
Using the R Statistical Programming Environment in the
Teaching of a Linear Algebra Course

Scott K. Hyde
hydes@byuh.edu

Department of Mathematics
Brigham Young University – Hawaii

Laie, HI, 96762
USA

Abstract

The R statistical programming environment is an open source implementation of the
S computer language. Its main functions are to analyze statistical problems, manipulate
data, and produce graphics. However, because many statistical problems require the use
of matrices, R is also a very powerful matrix program, which makes it ideal to use in
teaching a Linear Algebra course. In addition, R is an open source program and part of
the GNU project, ensuring its availability for all to download and use. This gives R a
distinct advantage over programs like Matlab, Mathematica, and Maple, as they are not
always available and can be cost prohibitive. R is available for many different operating
systems, including UNIX, Linux, MacOS, and Windows. R is also extensible, which allows
R to be changed to fit the needs of the user, either by writing new packages, or by installing
additional packages from the Comprehensive R Archive Network (CRAN). The goal of
this paper is to introduce the use of R in teaching a Linear Algebra course. Topics include
creating vectors and matrices, extracting elements from a vector or a matrix, operations
on matrices, and matrix factorizations. Instructions on the installation of R on a Windows
system, as well as an example of using R in a Linear Algebra course are given.

1 Introduction

What is R? The R statistical programming environment is an excellent program with multiple
functions, including analyzing statistical problems, manipulating data, mathematical computa-
tions, and producing graphics. It is an open source implementation of the S computer language,
a high level language developed by John Chambers (and others) at Bell Labs [1]. Although
initially written by Ross Ihaka and Robert Gentleman, who at the time were in the Department
of Statistics at the University of Auckland in Auckland, New Zealand [3], many other individ-
uals have contributed to R by writing and debugging code. R is an official part of the GNU
project and is supported by the Free Software Foundation, which ensures its survival. Since

http://directory.fsf.org/project/gnur/
http://directory.fsf.org/project/gnur/
http://www.fsf.org/

R is free, this gives it a unique advantage over programs such as Matlab, Mathematica, or
Maple when the cost of the software is of primary concern to the educator or the student, and
symbolic computation is not needed. R is also available for many different operating systems,
including UNIX (Solaris, OpenBSD, NetBSD, etc.), Linux, MacOS, and Windows. This opens
R up to virtually all people with computers. Additionally, R can also be changed to fit the
needs of the user, either by writing new packages, or by installing additional packages from the
Comprehensive R Archive Network (CRAN). Cheang [2] noted that the major strength of R is
its powerful computing and flexible graphing capabilities.

In this paper we explore possible uses of R in teaching, learning, and doing linear algebra. First,
examples of elementary topics such as creating vectors and matrices in R, along with commands
for extracting elements from a vector or a matrix are given. Operations on matrices are also
discussed, accompanied by factorizations of matrices. An example is given using R on a linear
algebra problem, designed to demonstrate a few interesting capabilities of R. Instructions on
installing R or R packages on a Windows system are provided at the end of the paper.

2 Uses of R in Linear Algebra

Commands in R are preceded by the R prompt (the greater than sign “>”), and are printed in
a typewriter font that is slightly slanted to the right. Immediately following a command, the
output is displayed in unslanted typewriter font. Comments are denoted by the # character
preceding the comment.

2.1 Creating Vectors

The simplest way to creating a vector in R is done by using the c() command (short for

concatenate). For example, to create the vector v =
[
1 3 2.2

]T
, execute the commands

> v=c(1,3,2.2)

> v

[1] 1.0 3.0 2.2

A vector in R is always displayed as a row vector. However, R treats it as a column vector as
well. The “[1]” indicates the element number of the element directly to the right of [1]. When
vectors span multiple lines, then each subsequent line will have a similar indicator.

If the elements of the vector are consecutive in nature, then there are more concise ways to
create vectors. Using the : command, a vector can be created from a starting point to an
ending point, with a step size of one. For example, the command 3:8 creates a vector from 3
to 8, stepping one at a time.

To create a matrix in R, you use the matrix() command. For instance, the matrix

A =

1 4 7
2 5 8
3 6 9

 (1)

is created using either of the following commands:

> A=matrix(c(1,2,3,4,5,6,7,8,9),3,3)

> A=matrix(1:9,3,3)

2.2 Extracting Elements from a Vector or Matrix

Extracting elements is an important operation. There are several commands to do so. To
extract the eighth element of a vector, one would type

> v=c(1,2,4,2,3,4,4,32,33,2,4)

> v[8] #note the use of brackets [] parentheses don't work!

[1] 32

You can even select a sequence of elements:

> v[8:10] #selects the 8th, 9th, and 10th elements.

[1] 32 33 2

Or a complement of a sequence of elements:

> v[-c(8,9,10)] #selects everything but the 8th, 9th, and 10th elements.

