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Abstract:  In mathematics, several methods can be used to maximize or minimize polynomials and other types of 
functions.  One such method uses techniques in calculus, such as the derivatives.  However, there are several types of 
functions which can be maximized or minimized without resorting to methods of calculus.  For example, quadratic 
functions can be maximized or minimized using the method of completing the square.  In this paper, we will discover a 
brand-new method for optimizing certain types of functions.  The new method that we will describe is based on a 
famous inequality in algebra, known as the Inequality of the Means.  The proposed method can be considered as a 
surprising application of the above mentioned inequality.  One can check the results obtained from this method by 
using calculus-based methods, or by using computer algebra systems such as Mathematica.  
 
1.  Introduction 
 
       We will first recall a well-known inequality in algebra, known as the Inequality of the Means 
or the Theorem of the Means (see [1] and [3]).  Given a sequence of positive real numbers 

 where n is a positive integer, its arithmetic mean A and the geometric mean G are 
defined as follows: 
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The Inequality of the Means compares the above two means, A and G, as given below: 
 
Theorem 1.1  (Inequality of the Means) 
     The arithmetic mean of a sequence of positive numbers  where n is a positive integer 
is greater than or equal to its geometric mean.  In other words, 
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The equality occurs if and only if all the numbers , iia n...,,2,1=  are equal to one another. 
 
Proof.  The proof is based on induction on n, the number of positive numbers.  The complete proof 
can be found in [1].   
 
Example 1  The truth of the above theorem can easily be demonstrated for the case n   In this 
case, the above theorem asserts that for any positive real numbers x and y, the following inequality 
is true, with equality holding if and only if 
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In order to see why this must be the case, note that (1.4) is equivalent to the inequality 

, which in turn is equivalent to .  However, this last inequality is 
obviously true since x and y are real numbers.  Also notice that  if and only if 

xyyx 4)( 2 ≥+ 0)( 2 ≥− yx
0)( 2 =− yx yx = .  

Thus the inequality (1.3) is true with equality holding if and only if .yx =   This proves Theorem 
1.1 for the case  .2=n
 
The inequality (1.4) has a nice geometric interpretation:  It is equivalent to the obvious geometric 
fact that the radius DE of any semicircle is greater than or equal to the length of a half-chord CF .  
See the following figure: 
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Figure 1.1  A Geometric Interpretation of the Inequality of the Means for  2=n
 
 In order to explain this geometric connection, let us consider the line segment AB, with AC and CB 
representing the positive real numbers x and y respectively.  Let D be the midpoint of the line 
segment AB.  Therefore, AD represents the quantity 2/)( yx + , which is the arithmetic mean of x 
and y.  One now needs to construct the quantity xy .  With the point D as the center and AB as the 
diameter, construct a semi circle.  Draw a perpendicular line through C meeting the semicircle at F.  
Observe that the two right triangles ACF and BCF are similar triangles.  So using the properties of 
similar triangles, one obtains , implying BCCFCFAC // = xyBCAC == .CF .  Also, through 
D, draw a line perpendicular to AB meeting the semicircle at E.  Therefore, the arithmetic mean of x 
and y is represented by the segment DE while the geometric mean is represented by the segment 
CF.  Since the length of the segment DE is equal to half of the diameter and the length of the 
segment CF is equal to the half of a chord, clearly DE must be greater than or equal to CF.  
Furthermore, the lengths of the segments DE and CF are equal if and only if the midpoint D 
coincides with the point C, i.e. if and only if yx = .   
 
