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Abstract

Compute algebra systems are getting more and more attention from the society
of engineering and industry, because of its ability to handle a symbolic parameter.
This ability is particularly advantageous for a controller design of a system that
contains a parameter, since it is difficult to apply conventional numerical methods
to such a system directly.

Given a square transfer function matrix G(s), G(s) is said to be strongly positive
real if and only if G(iω)+G(−iω)T is a positive definite matrix for all ω ∈ R∪{±∞}.

Strongly positive real systems, in short, correspond to systems made up of
passive elements such as resistance, inductance and capacitance. The concept of
strongly positive real functions has been used in, for example, stability analysis
of nonlinear systems, adaptive control, and so on. Although algorithms to check
strong positive realness has been already reported, the algorithms are numerical
and can not be applied directly to a system that contains a parameter.

This paper focuses on a system that contains a parameter. In this case, the
system is strongly positive real for certain values of k, i.e. there exists a range Ω
of real numbers such that “k ∈ Ω⇔ the given system is strongly positive real”. In
this paper, we present a method to compute such range a Ω of the parameter k.
The method utilizes the properties of a certain ARE (Algebraic Riccati Equation)
that has close relationships with strong positive realness of a system.

1 Introduction

In control engineering, numerical packages such as MATLAB, Octave, Scilab have been
used to design and analyze a control system. These packages provide easy access to
advanced modern control theory such as H∞ control, µ analysis and controller designs
based on LMI (Linear Matrix Inequality). However, since these numerical packages can



not handle a symbol, they can not be directly applied to control systems that contain a
parameter. Computer algebra system (CAS) provides one approach to solve the prob-
lem, and applications of computer algebra to the design and analysis of control system
is increasing. For example, references [1] and [2] apply QE (Quantifier elimination) tech-
nique to the design and analysis of control systems. References [3] and [4] treat the H∞
problem, presenting algorithms to compute the H∞ norm of a system that contains a
parameter. References [5] and [6] also treat H∞ problem for a system that contains a pa-
rameter, where H∞ optimal control problem is discussed (in H∞ optimal control problem,
we compute the minimum H∞ norm achievable by static or output feedback controllers).
Reference [7] focuses on an H2 optimal problem for a system that contains a parameter.

In this paper, we focus on strong positive realness of a system that contains a parame-
ter. In this case, the system is strongly positive real for certain values of k, i.e. there exists
a range Ω of real numbers such that “k ∈ Ω⇔ the given system is strongly positive real”.
This paper presents a method to compute such a range Ω of parameter k.

In the rest of the paper, we use the following notations:

i : The imaginary unit, i.e., i2 = −1.

E : The unit matrix in appropriate size.

R : The set of real numbers.

Det(M) : Determinant of matrix M .

MT : Transpose of matrix M .

M > 0 : Matrix M is positive definite (i.e. symmetric and has real positive eigenvalues).

Resx(r1(x), r2(x)) : Resultant of polynomials r1(x) and r2(x) with respect to x.

2 Problem formulation

Let G(s) be a given square transfer function matrix of a system, and A, B, C,D be its
state-space realization, i.e., G(s) = C(sE − A)−1B + D.

Definition 1 G(s) is strongly positive real if and only if

G(iω) + G(−iω)T is a positive definite matrix for all ω ∈ R ∪ {±∞}. (1)

Suppose that we are asked the question “Is a given system strongly positive real or not
?”. When the given system contains no parameters, the answer is yes or no (if condition
(1) is satisfied, then “yes”, and otherwise “no”). However, when a given system contains
a parameter k, the answer is more complicated. In general, the answer depends on the
value of parameter k, and there may exist a range Ω of real numbers such that

k ∈ Ω⇔ G(s) is strongly positive real. (2)

In this paper, we present algorithms to compute such a range Ω. First, we note the
following lemma:



Lemma 2 If G(s) (= C(sE − A)−1)B + D is strongly positive real, then D + DT is a
positive definite matrix.