[1] 1 2 4 2 3 4 4 4

You can even select elements based on a comparison

> v[v>12] #select all elements of v which are larger than 12.

[1] 32 33

Extracting elements from a matrix is similar, but you specify two values instead of one. For
example, to extract the first column, the second row, or the element in the second row and the
third column of the matrix A in equation (1), you would type the following:

> #extract the 1st column

> A[,1]

[1] 1 2 3

> #extract the 2nd row

> A[2,]

[1] 2 5 8

> #extract (2,3) element

> A[2,3]

[1] 8

If you specify only one argument instead of two, then it treats the matrix as a vector (by
stacking the columns). For example, the command

> A[c(4,7,8)]

[1] 4 7 8

extracts the elements in the upper triangular part of the matrix A. You can also specify vectors
instead. For example, can you tell what the command A[1:2,1] does?

> A[1:2,1]

[1] 1 2

2.3 Operations on Matrices

Common matrix operations are included in R, such as matrix addition, subtraction, or multipli-
cation, as well as other types of operations. R performs the common addition and subtraction
of matrices with the + and the - commands. However, matrix multiplication is not performed
by the * command, but rather the %*% command. The * command will perform the Hadamard
product [7], which performs the multiplication element-wise. An example of these commands:

> B=matrix(1:4,2,2)

> C=matrix(4:1,2,2)

> B

[,1] [,2]

[1,] 1 3

[2,] 2 4

> C

[,1] [,2]

[1,] 4 2

[2,] 3 1

> B+C #element-wise add

[,1] [,2]

[1,] 5 5

[2,] 5 5

> B-C #element-wise subtract

[,1] [,2]

[1,] -3 1

[2,] -1 3

> B*C #element-wise multiply

[,1] [,2]

[1,] 4 6

[2,] 6 4

> B%*%C #matrix multiply

[,1] [,2]

[1,] 13 5

[2,] 20 8

Other basic operations needed for linear algebra are also possible with R, such as the determi-
nant, the transpose, the inverse, the dimension of a matrix, augmenting matrices, or creating
an identity matrix. Examples of these commands are:

> det(B) #the determinant

> t(B) #the transpose

> solve(B) #matrix inverse of B

> sum(diag(B)) #the trace

> dim(B) #matrix size

> cbind(B,C) #augment column-wise

> rbind(B,C) #augment row-wise

> diag(3) #a 3x3 identity

As can be seen from the commands and operations given above, R is intuitive and quite easy
to use for elementary linear algebra ideas.

One command that is lacking in the standard R package is the command to place a matrix in
reduced row echelon form, or the rref command. However, packages can be installed that have
this command. The author created the package m343linalg, which is a compilation of useful
commands gathered from several sources. This package is provided by the author for free and
can be installed by anyone using R. Instructions for installing the m343linalg package, which
includes the rref feature and other important linear algebra features not in the standard R
package are given in Appendix 5.2.

2.4 Matrix Factorizations

Several matrix factorizations are possible using the current core version of R, with others
possible by installing new packages. The Eigen-decomposition is one of the most common de-
compositions in a linear algebra course. The eigen() command extracts both the eigenvectors
and the eigenvalues. Storing the result of the eigen() command allows access to both the
eigenvectors and the eigenvalues without recomputing them:

> A=matrix(1:9,3,3)

> temp=eigen(A) #store both the eigenvalues and vectors in temp

> temp #display everything in temp

$values

[1] 1.611684e+01 -1.116844e+00 -4.054215e-16

$vectors

[,1] [,2] [,3]

[1,] -0.4645473 -0.8829060 0.4082483

[2,] -0.5707955 -0.2395204 -0.8164966

[3,] -0.6770438 0.4038651 0.4082483

> temp$values #displays only the $values of the object temp

[1] 1.611684e+01 -1.116844e+00 -4.054215e-16

Another very important decomposition often covered in linear algebra is the Singular Value
Decomposition. There are two different variations of this decompositions. The first varia-
tion obtains orthogonal matrices U and V , and a rectangular diagonal matrix D such that
A = UDV T . Another variation, called the full rank version, obtains an m × r matrix U , an
n× r matrix V , and a r × r diagonal matrix D, where the rank of A is r. It is called the full
rank singular value decomposition since U and V have full column rank, and D is full rank.
The svd() command produces a vector d, which contains the singular values, and two matrices,
u and v, which contains the left and right singular vectors.