2.  Optimizing Second Degree Polynomials Using the New Method 
 
       We are now in a position to illustrate our new method of optimization.  Before describing the 
method for the general second-degree polynomial, we will first consider a specific example:   
 
Example 2.1 Consider the second degree polynomial .  The graph of  f  is a 
parabola opening downwards, since the coefficient of the second degree term is negative.  
Therefore, we know the function  f  has an absolute maximum (a local maximum as well).  In order 
to find this maximum value, we proceed as follows:  By ignoring the constant term of  f, consider 
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the function .  This means that  is a product of two factors, )23(32)( 2 xxxxxg −=+−= )(xg x  
and .  We would like to use the Inequality of the Means (1.3) for these two factors.  
However, in doing so we would like the left-hand side of the inequality to be a constant, so that one 
can produce a least upper bound for the function g.  Therefore, instead of the original factors 

)23( x−

x  and 
, we would consider the modified factors  and )2x3( − x2 x23− , because the sum of these latter 

two factors is a constant.  Also notice that for 2/30 << x , both quantities 2  and 3x x2−  are 
positive, so we are in a position to apply (1.3).   
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     Thus, the Inequality of the Means (1.3) implies for  
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where the equality occurs if and only if x 3= , i.e. if and only if .  The inequality 
(2.1) implies that for any x such that 0

3=x
≤ , , or equivalently, 

.  The nature of the graph of g implies that for all real values of x, 
 with equality occurring if 

)2/3() ≤x

.  This immediately implies that for all 
real values of x,   with equality occurring if )8/9( / .  
Therefore, the maximum value of the function  is equal to 41/8 and this 
maximum is achieved when .   

4+

 
Note how different this method of optimizing the second degree polynomials is from the method of 
completing the square.  The algebra involved in the new method is a lot simpler!  Let us also check 
the answer to the previous problem using calculus:  One can calculate that ) =x , so 

 if and only if .  Using the First or Second Derivative Tests, it is clear that 
 corresponds to a local maximum, as well as an absolute maximum (see [4]).  The 

maximum value is given by .  This agrees with our 
previous calculations. 
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One can now illustrate the method for the general second degree polynomial:  Consider an arbitrary 
second degree polynomial  where a, b, and c are arbitrary real numbers with 

.  The condition  guarantees that  f  has an absolute maximum.  Without loss of 
generality, we will assume that b , since for 

c+

b , the maximum value of  f  is trivially equal to 
.  By dropping the constant term “c” in the polynomial f, consider the polynomial 

.  We will consider two cases: 
 
Case 1 (b ):   As suggested by the foregoing example, we will use the Inequality of the Means 
(1.3) for the modified factors −  and ax , because the sum of these two factors is a constant, 
independent of x.  Also notice that both quantities −  and   are positive for /0 < . 
Then the Inequality of the Means (1.3) implies that for  
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In the above (2.2), the equality holds if and only if axbax +=− , i.e. if and only if )2/( abx −=
)4/() 2 ab−≤
.  

This implies that, for all real x-values , or equivalently  
with equality occurring if and only if 
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Case 2 (b ):  One can write 0< )()()( axbxaxbxxg −−−=+= .  Note that the quantities  and 
 add to form a constant, and they are each positive for 

ax
axb −− 0/ <<− xab .  Therefore, the 

Inequality of the Means (1.3) implies that for 0/ <<− xab  
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In the above (2.3), the equality holds if and only if axbax −−= , i.e. if and only if )2/( abx −= .  
Therefore, as in Case 1 we obtain that for all real x-values,  with equality 
occurring if and only if 

)4/() 2 abax −≤+(bx
)2/( abx −= .  

    
Therefore, in either case one can say that for all x-values 

.  Therefore, the maximum value of the 
function  f  is equal to (  and it is achieved when 
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A similar method can be used to find the maximum value of a second degree polynomial 

 where a, b, and c are arbitrary real numbers with .  The trick here is to 
consider the polynomial 

cbxaxxf ++= 2)( 0>a
)(xf−  and to find its minimum value as described before. 

 
The optimization method described in this section can be extended to other types of polynomials.   
In the next section, we will attempt to optimize higher degree polynomials using the new method, 
provided the maximum or minimum values exist. 
 
3.  Optimizing Certain Higher Degree Polynomials  
 
     In this section we will attempt to find the maximum or minimum values of higher degree 
polynomials using the Inequality of the Means, provided they exist.  Rather than challenging 
ourselves with the general nth degree polynomial, we will first consider several types of specific 
higher-degree polynomials.  In the process, some interesting strategies will be observed! 
 

