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Abstract 
 
The use of technology is nowadays often strongly recommended by institutions and curricula. But 
on the one hand it turns out that a large part of mathematics teachers remains reluctant of 
integrating technology into their teaching (Guin & Trouche 1999). On the other hand several 
investigations of students using technology that have been carried out over the past ten years show 
that students do not learn from simply interacting with technology. The design of adequate tasks, 
the role of the teacher plays a critical role in the success of integrating technology (Lagrange et al. 
2001).  
 
In this talk, we attempt to argue that it is possible  

- to make use of technology for organizing good conditions fostering learning  
- but that this organization must be based on several analyses, a mathematical analysis of the 

notions to taught, a cognitive analysis of the possible difficulties of students in learning 
mathematics  but also in using technology.  

 
1. The nature of mathematical objects and the crucial role of representations 
As so often stated since the time of ancient Greece, the nature of mathematical objects is by essence 
abstract. Mathematical objects are only indirectly accessible through representations (D’Amore 
2003 pp.39-43, Duval 2000) and this contributes to the paradoxical character of mathematical 
knowledge: "The only way of gaining access to them is using signs, words or symbols, expressions 
or drawings. But at the same time, mathematical objects must not be confused with the used 
semiotic representations" (Duval, ibid., p.60). Other researchers have stressed the importance of 
these semiotic systems under various names. Duval calls them registers. Bosch and Chevallard 
(1999) introduce the distinction between ostensive objects and non ostensive and argue that 
mathematicians have always considered the ir work as dealing with non-ostensive objects and that 
the treatment of ostensive objects (expressions, diagrams, formulas, graphical representations) plays 
just an auxiliary role for them. Moreno Armella (1999) claims that every cognitive activity is an 
action mediated by material or symbolic tools. Kaput and Schorr (2002, pp.28-29) claim that the 
development of algebra in the history of mathematics was made possible by an entirely new mode 
of thought “characterized by the use of an operant symbolism, that is, a symbolism that not only 
abbreviates words but represents the workings of the combinatory operations, or, in other words, a 
symbolism with which one operates.” 
 
The activity of solving mathematical problems, which is the essence of mathematics, is based on 
both an interplay between various registers and treatments within each register. Each register has its 
own treatment possibilities and favors specific aspects of the mathematical activity. Besides 
registers, individuals may have recourse to tools fo r performing a mathematical activity and namely 
over the past years the recourse to technology has become very important in various domains of 



   

mathematics. Tools allow operating on mathematical objects in specific registers, a tool making use 
of one or several registers. For example, Derive has mainly recourse to symbolic expressions but 
also to graphical representations in coordinate geometry. Dynamic geometry software as Geometer 
Sketchpad or Cabri-geometry are intended to draw variable geometrical diagrams on the screen of 
the computer but for example Cabri is also providing menus and feedback messages in natural 
language as well as dynamic markers such as blinking lines or points.  
It is important to stress that the semiotic registers of these technological environments may deeply 
differ from what they are in a paper and pencil environment. It is especially the case with dynamic 
geometry software that offers diagrams of a very specific nature: variable diagrams that can be 
continuously modified while keeping their geometrical properties when dragged. The direct 
manipulation of diagrams has a visible spatial effect but has also a mathematical counterpart. The 
operations performed within the register of dynamic diagrams (that Duval calls treatment) have thus 
a specific nature and this leads to two assumptions that are currently shared by various research 
works and supported by empirical research. They will be presented in the next section. 
 
2. Mathematical knowledge and instrumental knowledge 
Two main hypotheses underlie our analysis of the role of technology in the learning and teaching 
processes. 
First hypothesis: We assume that a tool is not transparent and that using a tool for doing 
mathematics not only changes the way to do mathematics but also requires a specific appropriation 
of the tool. In the last decade, some psychologists (Vérillon & Rabardel, 1995) have shown through 
empirical research, how the tool (also called artefact) itself gives rise to a mental construction by 
the learner using the tool to solve problems. The instrument, according to the terms of Vérillon and 
Rabardel, denotes this psychological construct of the user: "The instrument does not exist in itself, it 
becomes an instrument when the subject has been able to appropriate it for himself and has 
integrated it with his activity." The subject develops procedures and rules of actions when using the 
artefact and so constructs instrumentation schemes and simultaneously a representation of the 
properties of the tool. A scheme must be understood as an invariant organisation of actions in a 
given class of situations. The notion of instrumentation scheme refers to an invariant organisation of 
actions involving the use of an artefact for solving a type of tasks. 
 
