Similarly the solution of the above system with the matrix A2 can be found out using Simulink. 

 

5.  Conclusion 
 

The optimal control for the linear singular fuzzy system can be found by Simulink approach. To 

obtain the optimal control, the solution of MRDE is computed by solving Differential algebraic 

equation (DAE) using Simulink. The Simulink solution is equivalent to the exact solution of the 

problem. Accuracy of the solution computed by Simulink approach to the problem is qualitatively 

better. A numerical example is given to illustrate the proposed method. 
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