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Abstract

The constructive definition usually begins with a function f, then by the process of using
Riemann sums and limits, we arrive the definition of the integral of f,

∫ b
a f. On the other

hand, a descriptive definition starts with a primitive F satisfying certain condition(s) such
as F ′ = f and F is absolutely continuous if f is Lebesgue integrable, and F is generalized
absolutely continuous if f is Henstock-Kurzweil integrable. For descriptive integrals, the
deficiency is that we need to know primitive F for which F ′ = f and satisfying some
properties. For constructive integration, we proposed in [8] using an uneven partition to
get a broader family functions which includes some improper Riemann integrals. In this
paper, we describe how we can make use of the Fundamental Theorem of Calculus and
the constructive definition to reach a description definition for some improper Riemann
integrable functions that are monotonic or highly oscillating with singularity on one end.

1 Introduction

If f is continuous over a closed interval, [a, b], the Riemann integral
∫ b

a
f makes sense and in

some cases we are able to find an explicit formula for the expression F (x) =
∫ x

a
f(t)dt; in such

case we call F the primitive of f, we can check easily that the condition F ′(x) = f(x) holds.
However, in almost every case we are unable to produce a simple “closed form” expression
for F (x) by the process of taking limits of sums. We recall that the constructive definition
usually begins with a function f, then by the process of using Riemann sums and limits, we
arrive the definition of the integral of f,

∫ b

a
f. On the other hand, a descriptive definition starts

with a primitive F satisfying certain condition(s) such as F ′ = f . For example, F is uniformly
continuous over a closed interval if f is Riemann integrable over the same interval. On the other
hand, F is absolutely continuous if f is Lebesgue integrable and F is generalized absolutely
continuous if f is Henstock-Kurzweil (HK) integrable. For descriptive integrals, the challenge
is that we need to know primitive F such that F ′ = f (and satisfying some properties). In



this paper, we first describe we can construct the primitive function from a function f that is
Riemann integrable. Next, we extend this idea to two types of improper Riemann integrable
functions: One is the family of monotonic functions with singularity at one end, which normally
are computed as ‘improper’ Riemann integrals, but now they are direct results from Henstock-
Kurzweil definition. Second, we will take care of functions that are highly oscillatory with a
singularity at one end. In [8], we described how these two types of HK integrable functions can
be computed by introducing an uneven partition. In this paper, we start with a constructive
definition by using uneven partitions and reach a description definition for these two types of
improper Riemann integrable functions It is known that Fundamental Theorem of Calculus
(FTC) should be valid when a function F is differentiable on (a, b) and we have∫ b

a

F ′(x)dx = F (b)− F (a). (1)

However, the Lebesgue integration requires F ′ to be integrable over [a, b]. Essentially in this
paper, we make use of the computation methods described in [8] and show that there is a
family of computational functions that are HK but not Lebesgue integrable. In summary, the
functions we defined by using the Riemann sum with our computation scheme(s) allows us to
reconstruct the primitive F (x) =

∫ x

a
f, and the primitive F is generalized uniformly continuous

in a closed interval.
We first recall the following definitions.

Definition 1 Let F be defined on a set A ⊂ R. We say that F is uniformly continuous on A if
for every ε > 0 there exists δ > 0 such that if x, y ∈ A and |x−y| < δ, then |F (x)−F (y)| < ε.

Definition 2 For a sequence {Fn : A→ R}, we say that the sequence {Fn} converges uniformly
on A to F if for every ε > 0 there exists a positive integer N such that |Fn(x)− F (x)| < ε for
every n ≥ N and for every x ∈ A.

Definition 3 The sequence of functions {Fn : A → R} is said to be uniformly Cauchy if for
every ε > 0 there exists an N , |Fn+k(x) − Fn(x)| < ε for every positive integer n ≥ N, every
positive integer k, and for every x ∈ A.