Example 3.1  Consider the third degree polynomial .  The zeros of  f  are clearly, 
 with multiplicity two (even) and 

)1()( 2 xxxf −=
0=x 1=x  with multiplicity one (odd).  The graph of f can be 

roughly constructed as follows by considering the nature of the multiplicities of the zeros: 
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Figure 3.1  The Graph of  )1()( 2 xxxf −=

 



The above function  f  has an absolute maximum for 10 ≤≤ x .  Our task is to find this maximum 
without using the methods of calculus:  
 
The idea is to break the product  into several components, and use the inequality (1.3).  
However, as we set up the inequality, we want the left-hand side of  (1.3) to be constant.  Let us try 
to break the product in to three components “x”, “x”, and “1 ” with suitable 
coefficients.  Proceeding this way, for any 0

)1(2 xx −

)1(2 xx − x−
1<< x  we obtain the following inequality, by using 

(1.3): 
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In the above, the equality holds if and only if )1(2 xx −= , i.e. if and only if   Note that we 
have chosen the coefficients 1, 1, and 2 for the components “x”, “x”, and “1 ”, so that the left-
hand side of the inequality (3.1) is a constant.  Using this constant left-hand side, we will able to 
manufacture a least upper bound for  for 
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.  The inequality (3.1) implies that for any 
,  , or equivalently, , with equality holding if and only 

if  Therefore, the maximum value of the function  for  is 4/27, 
and this maximum value is achieved when 
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Let us check the above answers using calculus:  Since , it follows that 

.  Therefore,  if and only if 
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.  Using the derivative 
tests, one can show that  corresponds to a local minimum while  corresponds to a 
local maximum.  It is not hard to show that  for 

0=x
0 ≤≤ x , an absolute maximum for f occurs at 

  Therefore, this absolute maximum value is given by .  
These agree with the results obtained in the above Example 3.1. 
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One can also use a computer algebra system such as Mathematica to check our answers (see [5]).  
The Mathematica command “FindMinimum” numerically calculates the minimum of a variety of 
functions.  The following Mathematica commands enable us to find the maximum of the function 

 for .  The idea is to use the “FindMinimum” command for the negative 
of the given function.  For example the command FindMinimum[ -f[x], {x, 1/2, 0, 1} ] calculates 
the minimum value of the function  between the x-values 0 and 1 starting with the seed 
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Program 3.1 
 
f[x_]:= x^2 
FindMinimum[ -f[x], {x, 1/2, 0, 1} ] 
                       
The above command can be executed by pressing “Shift-Enter”.  The output is 

.  Reverting back to the original function, this means that the 
approximate maximum value of the function  for 

}}666667.0{,148148.0{{ →− x
)1()( 2 xxxf −= 10 ≤≤ x  is  and this 

occurs at .  These values agree with the answers obtained in Example 3.1 because 
 and . 

148148.0
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148148.027/4 ≈ .03/2 ≈ 666667



Remark  One must be careful in using the Mathematica command “FindMinimum”.  To illustrate 
the point, let us consider the function )4)(2)(1()( −−−= xxxxxf  whose graph is given below. 
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Figure 3.2  The Graph of )4)(2)(1()( −−−= xxxxxf  
 

Suppose we want to find the absolute minimum value of  f  on the interval [ .  One must bear in 
mind that “FindMinimum” command normally produces local minimum values.  Depending on 
the initial seed used, one might get different local minimums. For the above function, with the 
initial seed , “FindMinimum[f[x], {x, 1.54, 0, 4}]” produces {

]4,0

,3827554.1=x }}392748.0{.1 →− x  
as the output.  However, −   is not the absolute minimum of the function on the interval 

.  However, with the initial seed 
38275.1

]4,0[ 55.1=x , “FindMinimum[f[x],{x,1.55,1,4}]” produces 
 as the output. The value }}32635.3{,9141 →x.6{− 9141.6−  is a local minimum, but is also the 

absolute minimum of the function f on the interval [ .  Therefore, one must be careful 
interpreting the answers obtained from “FindMinimum” command.  In general, technology gives 
us enormous power to do mathematics, but one must be careful interpreting the results.      