Proof
Since we have G(s) = C(sE − A)−1B + D and C(sE − A)−1B is strictly proper

(degree of the denominator with respect to s is greater than that of the numerator), we
have G(iω) → D (ω → ∞). Thus, G(iω) + G(−iω)T → D + DT (ω → ∞). This and
the assumption of the theorem complete the proof. �

The above lemma implies that D + DT > 0 is a necessary condition for a system to
be strongly positive real. Hence, in the rest of the paper, we assume that D + DT > 0
for all parameter values of k. We also assume that a given system G(s) is stable for all
parameter values of k (otherwise, we limit the parameter values to the range satisfying
these conditions).

Let us focus on condition (1), which is difficult to check directly, because it is necessary
to check positive definiteness of G(iω) + G(−iω)T for infinitely many ω. However, we
have the theorems outlined below:

Theorem 3 G(s) is strongly positive real if and only if there exists positive definite
matrix P satisfying(

P 0
0 −I

) (
A B
C D

)
+

(
A B
C D

)′ (
P 0
0 −I

)
< 0. (3)

Theorem 4 G(s) is strongly positive real if and only if the algebraic Riccati equation
(ARE)

X(A−BR−1C) + (A−BR−1C)T X + XBR−1BT X + CT R−1C = 0 (4)

has a stabilizing solution X, where R = D + DT .

Theorem 3 presents a LMI condition that is equivalent to (1), and Theorem 4 presents
another equivalent condition based on an ARE. The two conditions are independent, and
we can apply each condition separately for the computation of a range Ω that satis-
fies (1). In fact, LMI condition (3) in Theorem 3 can be formulated as a proposi-
tion with quantifiers (∀,∃) if we let each entry of symmetric matrix P be variables, i.e.

P =

 p1,1 · · · p1,n
...

...
...

p1,n · · · pn,n

. This implies that it is possible to compute a range Ω in (1)

with QE (Quantifier elimination) technique. However, since the number of variables pi,j

increase quadratically with respect to n, this method has difficulties in computational
complexities. Hence, in the next section, we present another algorithm to compute that
utilizes Theorem 4.



3 Algorithm

First, we briefly explain a standard algorithm to solve ARE equation

XÂ + ÂT X + XR̂X + Q̂ = 0. (5)

See standard textbook such as [8] for details.

Algorithm 1 ([8])

Input: ARE (5)
Output: Stabilizing solution X of (5)

〈1〉 Let matrix H be

H =

[
Â R̂

−Q̂ −ÂT

]
. (6)

〈2〉 Let λi (i = 1, · · · , n) be eigenvalues of H that have negative real parts, and let vi

be the eigenvector corresponding to eigenvalue λi.

〈3〉 Let n× n matrices X1, X2 be[
X1

X2

]
=

[
v1 · · · vn

]
, (7)

and output X = X2X
−1
1 .

From the above algorithm, we see that there exists stabilizing solution X of (5) if and
only if the following two conditions are satisfied:

(C1) There exist n eigenvalues of H that have negative real parts.

(C2) X1 in (7) is not singular.

Therefore, Ω is a range such that

k ∈ Ω⇔ Both of the conditions (C1) and (C2) are satisfied. (8)

This implies that Ω can be written as Ω = Ω1 ∩ Ω2, where Ω1 and Ω2 are defined by

Ω1 = { k | Condition (C1) is satisfied}, Ω2 = { k | Condition (C2) is satisfied}. (9)

First, let us consider Ω1. It is well-known that if λ is an eigenvalue of H, then −λ is also
an eigenvalue of H. Hence,

eigenvalues of H are given by λ1, · · · , λn,−λ1, · · · ,−λn. (10)

This implies that the above condition (C1) is equivalent to

(C1’) Matrix H has no pure imaginary eigenvalues.



Let ωj (j = 1, · · · , m) be real numbers such that for small enough real number ε (> 0),
condition (C1’) is not satisfied at k = ωj − ε, while the same condition is satisfied at
k = ωj + ε. Similarly, let ωj (j = 1, · · · , m) be real numbers such that for small enough
real number ε (> 0), condition (C1’) is satisfied at k = ωj − ε, while the same condition
is not satisfied at k = ωj + ε. Then, from condition (C1’) and (10), we see the following

(A1) H has multiple eigenvalues ri (r ∈ R) at k = ωj, ωj.