Second hypothesis: tools like those offered by information technology embed mathematical 
knowledge (as for example already visible in Cabri from the denominations of menu items  —
perpendicular bisector, parallel line…—) and the use of such tools requires the integration of both 
mathematical knowledge and knowledge about the tool. 
 
An example of instrumentation schemes 
Let us illustrate this claim with the example of the construction of a parallelogram in Cabri. 
Students are given two segments AB and AD and they are asked to construct the parallelogram 
ABCD. In a compass and ruler construction in paper and pencil environment, students would use a 
strategy based on the congruence of opposite sides. But in Cabri, almost all students use the strategy 
of constructing parallel lines to the given segments in order to obtain the fourth vertex C. It 
illustrates very clearly how much the preferred strategy is linked to the domain of efficiency of the 
tool. Constructing parallel lines in paper and pencil would be more tedious since the ruler and 
compass construction of a parallel line to a line is based on the construction of a parallelogram. In 
Cabri, the tool parallel line is available and students have a spontaneous recourse to it since the 
typical feature of a parallelogram for students is the parallelism of the sides. After parallel lines and 



   

point C are constructed (Fig.1), then the two additional sides (or the polygon) have to be 
constructed and parallel lines must be hidden (Fig.2). In this sequence of actions, called by Verillon 
and Rabardel (1995) scheme of instrumented action, are intertwined both mathematical knowledge 
and knowledge of how to use the tool for fulfilling the task to produce the dynamic diagram of a 
parallelogram. The use of the tool affects not only the choice of the construction strategy but also 
the actions to be done. In Cabri, segments have to be constructed since a segment cannot be 
obtained as a part of a line (Fig.3). 

     
Fig.1    Fig.2         Fig.3 

 
The mathematical knowledge of the user is thus another critical factor affecting the type of strategy 
that is used. Students are often successful in constructing a parallelogram in Cabri by obtaining the 
fourth vertex as the intersecting point of lines parallel to the given segments. But the teacher may 
expect another strategy, the use of a central symmetry around the midpoint of segment BD. This 
latter strategy is valid even when the parallelogram is “flat” whilst the former one would not 
provide a flat parallelogram. The central symmetry strategy is shorter than the parallel line strategy 
since the parallel lines have not to be hidden in order to make visible the only parallelogram. The 
scheme of instrumented action in Cabri attached to this strategy differs from the preceding one and 
clearly depends on mathematical knowledge. It involves the invariance of a parallelogram under 
central symmetry, a geometrical property which is not operational in a paper and pencil 
environment for constructing a figure. It is generally not proposed by students and must be 
introduced by the teacher. An instrumented task can thus be the source of reinforcing or introducing 
knowledge.  This is an important issue related to the integration of technology into teaching.  
 
As described above, a scheme of instrumented action involves actions directly linked to a specific 
use of the artefact. For example, in Cabri, in order to construct a parallel line to a segment, the user 
has to perform a sequence of elementary actions, selecting a menu, pulling down it, selecting the 
tool in the menu, showing a point and a line. Each of these actions requires the move of the cursor 
by using the mouse and clicking. The user has also to construct an invariant organisation attached to 
the sequence of these elementary actions. Such an organisation is called scheme of usage by 
Rabardel. A scheme of instrumented action involves several schemes of usage. The design of 
interface certainly affects the construction of schemes of usage. However mathematical knowledge 
is also involved in a scheme of usage. Below are presented two schemes of usage in Cabri requiring 
a functional view of a geometrical object, i.e. a conception of geometrical objects as a function of 
other objects. 
 
At middle school or even high school, students do not have such a conception and therefore may 
encounter difficulties in using tools of DGE1. Constructing parallel lines in DGE requires for 
example designating with the mouse two elements of which a parallel line is function of, the 
direction (i.e. a line) and a point through which the parallel line is passing. Very often the students 
working with Cabri we could observe at middle school or even high school showed the direction 

                                                 
1 In the paper DGE denotes Dynamic Geometry Environments 



   

and were waiting for the parallel line to be drawn and did not understand why the computer did 
nothing. After a while they clicked anywhere in the screen and more than often they clicked on the 
line giving the direction. The obtained parallel line was thus coinciding with the line and could not 
be seen unless the cursor came close to the line and an ambiguity message was displayed “What 
object?”. Understanding this message requires being familiar with the ambiguity notion in Cabri, 
i.e. a sophisticated knowledge of the tool. Very often students do not understand the situation they 
have created and a solution can be found only with the help of the teacher.  
 
