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Abstract

The standard triumvirate of “New Media” in the mathematics curriculum — CAS, DGS
and spreadsheet — is establishing its secured position in teaching. This article illustrates,
using the evolution of the software Cinderella as a guiding example, how a further inte-
gration of these products will allow for new teaching approaches. These will support the
formation of important mathematical competencies, such as the ability to find and rate
mathematical models for real world problems. A central observation is the algorithmic
nature of user-defined functions and that it is crucial for the learning process to be able
to execute algorithms step by step.

1 Introduction

Many teachers today consider integrating the computer into their curriculum, or they already
made this step. We are not discussing the reasons for this trend in this article, and neither will
we judge this as either good or bad. Instead, we will point out how software interoperability and
integration offers new possibilities of media use in the classroom for mathematics education.

During the last 15 years, three major software pillars emerged in that area. Computer Alge-
bra Systems, CAS, constitute the symbolic counterpart to calculators, Interactive (or Dynamic)
Geometry Software, DGS, is the modern replacement for ruler and compass, and spreadsheet
applications are used for organizing and structuring data for easier handling and analysis, thus
also replacing the notion of a variable by the notion of a table cell. All three found their place
in teaching, but in our experience many teachers are focusing on only one of the three products.
It is rarely seen, again in our experience, that teachers have the time and energy to master
several different systems and to feel confident enough to use all of them in teaching.

*Part of this work has been supported in part by the DFG Research Center MATHEON



However, this is less of a problem — given that we appreciate the use of New Media in
the classroom — as one might expect. In many cases, a computer-enriched activity can be
based on any of the three software types: An exploration can be carried out by dragging
points in a sketch, or by evaluating a formula for many different point configurations using a
spreadsheet. A functional dependence can be formulated using the language of a CAS, and it
can be constructed in a DGS. A stochastic process can be described and visualized in a table,
or it can be simulated using a short program in a CAS, etc. Often, we can choose whatever tool
is accessible for the students (or better: us), and find a way to use the computer in teaching.

This is supported by the availability of features from other software types in the other
ones. For example, even early versions of DGS like Cabri Geometry offer a table feature,
where a set of measurements and calculations can be displayed row wise for different states
of a construction. In a spreadsheet application data can be visualized in a geometric way,
and it is even possible to base a sketch on cell data, by which we can simulate a dynamic
move mode. All modern CAS do support graphics, primarily plots of functions in 2D and
3D, but some of them also offer geometric primitives that can be used to build up complex
scenes, again based on computed or external data. Modern CAS even offer interactivity, see
for example the Wolfram Demonstrations Project at http://demonstrations.wolfram.com/.
Vice versa, most DGS offer function plots or even allow for the placement of points on curves
given by symbolic expressions. There are even some DGS, notably GeoGebra of Hohenwarter
[Hohenwarter, 2008, that allow for symbolic manipulations like symbolic derivation, or can find
symbolic expressions for the coordinates of dependent elements [Todd, 2006, [Todd, 2008].

One might tend to ask whether there is still a need for these different tools, when they
all seem to be similarly suited for teaching mathematics. But still, each of them has specific
strengths that should be taken into account when one plans to really enhance teaching. It is
absolutely necessary to be aware of these strengths when the use of the computer should go
beyond a technophile and blind adoption. Here we mention just of few of them, as our main
focus will be elsewhere.

Immediate visualization of and hands-on interaction with mathematics is at the core of
DGS’s powers. If we want to activate as many senses as possible and have parallel stimulations
in the learners’ mind, then DGS play an important role. The movement of the mouse that
is carried out by the student will have much more impact than a mere visualization that is
consumed like a TV show.

Structured access to large quantities of data is something spreadsheet applications provide
much better than any other mathematical tool. It is paired with a built-in need for discretization
and modeling, because the table structure is not suitable for continuous or non-categorized
data. Using 2D or 3D graphs of data we can use multi-view capabilities that will activate more
regions in the mind, and thus offer the opportunity to have several representations that may
suit more students and also let them prescind from the particular representation to discover
the mathematical meaning behind it. The last point is not specific to spreadsheets, but applies
to all multimodal approaches.