> svd(A)

$d

[1] 1.684810e+01 1.068370e+00 3.069525e-16

$u

[,1] [,2] [,3]

[1,] -0.4796712 0.77669099 0.4082483

[2,] -0.5723678 0.07568647 -0.8164966

[3,] -0.6650644 -0.62531805 0.4082483

$v

[,1] [,2] [,3]

[1,] -0.2148372 -0.8872307 -0.4082483

[2,] -0.5205874 -0.2496440 0.8164966

[3,] -0.8263375 0.3879428 -0.4082483

The full rank version is not automatic in R, but can be found by discarding unneeded columns
of U and V and dropping singular values that are zero. The matrix A is reconstructed below
to show equality.

> r=sum(svd(A)$d>1e-15) #the rank

> S=svd(A,r,r) #only keep r vectors

> U=S$u; D=diag(S$d[1:r]); V=S$v

> U

[,1] [,2]

[1,] -0.4796712 0.77669099

[2,] -0.5723678 0.07568647

[3,] -0.6650644 -0.62531805

> D

[,1] [,2]

[1,] 16.84810 0.000000

[2,] 0.00000 1.068370

> V

[,1] [,2]

[1,] -0.2148372 -0.8872307

[2,] -0.5205874 -0.2496440

[3,] -0.8263375 0.3879428

> U %*% D %*% t(V)

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Other decompositions are built into R, such as the LU, the Cholesky, the QR, and others.
Other decompositions not included in R have been programmed (or can be programmed) and
included in packages for R. Several of these packages are available through the Comprehensive
R Archive Network (CRAN). An example of how to install a package in R using CRAN and
another not using CRAN are given in Appendix 5.2.

3 Example

A typical problem in linear algebra is solving a system of equations, Ax = b using the inverse
matrix method (x = A−1b). R has this capability as well as being able to solve systems of
equations that have no solution or infinitely many solutions. When A is non square or singular,
the system of equations Ax = b has no solution for most choices of b. Solutions will only exist
when the vector b is in the column space of A. However, in this case, a least squares solution
may be obtained.

When students are introduced to the topic of least squares approximations in linear algebra, it
may not be apparent what “solution” is being found. A graphical representation of the column
space can visually motivate how the least squares solution is related to the column space of A.

To find the least squares inverse, we will use the Moore Penrose generalized inverse [4; 5; 6]
(also called the “pseudo inverse”) to find the least squares solution to Ax = b. The solution is
x̂ = A+b, where A+ denotes the Moore Penrose inverse of A. Using the package m343linalg

(installation instruction located in appendix 5.2), we can use the pinv() command to find the
pseudo inverse of a matrix. For example, consider the inconsistent system of equations

x − 3y = 5
−2x + 6y = 1

Define

A =

[
1 −3

−2 6

]
, x =

[
x
y

]
, b =

[
5
1

]
and enter the commands in R:

> library(m343linalg) #load the m343linalg package

> A = matrix(c(1,-2,-3,6),2,2)

> b = c(5,1)

The least squares solution (x̂) to the system is

> xhat = pinv(A)%*%b

> xhat

[,1]

[1,] 0.06

[2,] -0.18

The image of the least squares solution is

> b_colspace = A%*%xhat

> b_colspace

[,1]

[1,] 0.6

[2,] -1.2

How does the image of the least squares solution (Ax̂) compare to that of b and to other vectors
in the column space of A? To illustrate this, we generate random vectors in the column space
and plot b as well as Ax̂. In the plot below, the b vector is the triangle in the plot, vectors
in the column space are dots, and the image of the least squares solution is a square. Note
that the square (�) is the closest vector in the column space to the triangle (b). This graphical
representation helps the student visualize how the least squares solution is the “closest” vector
in the column space to the vector b. In addition, you can use this to motivate that the square
in the plot is not only the image of the least squares solution, but also the projection of b onto
the column space of A.

'

'

'

'
'

'

'

'

'

'

'

'

'

'
'

'

'

'

'
'

'

'

'
'

'

''

''

'

'

'
'

'

'

'

'

'

'

'
'

'

'

'

'

'

'

'

'

'

'
'

'

'
'

'

'
'

'

'

'

'

'

'
'

'

''

'
'

'

'
'

'
'

'

'

'

'

'

'
'

'

'

''

'

'

'

'

'

'

'

'
'

'

'

'

'

'

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x

y

' Ax
b
Ax̂

Figure 1: Plot of b, random vectors Ax, and the vector Ax̂ = AA+b

4 Conclusion

R is a very powerful matrix program which can be very useful for teaching linear algebra.
Learning and using R is within the grasp of undergraduate students taking linear algebra as
well as for research purposes by mathematicians. Students will find that the program enhances
their understanding of linear algebra. The author received several positive comments from
students in his undergraduate linear algebra course. One comment was that “although R took
some time to get used to, it contained many powerful tools that enabled them to understand
difficult concepts and connect those concepts to other mathematical notions in other subjects
such as differential equations.” Another comment was that a student felt it helped them to
“grasp concepts of linear algebra by allowing them to test various phenomena (the inverse of a
matrix, the Gram-Schmidt orthogonalization, least squares, eigenvalues and eigenvectors) with
different types of matrices easily.” The programming nature of R was also commented on by
the students. They were pleased that they could “create simple programming codes to test out
processes which are not easily doable by hand, such as obtaining the steady state solution or

the diagonalization of a matrix.” One other comment was that they were grateful for the under-
standing they gained by seeing the connection between orthogonal polynomials and orthogonal
matrices through the use of the graphing tools of R. All of these comments serve as evidence
of the helpful nature of R for learning, using, and doing linear algebra.

