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Abstract:  In this paper, we will investigate several properties of bilinear transformations using a computer algebra 
system.  Bilinear transformations, also known as linear fractional transformations or Möbius transformations belong to 
a wider class of functions known as conformal mappings in complex analysis.  It is well-known that bilinear 
transformations carry a circle or a straight line in one complex plane to a circle or a straight line in another complex 
plane.  Due to the graphical nature of these transformations, a computer algebra system such as Mathematica is an ideal 
tool to further study their properties.  In the process we will observe several new non-standard results, which can be 
proved using traditional methods without resorting to any computer algebra system.  The paper uses Mathematica 
version 7.0 on a Windows XP platform, but identical results can be obtained by using any other computer algebra 
system of reader’s choice.  
 
 

1. Introduction 
 
       A bilinear transformation in complex analysis is a mapping f defined by the following 
formula, where a, b, c, and d are complex numbers with 0≠− bcad  (see [1], [2], and [6]). 
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For simplicity, in the paper, we will restrict a, b, c, and d to be real numbers, even though a similar 
analysis can be carried out for the general case.  The above map carries in general, a complex 
number iyxz +=  in the XY-plane to another complex number ivuw +=  in the UV-plane.  In the 
traditional definition of a bilinear transformation, as stated above, one would normally assume that 

0≠− bcad .  The reason behind this assumption is that if 0=−bcad , a mapping of the kind 
defined by equation (1.1) is not interesting:  In that case, as the following discussion shows, f maps 
the entire complex plane, except perhaps a single point into a fixed point in another complex plane, 
i.e. f would become a constant map: 
 
Suppose 0=− bcad .  We will still assume that )0,0(),( ≠dc , as otherwise f is not well-defined.  
The argument can be divided into several cases: 
 
Case 1: 0≠c  and 0≠d   
    In this case, since 0=− bcad , one can write kdbca == //  for some real constant k.  Then it 
follows that kdczdkckzzf =++= )/()()( , provided that cdz /−≠ .  In other words, in the present 



case, f maps the entire complex plane, except the point cdz /−=  into a single point in another 
complex plane.  
 
Case 2: 0=c  and 0≠d  
    In this case it easily follows that 0=a , and thus dbzf /)( = .  Therefore, in this case f maps the 
entire complex plane into a single point in another complex plane. 
 
Case 3: 0≠c  and 0=d  
     In this case it easily follows that 0=b , and thus caczazzf /)/()( == , provided that 0≠z .  In 
other words, f maps the entire complex plane minus the origin into a single point in another 
complex plane.  
 
Thus, the case 0=− bcad  is not interesting and that is why we assume that 0≠− bcad  in the 
traditional definition of a bilinear transformation.  A well-known theorem in complex analysis 
states that such a transformation carries a circle or a straight line in one complex plane to a circle or 
a straight line in another complex plane (see [1], [2], and [6]).  The paper focuses on this result, but 
first it will be a good idea to find out exactly under what conditions circles are mapped into circles, 
circles are mapped into straight lines, straight lines are mapped into circles, and straight lines are 
mapped into straight lines.  Thus, in the next sections of the paper, we will analyze the proof of this 
theorem carefully.  We will also use the programming capabilities of the computer algebra system 
(CAS) Mathematica to visualize how circles are mapped to straight lines etc.  Mathematica is a 
general purpose CAS and has its own powerful programming language (see [4] and [5]).  
Combining this programming language with built in graphics capabilities, one can use Mathematica 
as an excellent visualization tool. 
      Such visualization powers facilitated by modern technologies can unveil an abundance of 
interesting results or questions that are not usually discussed in the traditional literature on bilinear 
transformations:  For example, if f caries a straight line 1l  into another straight line 2l , then under 
what conditions these two lines are parallel, or perpendicular?  Likewise, assuming  f carries a 
circle 1C  into another circle 2C , then under what conditions one circle touches the other, internally 
or externally?  Another interesting question is to ask under what conditions the circle 1C  will be 
identical to the circle 2C  without f being the identity map.  An integral part of this paper is to 
answer such questions.  The paper also motivates the inquisitive reader to pose his own questions 
on bilinear transformations via experimentations with a computer algebra system, to form 
conjectures, and then to prove them mathematically.  
 