It is known from the Weierstrass Uniform Convergence Criterion that a sequence {Fn}
converges uniformly on A to F if and only if it is uniformly Cauchy. For computation purpose,
checking if a sequence is uniformly Cauchy is more convenient than checking if a sequence is
uniformly convergence.

1.1 Graphical Approach to The Riemann Sums and Fundamental
Theorem of Calculus

We summarize how we may use the graphs of Riemann sums as described in [9] to provide an
intuitive approach to the First Form of The Fundamental Theorem of Calculus.

Suppose that f is continuous on an open interval I. Suppose that a is any number in I and
that the function F is defined by

F (x) =

∫ x

a

f(t)dt



Figure 1: The graph of f

for every x ∈ I. Then F ′(x) = f(x) for every number x ∈ I.
We use the function f(x) = |1− x sinx| with x ∈ [−3, 3] for illustration. We note that∫ x

a
f(t)dt does not posses a closed form and note that f fails to be differentiable at several

points, which can be seen in Figure 1.
We use midpoint sums sum to approximate

∫ x

0
f(t)dt. If Mf (x, n) is the midpoint approxi-

mation to
∫ x

0
f (t) dt taken over a regular partition of [0, x] into n subdivisions then

Mf (x, n) =
n∑

j=1

(x
n

)
f

(
2jx− x

2n

)
.

As we know, if x is any number then

lim
n→∞

Mf (x, n) =

∫ x

0

f(t)dt.

We shall see how the graph of
∫ x

0
f(t)dt looks like for each number x by making use of the

graphs of Mf (x, n), n = 1, 2, ... . The graphs of Mf (x, 5) and Mf (x, 15) can be seen in Figure
2(a); while the graphs of Mf (x, 25) and Mf (x, 35) can be seen in Figure 2(b), respectively.
Since f is continuous everywhere over the interval [−3, 3], the sequence Mf (x, n) is continuous
everywhere for each n, and it easy to check that Mf (x, n) converges uniformly to

∫ x

0
f(t)dt as

n→∞ in [−3, 3]. In other words, we have

lim
n→∞

Mf (x, n) =

∫ x

0

f(t)dt. (2)

Consequently, we expect the graph of
∫ x

0
f(t)dt will resemble the one in Figure 2(b).

We leave it to readers to verify graphically that

lim
n→∞

(
d

dx
Mf (x, n)

)
= f(x) (3)

Exercise: Use a computational tool to verify that limn→∞Mf (1, n) =
∫ 1

0
f(t)dt = 1 +

cos 1− sin 1.



(a) (b)

Figure 2: The graphs of Mf (x, n). (a): The graphs of Mf (x, 5) and Mf (x, 15); (b): The graphs
of Mf (x, 25) and Mf (x, 35).

1.2 Extend the FTC to some Henstock Integrals

First, we introduce some preliminary notations and definitions. Let A = [a, b], we say P =
{(A1, x1), ..., (An, xn)} is a partition of A if A1, ..., An are non-overlapping subintervals, xi ∈ Ai,
for i = 1, 2, ..., n, and ∪ni=1Ai = A.

Let δ be a positive function defined on A. A partition P = {(A1, x1), ..., (An, xn)} is called
δ-fine if Ai ⊂ (xi − δ(xi), xi + δ(xi)), for i = 1, 2, ...n. We first give the definition of Henstock-
Kurzweil integration on one dimension.

Definition 4 A real-valued function f is said to be Henstock-Kurzweil integrable (or simply
HK-integrable) with value I on [a, b] if for every ε > 0 there is a positive function δ on [a, b]
such that ∣∣∣∣∣

n∑
i=1

f(xi) |Ai| − I

∣∣∣∣∣ < ε (4)

for each δ-fine partition P of A, where |Ai| denotes the length of Ai, i = 1, 2, ..., n. In such case,

we write
∫ b

a
fdx or simply

∫ b

a
f .