(A2) Region Ω1 can be written as

Ω1 = Ω1,1 ∪ Ω1,2 ∪ · · · ∪ Ω1,u, Ω1,j = { x ∈ R | ωj < x < ωj }, (11)

where ωj ∈ {−∞, µ1, · · · , µm} and ωj ∈ {µ1, · · · , µm,∞}.

From the properties of the resultant we have (for details of the resultant, see [11])

H has multiple eigevalues at k = k0 ⇔ χ(x) = Det(xE −H) has multiple roots at k = k0

⇔ Resx(χ(x), χ′(x))|k=k0 = 0. (12)

This and (A1) imply that ωj and ωj are roots of Resx(χ(x), χ′(x)) = 0 with respect to k.
From this and (A2), we obtain the following algorithm to compute region Ω1 in the form
of (11) (similar algorithm is used to solve H∞ problem in [4]).

Algorithm 2

Input: Matrix H
Output: Range Ω1 of real numbers in (9)

〈1〉 Compute the characteristic polynomial χ(x) = Det(xE −H) of H.

〈2〉 Compute the real roots αj (α1 < α2 < · · · < αm) of Resx(χ(x), χ′(x)) = 0.

〈3〉 Determine ωj, ωj, computing the roots of χ(x) at k = α1 − 1, (αj + αj+1)/2 (j =
1, · · · , m − 1), αm + 1, αj (j = 1, · · · , m) (note that ωj ∈ {−∞, µ1, · · · , µm} and
ωj ∈ {µ1, · · · , µm,∞}).

Next, let us consider the computation of Ω2. In this case, we can use the algorithm in
[5] and [6], which we will explain briefly below (for details, refer to [5] and [6]). First, we
compute the eigenvector v(λ) corresponding to an eigenvalue λ of H with the following
algorithm, leaving λ as an indeterminate:

Algorithm 3 ([5],[6])

Input: Matrix H
Output: Eigenvector v(λ) corresponding to an eigenvalue λ of H
Remark: λ is an indeterminate

〈1〉 Let x be x = [ x1 · · · x2n ] and compose 2n linear equations (λE −H)x = 0 (each
entry of (λE −H)x = 0 forms a linear equation).



〈2〉 Select (2n − 1) linear equations from the above 2n equations. Then, solve the
equation with respect to x1, · · · , x2n−1.

〈3〉 Substitute the solution of x1, · · · , x2n−1 into x, and multiply an adequate polynomial
so that each entry of x becomes a polynomial in λ.

〈4〉 Let v(λ)← x/x2n and output v(λ).

The above algorithm outputs eigenvector v(λ) corresponding to eigenvalue λ of H. Hence,
matrices X1 and X2 in Algorithm 1 can be written as[

X1

X2

]
=

[
v(λ1) · · · v(λn)

]
, (13)

where λ1, · · · , λn are eigenvalues of H with negative real parts. Let us define n × n
matrices Λ1(y1, . . . , yn) and Λ2(y1, . . . , yn) by[

Λ1(y1, . . . , yn)
Λ2(y1, . . . , yn)

]
def
=

[
v(y1) · · · v(yn)

]
, (14)

where y1, . . . , yn are variables. Then, from (13) and (14), we see that X1 = Λ1(λ1, · · · , λn).

Since Det(Λ1(y1, . . . , yn)) is an alternating polynomial in y1, . . . , yn, Det(Λ1(y1,...,yn))Q
l<m(yl−ym)

is a

symmetric polynomial in y1, . . . , yn. Therefore, we obtain the following;

(P1)
∏

sl=±1

{
Det(Λ1(y1,...,yn))Q

l<m(yl−ym)

}∣∣∣
(y1,...,yn)=(s1λ1,··· ,snλn)

is a symmetric polynomial λ2
1, · · · , λ2

n.

(P2) |X1| = Det (Λ1(λ1, · · · , λn)) = 0⇒
∏

sl=±1

{
Det(Λ1(y1,...,yn))Q

l<m(yl−ym)

}∣∣∣
(y1,...,yn)=(s1λ1,··· ,snλn)

=

0.