 
2.  The Image of a Circle under a Bilinear Transformation 
 
      In this section, we will consider the image of a circle C centered at the origin, in the XY-plane 
under the bilinear transformation defined by equation (1.1).  One can write the equation of the 
circle C in the following form where r is its radius: 
 
 222 ryx =+  (2.1) 
 



Let iyxz +=  represent any point on the circle given by equation (2.1), which means that rz =|| . 
Let ivuw +=  where ∈vu,   be the image of z under the bilinear transformation f given by 
equation (1.1).  Thus, we have the following relationship: 
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At this point, it is fine to assume that z is such that 0≠+ dcz , so that the equation (2.2) is well-
defined.  It is not too difficult to show that the condition 0222 ≠− rcd is equivalent to the fact that  
there is no complex number 111 iyxz +=  on the circle (2.1) such that 01 =+ dcz .  We will very 
soon see the significance of this condition. 
 
The equation (2.2) implies that bdwcwaz −=− )( .  Taking the modulus of both sides and noting 
that rz =|| , and ivuw += , one obtains the following: 
 

 |)(||)(| icvcuaridvdub −−=−−  (2.3) 
 

The above equation (2.3) implies that ])[()( 2222222 vccuarvddub +−=+− , which is equivalent to 
the following key equation: 
 

 0)(2)()( 222222222222 =−+−+−+− arbbdacrurcdvrcdu  (2.4) 
 
In order to see why does the equation (2.4) represent a circle or a straight line, one has to consider 
the following two cases: 
 

Case 1: 0222 ≠− rcd  
       By completing the squares on the left-hand side, one can easily show that equation (2.4) 
represents a circle with the following information (see [3]): 
 

 )0),/()(( 2222 rcdbdacrCenter −−−=  (2.5) 
 

 ||/|| 222 rcdbcadrRadius −−=  (2.6) 
 

 Case 2: 0222 =− rcd  
      Note that this condition guarantees that 02 ≠−bdacr :  We would leave the reader to verify that 
if both 0222 =− rcd  and 02 =−bdacr , that would imply 0=−bcad , contradicting one of initial 
assumptions in the introduction (see the paragraph before equation (1.1)).  Therefore, in this case 
the equation (2.4) represents a vertical line in the UV-plane whose equation is given by 
 

 )](2/[)( 2222 bdacrbaru −−=  (2.7) 
 

By the remarks just following equation (2.2), the condition 0222 =− rcd  guarantees that there is a 
point 111 iyxz +=  on the circle C such that 01 =+dcz .  The bilinear transformation f carries this 
point 1z  to the point at infinity in the UV-plane, while all other points of the circle C are carried into 
the vertical line given by equation (2.7).  In other words, the condition  0222 =− rcd  is exactly 
what enables the circle C, a closed curve  to be mapped into a straight line, a non-closed curve. 



      A CAS such as Mathematica enables one to visualize how a circle can be mapped into another 
circle or a straight line.  In our first Program 2.1, one can choose the input values a, b, c, d, and r 
such that 0≠−bcad  and 0222 ≠− rcd .  As described in case 1 previously, the condition 

0222 ≠− rcd ensures that the circle C will be mapped into another circle.  The program plots the 
source circle C in dashed blue, and the image circle given by equation (2.4) in solid red, in the same 
coordinate plane. 
 
Program 2.1 
f[z_] := (a*z + b)/(c*z + d); 
g[x_, y_] := x^2 + y^2 - r^2; 
(* Pick a,b,c,d, and r  manually such that a*d-b*c is nonzero and d^2-r^2*c^2 is 
nonzero *)  
a = 1; 
b = 2; 
c = 1; 
d = 3; 
r = 1; 
x1[t_]:= r*Cos[t]; 
y1[t_]:= r*Sin[t]; 
x2[t_]:= Simplify[Re[Expand[f[x1[t] + I*y1[t]]]], Assumptions-> t∈Reals] 
y2[t_]:= Simplify[Im[Expand[f[x1[t] + I*y1[t]]]], Assumptions-> t∈Reals] 
p1 = ParametricPlot[{x1[t], y1[t]}, {t, 0, 2 Pi},  
                 PlotStyle -> {RGBColor[0, 0, 1], Dashing[{0.02,0.02}]}]; 
p2 = ParametricPlot[{x2[t], y2[t]}, {t, -10, 10},  
                PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}},  
                PlotStyle -> {Thickness[1/150], RGBColor[1, 0, 0]}]; 
Show[{p1, p2}, PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}},  
                                           AspectRatio -> Automatic] 
 