Alternatively, we can use the following

Definition 5 A real-valued function f is said to be Henstock-Kurzweil integrable (or simply
HK-integrable) with value I on an interval A = [a, b] if there is a sequence of delta functions
δn(x) such that for every δn(x)-fine division Dn, the Riemann sums

∑n
i=1 f(xi) |Ai| → I as

n→∞.

The Henstock integral and our quadratures can be stated in higher dimensions as discussed
in [7]. However, we describe how we apply the FTC on some HK-integrals in one dimension
in this paper. First we use the following definition to introduce the uneven partitions on an
interval.



Definition 6 A matrix A with positive ank is called uniformly regular if the following conditions
are satisfied:
(i) limn→∞ ank = 0 uniformly over k.
(ii)

∑n
k=1 ank = 1.

We introduce the following quadratures in 1-D:
The closed type quadrature

Q1
n(f) =

n∑
k=1

ank
2

(f(un,k−1) + f(unk)) (5)

or

Q2
n(f) =

1

2
an1f(un1) +

n∑
k=2

ank
2

(f(un,k−1) + f(unk)) (6)

where unk = a+
∑k

i=1 ani, and un,0 = a.
Remarks:

(1) By looking the ank =
2(b− a)k

n(n+ 1)
, we have an1 < an2 < ... < ann,

∑n
k=1 ank = b− a for each

n, which is the basis of our choice of uneven partitions.
(2) Both quadratures are similar to the trapezoidal rule except we are using uneven partitions,
which are the essence of the HK-integration.
(3) In the closed type quadrature, if the Eq. (5) contains the singularity at the end point at
x = a, or x = b, we set f(a) = 0 or f(b) = 0 respectively.
(4) In Eq. (6), we consider the integral value of f over the first interval [a, un1]. In other words,
we ignore the singularity at x = a. We shall see we apply this quadrature for functions that are
monotonic and have singularities near the end point.

2 Improper Riemann Integrals

2.1 Monotone functions

We summarize the computation quadrature mentioned from [8] for completeness. Suppose we
denote Qn(f) as either closed or open quadrature described above in the interval [a, b]. We recall
the following theorem from [8] without proof, which says that there is no improper Riemann
integrals under HK-definition.

Theorem 7 If f is Riemann integrable over [c, b] for each c ∈ (a, b] and improper Riemann
integrable over the interval [a, b] or limn→∞Q

1
n(f) exists. Then f is HK-integrable over [a, b],

and we have ∫ b

a

f = lim
n→∞

Q1
n(f) = lim

n→∞

(
n∑

k=2

ank
2

(f(un,k−1) + f(unk))

)
, (7)

where Q1
n(f) is the quadrature applied on the interval [a, b].

In particular, if a function f is monotonic over (a, b] and has a singularity at x = a, Eq. (7)
can be replaced by∫ b

a

f = lim
n→∞

Q2
n(f) = lim

n→∞

(
1

2
an1f(un1) +

n∑
k=2

ank
2

(f(un,k−1) + f(unk))

)
. (8)



The following theorem is useful when we use a uniformly regular matrix ank for computing
a monotonic and improper Riemann but HK-integrable function.

Theorem 8 If f is Riemann integrable over [c, b] for each c ∈ (a, b]. If for each ε > 0, there
exists a regular matrix ank such that |f(un1)an1| < ε. Then f is HK integrable over [a, b] and∫ b

a

f = lim
n→∞

Q2
n(f) = lim

n→∞

(
1

2
an1f(un1) +

n∑
k=2

ank
2

(f(un,k−1) + f(unk))

)
. (9)

Proof. f is Riemann integrable on [c, b] for each c ∈ (a, b], so f is HK-integrable on [c, b] for
each c ∈ (a, b].