Since R is an open source program, it is always available to download and use free of charge.
Cheang [2] states, “As a free software with additional support provided by the R Foundation,
the R language provides a platform for mathematics educators and researchers to “freely ex-
plore” how technology can be applied into their teaching and research. R is an “open source”
route to the development of better teaching strategies...” When the core R package is lacking
in certain commands, R can be extended through the installation of packages that include new
commands. For instance, the m343linalg package was developed from a collection of various
programs for R by the author specifically for use in a linear algebra course. In this sense, R is
an “evolving” language because every user is also a developer [2].

R is not only useful within a statistical setting, but also in other areas of mathematics
including linear algebra. Thus, we see that R can be an invaluable tool for the educator
teaching linear algebra.

5 Appendix

5.1 Installing R on a Windows System

To install R on a Windows system, follow these steps:

1. Go to http://www.r-project.org

2. Click on the word “CRAN” underneath the Download menu on the left.

3. Pick a mirror that is close to your location.

4. Select the operating system you use (Windows in this example).

5. Click on “base”.

6. Click on the executable “R-2.7.1-win32.exe” (or similarly named R executable).

7. To install, double click on the file “R-2.7.1-win32.exe” that you downloaded.

8. A more detailed set of instructions can be found at http://jekyll.math.byuh.edu/

other/howto/R/R.shtml, including the instructions for the installation of a couple of
very nice editors of R code: Emacs and Tinn-R.

5.2 Installing an R package

To install a package for R that resides on the Comprehensive R Archive Network (CRAN),
use the command install.packages() (or click on the Packages menu, then select “Install
Package(s)”). You will then be asked to

1. Select a mirror (choose one close to you) and then click OK.

http://www.r-project.org
http://jekyll.math.byuh.edu/other/howto/R/R.shtml
http://jekyll.math.byuh.edu/other/howto/R/R.shtml

2. Select a package to install (scroll through the names until you find the package you want)
and then click OK.

3. To load the package you installed, type library(<name of package>), where <name of

package> is the name of the package you installed. You can also load the package by
selecting the “Packages” menu, then select “Load Packages”. Select the package you want
to load from the list given.

To install a package located outside of CRAN, you need to specify additional arguments to the
install.packages() command. For example, to install the m343linalg package that was used
for teaching Linear Algebra at Brigham Young University in Hawaii, you type the following
commands:

> where="http://jekyll.math.byuh.edu/rlibs/"

> install.packages("m343linalg",contriburl=where)

To load the m343linalg package so that you can use the commands it provides, follow the same
procedures as described above.

To get help on a particular package, select the “Help” pull down menu, then select “Html help”.
Your default web browser should pop up. Select the “Packages” item, and then you can select
from the list of packages the one you need help on. If you know the name of the command you
want help on, you can simply type help(<command>) at the R command prompt.

References

[1] John Chambers, Stages in the evolution of s, http://cm.bell-labs.com/cm/ms/

departments/sia/S/history.html, 2000.

[2] Wai Kwong Cheang, The use of r language in mathematics teaching and computation, Pro-
ceedings of the 9th Asian Technology Conference in Mathematics (ATCM 2004) (T. de Alwis
W. C. Yang, S. C. Chu and K. C. Ang, eds.), Singapore: National Institute of Education,
December 2004, pp. 402–409.

[3] Kurt Hornik, The R FAQ, http://CRAN.R-project.org/doc/FAQ/R-FAQ.html, 2008,
ISBN 3-900051-08-9.

[4] E. H. Moore, On the reciprocal of the general algebraic matrix (abstract), Bulletin of the
American Mathematical Society 26 (1920), 394–395.

[5] E.H. Moore, General analysis, Memoirs of the American Philosophical Society 1 (1935),
147–209.

[6] R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical
Society 51 (1955), 406–413.

[7] James R. Schott, Matrix analysis for statistics, John Wiley & Sons, 1997.

http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html
http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html

	Introduction
	Uses of R in Linear Algebra
	Creating Vectors
	Extracting Elements from a Vector or Matrix
	Operations on Matrices
	Matrix Factorizations

	Example
	Conclusion
	Appendix
	Installing R on a Windows System
	Installing an R package