]4,0

 
Example 3.2   As suggested by Example 3.1, one can use the Inequality of the Means to                   
find the minimum or maximum values of any function of the type  where 
m, n are arbitrary positive integers, a, b are any two distinct  real numbers, and k is any nonzero real 
number. 

mn xbxakxf )()()( −−=

     As another example of this type, consider finding the maximum or minimum values of the 
function .  As suggested by the multiplicities of its roots, its graph is given 
below: 
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Figure 3.3  The Graph of   23 )4()1()( xxxf −−=
 
Suppose we want to find the absolute minimum of  f  on the interval [1,4] without calculus 
methods. The problem is equivalent to finding the absolute maximum of the function 

 on the interval [1,4] . Using the key inequality (1.3), for any 123 )4()1()( xxxf −−=− 4<< x  we 
obtain the following: 
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In the above (3.2), the equality occurs if and only if ( )4()1)(3/2 xx −=− , i.e. if and only if 
.  The inequality (3.2) implies that for any 15/14=x 4≤≤ x
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.  In other words, the 
absolute minimum of the function  over the interval [  is equal to 

 and this value is achieved when 
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The “FindMinimum” command of Mathematica is indeed a convenient way of checking                   
the above answers.  The output for “ FindMinimum[(1-x)^3(4-x)^2, {x, 2, 1, 4}] ” is 

}}8.2{,39808.8{ →− x which agrees with our answers.  
 

Example 3.3  Let us consider the problem of finding the maximum or minimum values of the 
function  by using the Inequality of the Means.   )4()( 2xxxf −=
                               
As suggested by its graph, the above function  f  has an absolute maximum on the interval [ , 
and suppose we want to find it.  The technique described in Examples 3.1 and 3.2 is not helpful 
here because of the “ ” term in the factor .  Let us consider the square of the function  
and try to maximize it.  Therefore, consider the function  on [ .  The 
inequality (1.3) implies that for any 0
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In the above, the equality occurs if and only if , i.e. if and only if 22 42 xx −= 3/2=x  (Note that 
the other negative solution does not lie between 0 and 2).  The inequality (3.3) implies that for any 

,  with equality occurring if and only if 20 ≤≤ x 27/256)4( 222 ≤− xx 3/2
)4( 2xx −

=x
)x =

.  By taking the 
square roots, it follows that the absolute maximum of the function on s (f ]2,0[  i

)33/(16  and this maximum value is achieved when 3/2=x . These answers can be again 
confirmed by the Mathematica command “FindMinimum”.   
 
Example 3.4  One can use the idea used in Example 3.3 to optimize any function of the type 

 where l, m, and n are positive integers, a is a positive real number, and k is 
any nonzero real number.  

lnm xaxkxf )()( −=

       As a specific example, let us consider the function .  The roots of  f  are 
 with multiplicity 4 (even), and 

234 )2()( xxxf −=

0=x 3 2=x  with multiplicity 2 (even).  As suggested by the graph 
of f,  f  has an absolute maximum over the interval ]2,0 3

63 )x

[  and we wish to find it.  Learning from 
the Example 3.3, let us raise the function f to the third power, because of the term “  ” in the 
factor .  So let , and find the absolute maximum of the 
function g on the interval 

3x
)2( 3x− 123 2()]([)( xxfxg −==

]2,0 3[ . The inequality (1.3) implies the following for any 3 20 << x : 
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In the above, the equality occurs if and only if ( , i.e. if and only if 33 2)2/3 xx −= 3 5/4=x .  
Using the inequality (3.4), it is not hard to show that the absolute maximum of the function 

on the interval 234 )2()( xxxf −= ]2,0 3[  is equal to 3 5/4)125/144(  and it occurs at 3 5/4=x .  
These answers indeed agree with those obtained using the “FindMinimum” command of 
Mathematica.                       
                                            
To summarize, in this section we learnt how to optimize the following two types of polynomials, 
using the Inequality of the Means. 
 