Let L =
∫ b

c
f and Let ε > 0. By theorem 8 in [8], there exists a positive function δ1 on

(a, b] and P is a δ1 − fine partition in (c, b], then |f(P) −
∫ b

c
f | < ε. Choose η > 0 so that

|
∫ b

c
f − L| < ε for all c ∈ (a, a+ η), define a positive function δ on [a, b] by

δ(x) =

{
min{δ1(b), x− a} x ∈ (c, b]

min{η, ε
1+f(c)

} x = a
, (10)

Suppose that P is a δ − fine partition of [a, b] and (c, [a, c]) can be subinterval belongs to
P where a < x < a+ η. Let Pa = P− {(c, [a, c])} and compute

∣∣f(P)− L
∣∣ ≤ ∣∣f(Pa)−

∫ b

c

f
∣∣+
∣∣ ∫ b

c

f − L
∣∣+ |f(c)|η < ε+ ε+ ε = 3ε.

We see that f is HK-integrable on [a, b] and∫ b

a

f = lim
n→∞

Q2
n(f) = lim

n→∞

(
1

2
an1f(un1) +

n∑
k=2

ank
2

(f(un,k−1) + f(unk))

)
.

We next see how we can reconstruct the primitive F of f through the process of Fundamental
Theorem of Calculus when f is improper Riemann integrable over an interval. First we show
that the convergence limn→∞Qn(f)(x) is uniform for all x ∈ [a, b], where Qn(f)(x) denotes the
function when Qn(f) is applied on [a, x] for each x ∈ (a, b]. In other words, we make use of
the Riemann sum, Qn(f), to reconstruct the primitive F of f . More precisely, we prove the
following:

Theorem 9 If f is Riemann integrable over [c, b] for each c ∈ (a, b] and f(a) = 0. Given a
uniformly regular matrix ank over [a, b], if we write F (x) = limn→∞Qn(f)(x), where Qn(f)(x)
denotes the function when Qn(f) is applied on [a, x].Then (i) F (x) is continuous over [a, b], (ii)
f is HK-integrable over [a, b], (iii)

∫ x

a
f = F (x) and F ′(x) = f(x) over [a, b].

Proof. First, we note that Qn(f)(a) = 0. For x ∈ (a, b], the function Qn(f)(x) is continuous,
and we see F (x) = limn→∞Qn(f)(x) =

∑∞
n=1Qn(f)(x). Since Qn(f)(x) is continuous for each

x ∈ (a, b],and the convergence of the infinite series is uniform, F is continuous over [x, b] for each
x ∈ (a, b]. It remains to show that F is continuous at x = a,

∫ x

a
f = F (x) and F ′(x) = f(x).



(i) We claim that F is continuous at x = a from the right. Let x→ a+,

lim
n→∞

(
lim
x→a+

Qn(f)(x)

)
= lim

x→a+

(
lim
n→∞

Qn(f)(x)
)

= lim
x→a+

(∫ x

a

f

)
= F (a) = 0. (11)

Therefore F is continuous at x = a from the right.
(ii) We note that F (x) = limn→∞Qn(f)(x) =

∑∞
n=1Qn(f)(x) =

∫ x

a
f.

(iii) We only need to prove that F ′(a) = f(a) = 0 :

F ′(a) = lim
x→a+

F (x)− F (a)

x− a
= lim

x→a+

∫ x

a
f − 0

x− a
= f(a) = 0. (12)

We apply Theorem 8 on the following two examples, which is to say that improper Riemann
integrals are HK-integrable and we can use the quadrature mentioned above to compute their
respective integrals.

Example 10 We define f(x) = 1/
√
x if if x 6= 0, and f(0) = 0. We choose ank = 2k

n(n+1)
,

then |f(un1)an1| =
√

2
n(n+1)

→ 0. Thus f is integrable over [0, 1] and it is proved in [8] that∫ 1

0
f = limn→∞Q

2
n(f) = 2.