In order to execute the program, place the cursor on anyone of the program lines and press “Shift-
Enter” (see [4] and [5]).  The output is given below: 
 

 
 
 
 
 
   
 

 
 

Figure 2.1 The source circle (dashed line) is mapped to the image circle (solid line), where 
,3,1,2,1 ==== dcba and 1=r    

 
The Program 2.1 is quite useful in the sense that by changing the input values for a, b, c, d, and r, 
the user can experiment with different types of bilinear transformations.  For example, one might be 
curious as to when would the image circle be also centered at the origin.  As implied by equation 
(2.5), the additional condition is precisely 02 =−bdacr .  For example, for the choice of 

,2,1,2,4 ==== dcba  and 1=r , we have all the conditions ,0,0 222 ≠−≠− rcdbcad and 
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02 =−bdacr .  Therefore, the corresponding bilinear transformation maps the source circle 1|| =z  
to another circle centered at the origin, as shown in the diagram below: 
 
  

 
  
 
 
 
 
  

Figure 2.2  The source circle 1|| =z  (dashed line) is mapped to the image circle (solid line) 
centered at the origin, where ,2,1,2,4 ==== dcba and 1=r  

 
We were experimenting with different values for a, b, c, d, and r, and accidentally noticed that for 

,2,1,1,4 ==−== dcba  and 1=r , the source circle touches the image circle internally, as shown 
below:  

 
 
 
 
 
 
 
 

Figure 2.3 The source circle 1|| =z (dashed line) touches the image circle (solid line), where 
,2,1,1,4 ==−== dcba and 1=r  

 
The motivation for the following theorem was provided by the above observation. 
 
Theorem 2.1  Consider the bilinear transformation given by )/()()( dczbazzf ++=  where a, b, c, 
d, are real numbers such that 0≠−bcad .  Let C be the circle given by rz =||  where 0>r  is such 
that 0222 ≠− rcd , which ensures that the image of C under f is another circle ' . Then a necessary 
and sufficient condition for these two circles to touch is given by 
  |||||||| 2222 rcdbcadrbdacr −±−=−    
The  “+” sign in the above corresponds to the external touching of the circles, and the “ -”sign to 
internal touching. 
 
Proof.  Since the centers of both circles are on the x-axis, a necessary and sufficient condition for 
their touching is that the distance between their centers is equal to |'| rr ±  where 'r  is the radius of 
the image circle ' .  Now use the equations (2.5) and (2.6), and the details are left to the reader.   ■ 
 
Going back to case 2, where 0222 =− rcd  (just below equation (2.6)), we noticed that in this case f 
maps a circle into a straight line.  The following program illustrates this case: 
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Program 2.2  
f[z_]:=(a*z+b)/(c*z+d); 
g[x_,y_]:=x^2+y^2-r^2; 
(*Pick a,b,c,d,and r manually such that a*d-b*c is nonzero and d^2-r^2*c^2 is 
zero*) 
a=1; 
b=2; 
c=4; 
d=4; 
r=1; 
x1[t_]:=r*Cos[t]; 
y1[t_]:=r*Sin[t]; 
x2[t_]:=Simplify[Re[Expand[f[x1[t]+I*y1[t]]]], Assumptions->t∈Reals] 
y2[t_]:=Simplify[Im[Expand[f[x1[t]+I*y1[t]]]], Assumptions->t∈Reals] 
p1=ParametricPlot[{x1[t],y1[t]},{t,0,2Pi}, 
                 PlotStyle->{RGBColor[0,0,1],Dashing[{0.02,0.02}]}]; 
p2=ParametricPlot[{x2[t],y2[t]},{t,-10,10},PlotPoints->100, 
                   PlotStyle->{Thickness[1/150],RGBColor[1,0,0]}]; 
Show[{p1,p2},PlotRange->{{-2,2},{-2,2}},AspectRatio->Automatic] 
 
The output of the program is given below: 
 