Finally, the symbolic manipulation of formulas in CAS offers a rich field of experimentation
that is not surpassed by any of the other mathematical software types. With CAS it is possible
to leave the paths that everybody else is going for finding solutions (and questions), at the risk
of getting lost completely (fortunately we can get back by interrupting the current calculation!).
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In [Kortenkamp, 2004] this is discussed in more depth. Other benefits that come with a symbolic
(in its literal sense) system are the stepwise mode of working and the formulation of subroutines.
A not to be neglected fact is the form factor of CAS: systems that are built in into calculators,
for example the TI Voyager or Casio Classpad series, are robust and can be used spontaneously
in the classroom, whereas PC-based software often needs setup and configuration time that is
not available.

In the remainder of the article we will describe how the integration of CAS capabilities into
a DGS and the introduction of new topics into the school curriculum, leads to an area that
was not accessible for the standard tools so far. As we base our observations on the evolution
of the interactive geometry software Cinderella.2 [Richter-Gebert and Kortenkamp, 2006], the
view might be biased. However, we try to emphasize the universal principles that drove this
evolution and that are applicable to other software as well.

2 Functions and their Graphs in DGS

It is obvious that a geometric system should be able to serve as a function-plotting device. This
is the straightforward way of transferring a functional relationship into a geometric context,
and many examples that focus on using the computer as a discovery or presentation tool show
how useful this feature is (see, for example, [Schumann, 1998]). For a DGS it is not enough to
support the automatic generation of loci, even though this approach might be more geometric
to some. This is due to the fact that in schools geometry has a strong focus on its analytic
nature[l] and it is extremely important to offer a bridge between formulas that are written
down and their geometric interpretation. Without doubt, a proper handling of functions, both
for display (of their graphs) and as parts of constructions, is highly desirable and should be
supported by any DGSf]

The Interactive Geometry Software Cinderella [Richter-Gebert and Kortenkamp, 1999, a
DGS co-developed by one of the authors, was at first a pristine incarnation of coordinate-free
Projective Geometry. Measurements are done using Cayley-Klein Geometry via cross-ratios of
certain points or lines. A special treatment of constructions in complex projective space made
it possible to guarantee a continuous (actually: analytic) behavior of constructions. In this
framework, it was nearly impossible to include user-defined functions. A major obstruction
was that many functions just are not analytic, like the absolute-value-function abs, or the
square root function 1/-. As it is not feasible to omit these, we had to find a solution to include
arbitrary functions without loosing the continuity properties of the system as a whole. If it
were for display only, this would not be a problem, but if we cannot interact with the function
graphs, i.e. place on points on them, we loose the interactivity and immediateness of a DGS.

'We recommend the book of Klein [Klein, 1907] for interesting historical facts about how geometry and
geometry teaching changed in the early years of last century.

%It is also important to see that DGS offer a coordinate-free approach to geometry as well, that should not
be concealed too early by the mandatory use of coordinates



2.1 2-way Communication between CAS and DGS

The way out of the dilemma described above was found when we tried to setup a two-way
communication between our DGS Cinderella and the CAS Mathematica [Kortenkamp, 2001].
Of course, a general CAS includes the problematic functions mentioned above, so a true com-
munication, where results from either software are used by the other one, would face the same
problems we already had with including non-analytic functions. The main idea was to assume
that the CAS acts as another user, i.e. elements that depend on calculations in the CAS are
moved discretely from one position to the other. The continuity is preserved by interpolating
the start and end position linearly, in the same way as it is done with the discrete mouse po-
sitions that are reported by the window system when the user manipulates a construction. At
the conference Multimedia Tools for Communicating Mathematics we were able to present this
as a working prototype.

2.2 Functions and Programming

After the main problem was solved, it was only a matter of time to introduce functions into
the software. A parser for mathematical expressions had to be written, and the elementary
functions had to be provided as built-ins. After some time it became clear, that as soon as
it is possible to work with custom definitions, lists, iterators, and conditionals, the function
parser will become as powerful as any programming language, and by adding a few convenience
methods a versatile functional language (CindyScript) for extensions of the original software
was born. A growing set of examples shows the power of this language (see, for example
[Fest, 2005, [Ladel and Kortenkamp, 2008 [Richter-Gebert and Kortenkamp, 2007]). The most
important benefit is the complete customizability of interactive learning environments for ge-
ometry. Teachers can adjust interactive exercise sheets to their and their students’ specific
needs.