Since we have

|xE −H| = (x2 − λ2
1) · · · (x2 − λ2

n) = x2n + g2n−2(k)x2n−2 + · · ·+ g0(k), (15)

fundamental symmetric polynomials of λ2
1, · · · , λ2

n are given by g2n−2(k), · · · , g0(k). This
and the above (P1) imply that there exists polynomial ξ(k) in k satisfying

ξ(k) =
∏

sl=±1

{
Det(Λ1(y1, . . . , yn))∏

l<m(yl − ym)

}∣∣∣∣
(y1,...,yn)=(s1λ1,··· ,snλn)

(16)

that can be computed by the algorithm outlined below:

Algorithm 4 ([5],[6])

Input: Matrix H
Output: Polynomial ξ(k) in (16)

〈1〉 Compute eigenvector v(λ) of H with Algorithm 3.



〈2〉 Let Λ1(y1, . . . , yn) be matrix defined by (14) and compute∏
sl=±1

{
Det (Λ1(y1, . . . , yn))∏

l<m(yl − ym)

}∣∣∣∣
(y1,...,yn)=(s1λ1,··· ,snλn)

(17)

as a symmetric polynomial in λ2
1, · · · , λ2

n.

〈3〉 Compute the characteristic polynomial |xE − H| of H and compute fundamental
symmetric polynomial g2r(k) (r = 0, · · · , n− 1) of λ2

1, · · · , λ2
n.

〈4〉 Eliminate λ2
1, · · · , λ2

n in (17) in 〈3〉, computing Groebner basis (see [9] and [10]) of{
Polynomial (17), g0(k)− (−1)nλ2

1 · · ·λ2
n, · · · , g2(n−1)(k)− (−1)(λ2

1 + · · ·+ λ2
n)

}
.

(18)
with lexicographic order λ1, · · · , λn � k, and output the result.

The above (P2) and (16) imply that

|X1| = 0⇒ ξ(k) = 0. (19)

Therefore, we obtain such that

Condition (C2) is not satisfied at k = k0 (∈ R)⇒ ξ(k0) = 0. (20)

In other words, k0 ∈ R satisfying condition (C2) is a root of polynomial ξ(k) (note that
the converse of the statement may not be true, i.e. a root of φ(k) is not necessarily
value of k where condition (C2) is not satisfied). Thus, finally, we obtain the following
algorithm to compute Ω2.

Algorithm 5

Input: Matrix H
Output: Range Ω2 of real numbers in (9)

〈1〉 Compute polynomial ξ(k) in (20) by Algorithm 4.

〈2〉 Compute the real roots αj (j = 1, · · · , m) of ξ(k), and let Γ = {} (empty set).

〈3〉 Check condition (C2) for k = αj (j = 1, · · · , m). If the condition is not satisfied
(i.e. X1 is singular at k = αj), then add αj into Γ (i.e. let Γ→ Γ ∪ {αj}).

〈4〉 Output Ω2 = Γc = { x ∈ R | x 6∈ Γ }.
Thus, we obtain the following algorithm to compute Ω.

Algorithm 6

Input: Matrix H
Output: Range Ω of real numbers in (8)

〈1〉 Compute polynomial Ω1 by Algorithm 2.

〈2〉 Compute polynomial Ω2 by Algorithm 5.

〈3〉 Output Ω = Ω1 ∩ Ω2.



4 Numerical example

Let us consider the system where A, B, C,D is given by

A =

[
−1 1
0 −2

]
, B =

[
1
k

]
, C =

[
k + 1 1

]
, D =

[
1

]
. (21)

In this case, eigenvalues of A are −1, −2, and the system is stable for any k ∈ R. Transfer
function G(s) and matrix H in (6) are given by

G(s) = C(sI − A)−1B + D =
s2 + (2k + 4)s + k2 + 4k + 4

s2 + 3s + 2
,

H =

[
Â R̂

−Q̂ −ÂT

]
=

[
A−BR−1C BR−1BT

−CT R−1C −AT + CT R−1BT

]

=
1

2


−k − 3 1 1 k
−k(k + 1) −k − 4 k k2

−(k + 1)2 −k − 1 k + 3 k(k + 1)
−k − 1 −1 −1 k + 4

 . (22)

We will compute range Ω in (2) by Algorithm 6. First, we compute Ω1 by Algorithm
2.