Example 11 We define f(x) =
ex√
x+ 1

if if x 6= 0, and f(0) = 0.We choose ank = 2k
n(n+1)

,then

|f(un1)an1| =
2e

2
n(n+1)√

(2+n2+n)(n(n+1))
n(n+1)

→ 0. (13)

Therefore, it follows from Theorem 8 that f is improper Riemann integrable but f is HK-
integrable over [0, 1], and it can be shown that

∫ 0

−1 f = limn→∞Q
2
n(f) ≈ 1.076. We further

note that if we define F (x) = limn→∞Qn(f)(x), then we are able to use a computational tool
to simulate the graph of primitive F of f as follows as we did in Section 1.1. We plot y = f(x)
and y = Q100(f)(x) over the interval [−1, 0] in Figures 3(a) and 3(b), respectively.

2.2 Highly Oscillating Functions

In this section, we discuss those highly oscillating functions with one singularity near one end
of the interval. The following example shows that dividing the entire interval [a, b] unevenly by
using ank is not sufficient for computing a highly oscillating, non-absolute integrals.

Example 12 We define f(x) = 1
x

sin( 1
x
) if x 6= 0, and f(0) = 0. We shall show that f is

HK-integrable though not Lebesgue integrable over [0, 1] when we prove its two dimensional

extension in the next section. We demonstrate how we approximate the integral
∫ 1

0
f . We first

note the followings:
(1) We can’t apply the uneven partition and quadrature over the interval [0, 1] in one step.
Instead, we construct a sequence {xn} converges to 0.
(2) In other words, we select

xi = 5−(i−1) (14)



(a) (b)

Figure 3: The graphs of f and its primitive F . (a): The graph of f ; (b): The graph of the
primitive F of f .

for i = 1, 2, .... We approximate the integral of f in each Ii = [xi+1, xi] and denote the integral of
f over Ii by Ai when applying the closed type quadrature Q2

n(f) =
∑n

k=1
ank

2
(f(un,k−1) + f(unk)),

where un0 = xi+1,and unk = xi+1 +
∑k

i=1 ani.
(3) For each x ∈ [xi+1, xi], we write Fi(x) = limn→∞Q

i
n(f)(x), where Qi

n(f)(x) denotes when
Qn(f) is applied on [xi+1, x].Then∫ 1

0

f ≈
r∑

i=0

Fi(x) =
r∑

i=1

Ai, (15)

for some r. If we use the matrix ank =
2k

n(n+ 1)
and the closed type quadrature in each Ii =

[xi+1, xi] for i = 1, 2, ...6,and with the help of Matlab and the closed type Q2
n(f), we have shown

in [8] that
∫ 1

0
f is approximately equal to 6.247327401459105e− 001.

Remark: We demonstrate the convergence of F (for the function in above Example) being
uniform in the interval of [5−3, 5−2] graphically in http://mathandtech.org/Yang/Henstock_

integral/henstock2010_Feb1.html, but the convergence is not uniform in [0, 1].In other
words, F is a countable union of uniformly continuous function. We can use a computable
tool to demonstrate that the graphically that

y = Q2
n(f)(x) is getting closer to y = F2(x) in [5−3, 5−2], and (16)

y = Q3
n(f)(x) is getting closer to y = F3(x) in [5−4, 5−3], (17)

although it is evidently that the second graphical representation will consume much more com-
putation time. We demonstrate the graphs of y = F2(x) and y = F3(x) are shown respectively
in Figures 4(a) and 4(b).

In view of Example 12 , we have the following definition.

Definition 13 If a function F is said to be generalized uniformly continuous (UCG) on a set
X if X is a countable union of Xi, or X =

⋃∞
i=1Xi, such that F is uniformly continuous on

each Xi.

http://mathandtech.org/Yang/Henstock_integral/henstock2010_Feb1.html
http://mathandtech.org/Yang/Henstock_integral/henstock2010_Feb1.html


(a) (b)

Figure 4: The graphs of y = F2(x) and y = F3(x). (a): The graph of F2(x); (b): The graph of
F3(x).