Let us just point out the didactical value of programming with a minimalist example. In
Fig. 1] we see three instances of the same configuration, a triangle ABC. Students can move
the vertices A, B, and C and get some feedback about the area of the triangle. They do
not get the full information that the software has available (the area of the triangle), but
only three different statements: The area is less than 10 cm?, more than 10 cm? or equal
to 10 cm?. This information hiding enables students to focus on something when they drag.
They can find out that the “border” between less-than and more-than is a line at a certain
distance to the baseline of the triangle. If we show and update automatically the measured
area, i.e. if we do not hide that information, students might be distracted and just observe
that “everything changes” when they drag a point. This is similar to the information over-
load that can be observed in certain situations where students work with hands-on material
[Kaminski et al., 2006, Kaminski et al., 2008].

Remember that this is only a basic building block. There are almost no limits on what can be
achieved using the “functions” in Cinderella.2, as the examples of [Fest, 2005] and others show.
At the same time, it is also clear from a theoretical point of view, because the function language
includes all necessary ingredients to be Turing-complete [Brainerd and Landweber, 1974].



The area of the triangle is greater than 10 cm2. The area of the triangle is equal to 10 cm2. The area of the triangle is smaler than 10 cm2.
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Figure 1: Showing only part of the available information

3 New Standards and Curricula

While the function support of Cinderella was also a necessary consequence of the experience of
users with other DGS packages, we had, at the same time, the wish to support something else in
the software that we could not find elsewhere. Discrete Mathematics, in particular graphs and
algorithms on graphs, has always been a gratifying area of mathematics for education; however,
most of the time it is seen as an add-on for spare time and not as a central topic that has to be
covered. In the DFG Research Center MATHEON we are working on educational material that
can be used for a proper integration of topics from Discrete Mathematics into curricula, and
at the same time we try to advance the inclusion of this kind of mathematics into the official
curricula.

Since graphs can be visualized using points and line segments or arcs, and also many of the
real-world problems we want to model with graphs come from a geometric context, we were
eager to be able to work with graphs in our software. Also, the algorithms we are using on
the graphs should be visualized using the DGS. Both ideas are not new — the famous DGS
Cabri started as a tool for graph visualization, and there are numerous software packages for
visualizing graph algorithms. It was new that we wanted to combine both aspects in the same
software, in order to be able to stick to a well-known user-interface and to preserve the user
experience.

We came up with an add-on package called Visage [Geschke et al., 2005] that supports all
standard algorithms accessible to 7th to 12th grade students, and more. More information can
be found on the project homepage at http://cinderella.de/visage, where you will also find
the software.

Using the software, it is possible to visualize graphs (including a dual-view that shows
the adjacency matrix) and to step through graph algorithms (depth and breadth-first search,
Dijkstra’s algorithm, bipartite matchings, and others). A pseudo-code version of the source can
be shown that helps students to trace the algorithm’s execution.

All included algorithms have been implemented in Java, which means that they are neither
editable nor extendable for users, a major drawback that we will discuss in the following section.

The algorithm framework we used for Visage supports threaded execution of the interactive
geometry part of Cinderella.2 in parallel with the graph algorithms. This is crucial for the
stepping control, where we can decide whether the algorithm is running slowly, as fast as
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alale) The Shortest Path Problem

What is the best way?

This is an important question in many real life applications. what is the best way to get from e.g. from Berlin to Munich?
Or: how to get from school to home?

At first we must declare what does it mean: "the best way"? Is it the fastest path? Or the shortest? Perhaps the
cheapest? Or the most beautifull way?

An Example:

Let's assume we like to go by public transport in Berlin from S+U-Bhf. YorckstraBe to U-Bhf. Karl-Marx-StraBe.
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* What is the best way, if I just count the number of stations?
* What is the most comfortable way?
* Which way is faster? (Have a look on graphs" in the dictionary.)
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Figure 2: An example worksheet from the Visage package. Students can model a graph directly
on a map of the local subway system and use shortest-paths algorithms interactively. Material
created by Anne Geschke, TU Berlin.

possible, or one statement at a time, triggered by mouse clicks.