 
 
 
 
 
 
 
 

Figure 2.4  The source circle 1|| =z (dashed line) is mapped to a straight line (solid line), where 
,4,4,2,1 ==== dcba and 1=r  

   

3.  The Image of a Straight Line Under a Bilinear Transformation 
 
     In this section we will investigate the image of a straight line l  in the XY-plane under the 
bilinear transformation given by equation (1.1).  One can write the equation of l  as follows, where 
p, q, and r are real numbers with )0,0(),( ≠qp : 
 0=++ rqypx  (3.1) 
 

Let iyxz +=  where ∈yx,  be any point on the line l .  Let ivuw +=  where ∈vu,   be the 
image of z under f, which means that )/()( dczbazw ++= . This implies that )/()( awcwdbz −−= , 
or the following equivalent form: 
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By matching the real parts of both sides, and also the imaginary parts of both sides of equation (3.2) 
one obtains the following (see [6]): 
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However, x and y given above must satisfy the equation (3.1).  Therefore, by substituting and 
simplifying, one obtains the following relationship between u and v: 
 

 0)(]2)([))(( 2222 =−+−+−++−+ pabrabcadqvacrbcadpupcdrcvu  (3.4) 
 

The above equation (3.4) represents the image in the UV-plane of the straight line 0=++ rqypx  
under the bilinear transformation f.  We will now consider two cases: 
 

Case 1: 02 ≠− pcdrc  
       In this case, the equation (3.4) represents a circle in the UV-plane.  By completing the square, 
one can obtain the center and the radius of this circle (see [3]): 
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 Case 2: 02 =− pcdrc            
      In this case, (3.4) represents a straight line in the UV-plane, whose equation is given by 
 

 0)(]2)([ 2 =−+−+−+ pabrabcadqvacrbcadpu  (3.7) 
   
One can write a Mathematica program similar to Program 2.1 or 2.2 to visualize the image of a 
straight line under a bilinear transformation.  The following Program 3.1 maps a straight line to a 
circle by choosing a, b, c, d, p, q, and r such that above case 1 is satisfied: 
 
Program 3.1 
f[z_]:=(a*z+b)/(c*z+d); 
g[x_,y_]:=p*x+q*y+r; 
(*Pick a,b,c,d and p,q,r  manually such that a*d-b*c is nonzero and r*c^2-p*c*d 
is nonzero*) 
a=1; b=2; c=1; d=6; 
p=1; q=1; r=-3; 
x1[t_]:=If[q!=0,t,-r/p]; 
y1[t_]:=If[q!=0,-(r+p*t)/q,t]; 
x2[t_]:=Simplify[Re[Expand[f[x1[t]+I*y1[t]]]], Assumptions->t∈Reals] 
y2[t_]:=Simplify[Im[Expand[f[x1[t]+I*y1[t]]]], Assumptions->t∈Reals] 
p1=ParametricPlot[{x1[t],y1[t]},{t,-10,10},  
                    PlotStyle->{RGBColor[0,0,1], Dashing[{0.02,0.02}]}]; 
p2=ParametricPlot[{x2[t],y2[t]},{t,-50,50}, 
               PlotPoints->200, PlotStyle->{Thickness[1/150], RGBColor[1,0,0]}]; 
Show[{p1,p2}, PlotRange->{{-2,4},{-1,4}}, AspectRatio->Automatic] 
 
 
 
 



The output of the program is given below: 
 

 
 
 
 
 
 
 

Figure 3.1  The source straight line 0=++ rqypx (dashed line) is mapped to a circle (solid line), 
where 6,1,2,1 ==== dcba and 3,1,1 −=== rqp  

 
On the other hand, if we choose 3,2,2,2 ===−= dcba  and 3,1,2 === rqp , the conditions 

0≠−bcad and 02 =− pcdrc  are satisfied, mapping a straight line into another straight line, as 
mentioned in case 2.  See the diagram below: 

 
 
 
 
 
 
 
 
 

Figure 3.2  The source straight line 0=++ rqypx (dashed line) is mapped to another straight 
line (solid line), where 3,2,2,2 ===−= dcba  and 3,1,2 === rqp  

 
The situation given in above Figure 3.2 made us curious to investigate when the source straight line 
will be perpendicular to the image straight line.  In the process, the following theorem was 
discovered: 

 
Theorem 3.1   Consider the bilinear transformation given by )/()()( dczbazzf ++=  where a, b, c, 
d, are real numbers such that 0≠−bcad .  Let l  be the straight line given by 0=++ rqypx  where 
p, q, and r are real numbers with )0,0(),( ≠qp .  Suppose further that 02 =− pcdrc , which ensures 
that the image of l  under f is another straight line 'l .  