Theorem 14 Let {xr} → a+, and Ar = limn→∞Qn(f) in [xr+1, xr], where x0 = b. If
∑∞

r=0Ar

converges, then f is HK-integrable over [a, b] and∫ b

a

f =
∞∑
r=0

Ar. (18)

Furthermore, for each x ∈ [xr+1, xr], if we write Fr(x) = limn→∞Q
r
n(f)(x), where Qr

n(f)(x)
denotes when Qn(f) is applied on [xr, x].Then (i) Fr(x) is uniformly continuous (UC) on

[xr+1, xr], (ii) Fr(xr) = Ar,(iii)
∫ b

a
f =

∑∞
r=0 Fr(xr) =

∑∞
r=0Ar. In other words, if we write

F (x) =
∑∞

r=0 Fr(x), then F is UCG on [a, b].

Proof. The proof of the first part of this Theorem is done in [8].
As Ar = limn→∞Qn(f) in [xr+1, xr], we have that f is HK-integrable over [xr+1, xr]. So for

each x ∈ [xr+1, xr], limn→∞Q
r
n(f)(x) exists and

∫ xr+1

x
f = limn→∞Q

r
n(f)(x) = Fr(x).

So the primitive Fr(x) of f is continuous in [xr+1, xr], and Fr(x) is UC there from the
Theorem 5.48 in [7].

In addition,
∫ xr

xr+1
f = limn→∞Q

r
n(f)(xr) = Fr(xr) = Ar, and

∫ b

a
f =

∑∞
r=0 Fr(x) =∑∞

r=0Ar.

Theorem 15 Assume the conditions of the preceding Theorem are met, and we write F (x) =∑∞
r=0 Fr(x), then F ′(x) = f(x) for all x in [a, b] and F is generalized uniformly continuous on

[a, b].

Proof. For each x ∈ (a, b], there exists a N and x ∈ [xN+1, xN ]. Then F (x) can be rewritten
as:

F (x) =


F0(x) x ∈ [x1, x0]

F1(x) + A0 x ∈ [x2, x1]

· · · · ··
FN(x) +

∑N−1
r=0 Ar x ∈ [xN+1, xN ]

.



In [xr+1, xr], r = 0, 1, .., N , as every Fr(x), is continuous and is the primitive of f , so
(Fr(x))′ = f(x) and Fr(x) is UC. So for each x ∈ (a, b], F ′(x) = f(x).

Fr(x) is UC in [xr+1, xr], let r →∞ then we have F ′(a) = f(a). So F ′(x) = f(x) for all x
in [a, b] and F is generalized uniformly continuous on [a, b].

We conclude the discussion of FTC by reminding readers that theoretically, we have a more
general theorem regarding the HK-integrable functions below. In other words, we can allow
more singularities in an interval and the theorem can be extended into higher dimensions, which
is so called the Divergence Theorem, see [5].

Theorem 16 If F ′ = f on [a, b], then f is HK-integrable over [a, b] and∫ b

a

f = F (b)− F (a). (19)

Proof. This follows from the definition of HK integration, see ([5], Theorem 6.1.2, page 103).

3 Conclusion

In this paper, we described how we can replace the ‘even partitions’ with ‘an uneven partition’
in Riemann sum definition to reach a HK-definition. This allows us to handle some improper
Riemann integrals. We also discussed the properties for these special types of primitive func-
tions, which are generalized uniformly continuous functions, which are natural extensions from
the primitive functions of Riemann integral functions. The approaches here are intuitive with-
out the knowledge of Lebesgue measure and integration theories, which we think are more
accessible to undergraduate students. Since the primitive function for a highly oscillatory with
singularity at one end point and non-absolute HK-integrable function is generalized uniformly
continuous, our future works will involve the use of different uneven partitions in each subin-
tervals.
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