〈1〉 The characteristic polynomial χ(x) of H is computed to be

χ(x) = Det(xE −H) = x4 + (k2 − 2k − 6)x2 + 2k2 + 8k + 8. (23)

〈2〉 Resultant Resx(χ(x), χ′(x)) is computed to be

Resx(χ(x), χ′(x)) = 32(k + 2)2(k4 − 4k3 − 16k2 − 8k + 4)2, (24)

whose real roots are

α1 = −2, α2 = −1.76733, α3 = −1.13165, α4 = 0.303225, α5 = 6.59575, (25)

where the values of α1, . . . , α5 are given to six significant figures.

〈3〉 Computing the roots of χ(x) at k = α1−1, (αj +αj+1)/2 (j = 1, · · · , 4), α5 +1, we
see that χ(x) has no pure imaginary roots at k = (α2 + α3)/2, (α3 + α4)/2, (α4 +
α5)/2, α3, α4. Thus, we obtain ω1 = α2 = −1.76733, ω1 = α5 = 6.59575 and

Ω1 = Ω1,1, Ω1,1 = { x ∈ R | − 1.76733 < x < 6.59575 }. (26)

Next, we will compute Ω2 with Algorithm 5. Polynomial ξ(k) in (20) is computed by
Algorithm 4 as follows:



〈1〉 Eigenvector v(λ) of H is computed to be

v(λ) =


k(λ− 1)(λ + k + 2)

k2(λ− 1)(λ + 1)
k(k + 1)(λ + 1)(λ + 2)

2λ3 + (k + 4)λ2 + (k2 − k − 4)λ− k2 − 6k − 8

 . (27)

〈2〉 From the above v(λ), we obtain∏
sl=±1

{
Det (Λ1(y1, . . . , yn))∏

l<m(yl − ym)

}∣∣∣∣
(y1,...,yn)=(s1λ1,··· ,snλn)

= 63336k4 + · · ·+ 16k8λ8
1λ

8
2.

(28)

〈3〉 Since the characteristic polynomial ξ(x) of H is given by (23), we have g0(k) =
2k2 + 8k + 8, g1(k) = k2 − 2k − 6.

〈4〉 Computing Groebner basis of{
63336k4 + · · ·+ 16k8λ8

1λ
8
2, 2k2 + 8k + 8− λ2

1λ
2
2, k2 − 2k − 6 + (λ2

1 + λ2
2)

}
,
(29)

we obtain ξ(k) = 9k12(k + 1)8.

Therefore, Ω2 is computed by Algorithm 6 as follows:

〈1〉 As is shown above, ξ(k) = 9k12(k + 1)8.

〈2〉 The real roots of ξ(k) are α1 = −1, α2 = 0.

〈3〉 X1|k=α1 and X1|k=α2 are given by

X1|k=α1 =

[
−3− 2

√
2 1

3 + 2
√

2 0

]
, X1|k=α2 =

[
−1 3 + 2

√
2

1 0

]
, (30)

neither of which is singular. Thus, Γ = {}.

〈4〉 Therefore, Ω2 = Γc = R (the set of real numbers).

From the above results, we obtain Ω = Ω1∩Ω2 = { x ∈ R | −1.76733 < x < 6.59575 }.

5 Conclusion

Let G(s) be a given square transfer function matrix that contains a parameter k. This
paper presents a method to compute the range Ω of parameter k where G(s) is strongly
positive real, i.e.

k ∈ Ω ⇔ ∀ω ∈ R ∪ {±∞}, G(iω) + G(−iω)T > 0. (31)



Two theorems (Theorem 3 and Theorem 4) are presented to compute the range Ω.
Theorem 3 describes the relation between strong positive realness of a system and the
solution of LMI, while Theorem 4 describes the relation between strong positive realness
of a system and ARE.

Although it is possible to computes Ω if we apply QE technique to Theorem 3,
the method based on QE has difficulties in computational complexities (QE is known to
be computationally heavy), and can not be applied for a practical problem. Hence, in
this paper, we present a method based on Theorem 4. We also present an example to
illustrate the method.
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