I   where m, n are arbitrary positive integers, a, b are any two distinct  real 
numbers, and k is any nonzero real number.  It can be shown that for x-values between a and b, the 
absolute extremum of  f occurs at 
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II   where l, m, and n are positive integers, a is a nonzero positive real 
number, and k is any nonzero real number. 
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However, the above are not the only types of polynomials that can be optimized by using the 
Inequality of the Means.  The next section carries more information. 
 
4.  Optimizing Third Degree Polynomials 
 
    In this section we will consider the general third degree polynomial
where a, b, c, d are real constants with 

dcxbxaxxf +++= 23)(  
0≠a .  It is very interesting to observe that under a very 

simple condition, f  can always be optimized without explicitly computing the derivatives!  We will 
summarize this discovery in the following theorem. 
 
Theorem 4.1  Consider the general third degree polynomial  where a, b, 
c, d are real constants with .  If , the local maximum and minimum values of  f 
can be found by using the Inequality of the Means, without explicitly computing the derivatives. 

dcxbxaxxf +++= 23)(
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Proof  Let us consider the reduced cubic polynomial given by ))3/(()( abxfxg −=  (see [1] ).  One 
can readily check that g is given by the following: 
 

  (4.1) ])27/(2)3/([)]3/([)( 2323 ababcdabcxaxxg +−+−+=
 
Since the graph of g is just a horizontal translation of the graph of f, they share the same optimum 
values, if such exist.  In order to optimize the function g, ignore its constant term to consider the 
polynomial  h  given by the following: 
 

  (4.2) )]3/()3([)]3/([)( 22223 abacxaxabcxaxxh −+=−+=
 



If , then the polynomial h given by (4.2) has three distinct real roots, 0 and 03 2 <− bac α± , where 
)3/()3( 2 aacb −=α , each with multiplicity one.  Therefore, by inspecting its graph, it will have 

a local maximum as well as a local minimum.  We can find both of them using the Inequality of the 
Means.  We will assume that , since the case 0>a 0<a  is very similar.  As implied by its graph, 
the function has an absolute maximum on [)2()( = xaxxh 2 α− ]0,α−  and suppose we want to find 
it.  See the diagram below: 

 
 

Figure 4.1  The Graph of  where  )()( 22 α−= xaxxh 0>a
 

  We will use the same technique as in Example 3.3.  Square the function h to consider the new 
function .  For any 222222 )()( xxaxh −= α 0<<− xα , using (1.3) we obtain the following 
inequality: 
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In the above the equality occurs if and only if , i.e. if and only if 2222 xx −=α 3/α−=x .  The 
inequality (4.3) implies that for any 0≤≤− xα , .  By taking the square 
root, we obtain that for any −

27/4) 62 α≤( 222 α − xx
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.  This means that the absolute maximum of the 
function  over the interval [)(xh α−  is equal to  with the maximum value 
occurring if 

)27/() 22/3 a3(2 2 acb −

3/α−=x
)27/( 23 ab

,

.  But the functions g and h only differ by the constant 
, as seen by (4.1) and (4.2).  Thus the absolute maximum for the function 
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value is achieved when 
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3/α−=x .  However, since ))3/(( abxf)(xg −= , the function g is a 
horizontal translation of  f  by b  units.  Therefore, the absolute maximum of  f  is still equal to 
the quantity [ , but over the interval 
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)]3/([ abb −−− ),3/( aα , and this value is achieved when )3/(3/ ab−−αx = .  By inspecting the 
nature of the graphs of  h, g, and  f, this discussion means that the function  f  has a local maximum 
at )a
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 where the local maximum value is equal to 
, assuming .  Similarly, one can also find the 

local minimum of  f.     
 
Because of the space limitations of the paper, we are unable to include a concrete example to 
illustrate above Theorem 4.1.  
 
 
 



Conclusion  In this paper, we discussed one of the most surprising applications of the Inequality 
of the Means, i.e. as a tool for optimizing certain types of functions.  As illustrated by our 
examples, we used more than one strategy in achieving the task.  Thus, one can optimize many 
types of functions without using the methods of calculus.  Even though this paper only concerns 
with polynomials, the author has investigated other types of functions for which the method works 
as well.  These results will be published elsewhere. 
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