3.1 Merging Functions and Algorithms

In the previous sections we discussed two topics, the inclusion of functions into a DGS, and
the inclusion of algorithms into a DGS. These might appear only loosely related at first sight,
but we claim that they are highly connected: Both are genuine applications of CAS. Working
with functions is a core activity with CAS, and the programming languages that are used for
CAS and the corresponding command-line interface for it are providing all we need for writing
algorithms and executing them step-by-step.

A final evidence for the similar nature of the two is that after some changes in the code
abstraction we could easily add another function evaluation language instead of CindyScript,
in our case Jython, a Java-based Python clone. Now it is possible to use both CindyScript and
Jython as defining languages for functions. As Jython is an object-oriented scripting language
that is similar to Java, there is no problem in using it instead of Java for the implementation
of the graph algorithms.

This means that we are very close to a much more powerful software package than the one
we already have: Once we can use the script language Jython (or CindyScript) for the graph
algorithms, we will also be able to allow for user-defined algorithms or alterations to the build-
in algorithms. The only missing step is to create an interface to the threading environment
mentioned in the end of the last section for the script language plug-in. This is planned for the
near future.



There are some subtleties to be aware of, as we are facing a different paradigm when we
start dealing with algorithms. An algorithm might change not only the state of a construction
(i.e., move points or change attributes of elements), but it can also change the construction
sequence itself by adding or removing geometric elements. Currently, we try to avoid the
problems that are introduced by these changes. When saving a construction, we will always
save the current state of the construction, regardless of what the algorithm has done. Also,
the algorithm will be reset to its initialization state after loading a file. This can lead to
inconsistencies (like showing arcs depicting the backtracking of a depth-first search, when the
algorithm did not run yet), which could be avoided when we first reset the algorithm (and thus
also the current construction by removing or re-adding all new or missing elements), and then
save the construction. However, as the user can take care of this by resetting the algorithm
manually before saving, and there are situations where one would like to re-start an algorithm
at the intermediate state, it is not clear that we should change this behavior, and we can only
revise this after we got enough user feedback.

Back in 2005, our final goal was to provide a flexible environment where one can work with
algorithms both as extensions to the interactivity of DGS, i.e. in the function sense that was
described in Sec. [2] and in the step-by-step mode that lets algorithms be the subject of research
themselves. Ideally, any algorithm can be used in both ways without changes in the code. We
already demonstrated this with the Java-based version of “external algorithms” to Cinderella
[Kortenkamp, 2005], where one could use the same code for a step-by-step demonstration of
Boruvka’s Minimum Spanning Tree algorithm or a dynamic visualization of the MST. A similar
demonstration using the CindyScript programming interface can be found on the Visage project
homepage. This approach aditionally offers the possibility of showing multiple algorithms in
the same visualization. Users can explore the differences and similarities of different algorithms
for the same problem set. For example, we provide a worksheet that lets the user construct an
arbitrary graph. On this graph the user can run the depth-first search and the breadth-first
search algorithm either stepwise or with the result shown dynamically while the graph changes.

3.2 Automated Algorithm Validation

A very promising new area of research is automatic validation of user actions with respect to
given algorithms, which we would like to illustrate here with an example.

The software is not used for running the algorithm, but for accounting while the user
executes an algorithm manually. For depth-first search, the software had to offer ways for
the user to mark vertices, move from the current vertex to a neighbor of it, and maintain
a stack of vertices. Then, the user could execute actions that correspond to a depth-first
search, while the computer will check whether the order of actions is indeed a valid depth-first
traversal. Like in the case of automatic checking of construction sequences (see the auto-
checking exercises possible with Cinderella [Richter-Gebert and Kortenkamp, 1999]), there is
an exponential number of possible execution orders, and the validation cannot be done trivially.
Thus, the software has to be able to compare the users’ actions with statements like “with every
neighbor of the current vertex do ...end”. The didactical contribution of such a package would
be that we have an open learning environment, which still provides a feedback mechanism for
unattended and independent work of the students.
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Figure 3: A teaching unit on MST: a) exploring own strategies: the computer judges the solution; b) comparing
two textbook algorithms; ¢) a route planning tool developed by students.

In the next section, we describe how this approach can be implemented successfully.