(a) A necessary and sufficient condition for l  and 'l  to be perpendicular is 0≠c  and qp ±= . 
(b) A necessary and sufficient condition for l  and 'l  to be parallel is 0=pq or 0=c . 

 
Proof.   
(a)  It is clear that two straight lines 0111 =++ cybxa  and 0222 =++ cybxa are perpendicular if and 
only if 02211 =+ baba .  Since l  and 'l are given by equations (3.1) and (3.7) respectively, using the 
fact just mentioned, a necessary and sufficient condition for perpendicularity is the following: 
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(b) Use the fact that two straight lines 0111 =++ cybxa  and 0222 =++ cybxa are parallel if and 
only if 01221 =− baba .  The details are left to the reader.                                                                   ■ 
 
We can also use Mathematica to support the accuracy of the above Theorem 3.1.  The following 
program performs this task for part (a) of the theorem.   
 
Program 3.3 
f[z_]:=(a*z+b)/(c*z+d); 
g[x_,y_]:=p*x+q*y+r; 
a=RandomReal[{1,100}]; 
b=RandomReal[{1,100}]; 
c=RandomReal[{1,100}];             (* With this choice, c becomes nonzero *) 
d=RandomReal[{b*c/a+1,b*c/a+100}]; (*With this choice of d, ad-bc becomes  nonzero*) 
p=RandomReal[{1,100}]; 
q=RandomChoice[{-1,1},1][[1]]*p; (*This randomly chooses q to be either p or -p *) 
r=p*d/c;                         (* With this choice, r*c^2-p*c*d is zero*)  
x1[t_]:=If[q!=0,t,-r/p]; 
y1[t_]:=If[q!=0,-(r+p*t)/q,t]; 
x2[t_]:=Simplify[Re[Expand[f[x1[t]+I*y1[t]]]], Assumptions->t∈Reals] 
y2[t_]:=Simplify[Im[Expand[f[x1[t]+I*y1[t]]]], Assumptions->t∈Reals] 
p1=ParametricPlot[{x1[t],y1[t]},{t,-15,15},   
                      PlotStyle->{RGBColor[0,0,1], Dashing[{0.02,0.02}]}]; 
p2=ParametricPlot[{x2[t],y2[t]},{t,-500,500}, PlotPoints->200, 
                       PlotStyle->{Thickness[1/150], RGBColor[1,0,0]}]; 
Show[{p1,p2}, AspectRatio->Automatic, Axes->True] 
 
 
The program picks a, b, c as random real numbers from 1 to 100.  Among other things, this ensures 
c is non zero. Since the program chooses d as a random real number between 1)/( +abc , and 

100)/( +abc , d cannot be equal to )/( abc , meaning that bcad − will be nonzero. The program 
also chooses p as any random real number between 1 and 100, and q is randomly chosen to be 
either p or p− .  Since r is defined as cpd / , the condition 02 =− pcdrc is also satisfied.  Thus all 
the requirements of Theorem 3.1(a) are satisfied, and each time the program is executed, one can 
observe that the image straight line is perpendicular to the source straight line.  However, the user is 
warned that sometimes not both lines might be visible in the output – if that happens the 



“PlotRange” command of Mathematica can be used to define a new graphing window (see [5]).  
The biggest advantage of the above program is that the user does not have to manually input values 
for a, b, c, d, p, q, etc.   
   
Conclusion  
  
      In this paper, we showed how to use a CAS to make further investigations on bilinear 
transformations.  In the process several non standard results were discovered.  Modern technologies 
such as CAS can certainly shed new light into traditional mathematics topics, giving them more life 
and new meaning.  Following the spirit of the paper, the reader is encouraged to carry out more 
experiments to discover further results on these transformations – the amount of discoveries that 
can be made is only limited by his or her imagination!    
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