4 Exemplary Implementation and Results

The new Berlin state curriculum for secondary schools contains a section on
Minimum Spanning Trees, which we implemented using the Visage software. The unit was
carried out with two groups of students at the age of 13 to 16 years.

We use automated validation as a student’s tool for the development of own algorithmic
solutions. The main educational objectives are that the students embrace the structure of
the problem and can use usual textbook algorithms to solve the problem. The first goal is
reached by modeling the problem and finding own solutions, the second by investigation and
implementation of the algorithms.

First, the students should develop their own solutions for the problem of connecting all cities
of an imaginary country with roads with the cheapest connections possible. The students were
asked to reflect on their own solution strategies. After some unstructured trials using paper
and pencils the students were given an electronic worksheet to support their thoughts. In this
worksheet the student can mark or unmark possible roads by simple mouse clicks. They get
immediate feedback, the length of the chosen network, for each solution they try.

Additionally, the computer can judge the solution in three steps. First, using the depth-first
search algorithm, the computer checks wether the student’s solution does connect all cities.
Next, the same algorithm is used to check the absence of cycles in the solution, which is a
necessary condition for the optimality of a solution. Finally, if a student has constructed a tree
solution, the optimality is checked using Kruskal’s MST algorithm.

The whole worksheet — handling of user interactions and algorithmic checks — was created
using the CindyScript programming interface of Cinderella. Our classroom experience showed
that the students were faster in developing good solution strategies when they used the elec-
tronic worksheet as their attention is more focused on the right aspects. The students who
used the worksheet also had fewer problems in verbalizing their strategies afterwards.

After finding own solution strategies the students were asked to explore the standard text-
book algorithms by Kruskal and by Prim. Therefore, another worksheet similar to the BFS/DFS
example described in section [3.1] was implemented. In this worksheet both MST algorithms
can be executed step-by-step on arbitrary graphs.



Additionally, the students had the possibility to implement Kruskal’s algorithm on their
own using the CindyScript programming interface. The programming language had to be
learned on the fly; as an aid the students had an example implementation of Prim’s algorithm.
Although none of the students had any programming experience before, some of them succeeded
implementing the algorithm within only two and a half hours. As the implementation of an
algorithm requires a mental restructuring of the student’s knowledge, programming Kruskal’s
algorithm helped the students to deepen their understanding of the algorithms.

By dint of the easy-to-learn programming language CindyScript and its good integration into
the DGS Cinderella even the younger students were able to create own interactive worksheets.
This also animates the students to vary the problem settings. In the following lessons some
students of 8th grade created an electronic worksheet on the Traveling Salesman Problem on
their own. They had to understand the Double-Tree-Approximation of the TSP for this task.
Another group of older students engaged themselves in the development of an online route
planning tool for the Berlin subway net.

All in all, this first experiment showed the viability of our approach, and asks for a proper
investigation in future studies. In particular, we would like to know how automated algorithm
verification can help to foster conceptualization in mathematics.

5 Future Directions and Acknowledgements
We want to summarize the three main conclusions from the above:

e Functions are intrinsically algorithmic. The main tools for working with functions are
CAS, and their symbolic user interface is presenting a (mathematical) programming lan-
guage. When we want to include functions into any other software, we are very close to
opening a door to algorithmic explorations.

e A proper experimentation tool for algorithms, which can foster the understanding of
mathematical models and how they are used to find solutions to real world problems, has
to provide mechanisms for a stepwise and user-controlled execution, and an interactive
mode for an immediate hands-on user experience.

e The presence of a simple programming tool strongly connected to a mathematical visu-
alization tool opens new ways to investigate in functional and algorithmic dependencies.
Using it, students seem to be motivated to explore problems and questions which they
introduce on their own.

In the near future we will revise and publish Cinderella’s Java API which supports the
algorithm framework mentioned in Sec. 3. A prototype of the API was already successfully
approved in a course on graphs and network algorithms at the Technical University of Berlin in
summer term 2008. The new API allows for almost full user access to the interactive geometry
kernel and the threading control of the algorithms. The published source code of exemplary
built-in algorithms allows a deeper exploration of the algorithms by the students. The use of
the API seems to be especially suited in university teaching.
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