Another example can be given with the construction scheme of the midpoint of a segment. Very 
often the beginners show the position of the midpoint to ask the computer to construct the segment 
whereas they could show any place on the segment since the midpoint is defined as a function of 
the segment in a DGE and not as a spatial object.  
 
The interface can make students aware of the necessity of showing the variable elements the object 
to be constructed is function of. Taking into account this difficulty of students, the designers of 
Cabri-junior (on the TI 83 Plus or Silver) decided to display under the form of a dotted object the 
temporary spatial position of the geometrical object to be constructed. This temporary position is 
determined by the first variable element already shown by the user and the current position of the 
cursor. When the user clicks the final variable element defining the object to be constructed, this 
latter object is displayed in the usual way (Fig.4). This new interface continuously informs the user 
and avoids the reaction of students saying that machine is not working. 
 

    
Fig.4 – The interface of the construction of a parallel line to a line in Cabri Junior 
 
Briefly speaking, solving mathematical tasks in a technological environment requires two kinds of 
knowledge, mathematical and instrumental. Most of time, especially because ICT used in the 
teaching of mathematics embeds mathematics, both types of knowledge interact in the use of 
technology. It will be illustrated in the next section by some results coming from empirical 
investigations in the case of DGE. We decided to focus on the use of the drag mode that is certainly 
one of the most typical features of such environments. 
 
3. Empirical investigations about the use of the drag mode 
The way in which students drag as they solve problems was investigated by several researchers. 
Hölzl (1996) identified the "drag and link approach" in students' construction processes of Cabri 
diagrams. Students relax one condition to do the construction and then drag to satisfy the last 
condition. They obtain a diagram visually correct and want to secure the diagram by using the 
redefinition facility of Cabri. But often it does not work because of hidden dependencies that are not 
considered by students. As said above, they often are not aware of functional dependencies between 
objects. Although Hölzl does not refer to instrumentation, this “drag and link approach” would be 
called an instrumentation scheme in terms of Vérillon and Rabardel. The students constructed an 
instrumentation scheme not compatible with the functioning of Cabri. 



   

Arzarello, Micheletti, Olivero, Robutti, Paola, and Gallino (1998 a & b) identified different kinds of 
dragging modalities that were not all referring to an organized experimentation: “wandering 
dragging,” “lieu muet” dragging, and dragging to test hypotheses. Wandering is just moving 
without a predefined aim for searching for regularities whilst Lieu muet dragging refers to dragging 
in such a way that some regularity in the drawing is preserved. The dragging to test hypotheses 
obviously presupposes that regularities have already been detected which are not systematically 
tested. Goldenberg (1995) notes that often students do not know how to conduct experiments and 
are unsure what to vary and what to keep fixed.  Thus a student’s purposeful move from wandering 
dragging to lieu muet dragging represents a cognitive shift.  
 
From these investigations, it appears that the power of the drag mode in exploration is not 
spontaneously mastered by students. It may also happen that the variability introduced by drag 
mode makes the task more complex. Below is reported an investigation on the construction of a 
proof by 9th graders (Abd El All 1996). 
 
Complexity in the proving process introduced by variability  
All students of a class (9th graders) were given the following tasks. They worked in pairs. The work of 
four pairs was observed and audio-recorded. 
Task 1 (Fig.5) 
Students were given a rectangle ABCD and the quadrilateral IJKL of the midpoints of the sides of ABCD 
in a paper and pencil environment. They had to determine the nature of IJKL and to justify their answer. 
All students found that it is a rhombus.  
Task 2 
Then they had to predict whether IJKL would remain a rhombus in any movement of B which does not 
preserve ABCD as a rectangle. All students predicted that IJKL will not be any longer a rhombus. 
Task 3  
They were given in Cabri a rectangle ABCD. Then they had to construct the circle with center D and 
radius AC and to redefine B as belonging to the circle. They were asked. “Is IJKL still a rhombus?” 
(Fig.6) 

     
Fig.5      Fig.6 
 

The sequence of questions was designed with the intention to favor the need of having recourse to 
proof. In a computer environment, the need for proof cannot any longer be favored by the 
uncertainty of the result. It may arise for intellectual motives because the student wants to know 
why a phenomenon takes place. As pointed out by the Piagetian perspective, a means of provoking 
this intellectual curiosity may be caused by conflict between what the learner believes or predicts 
and what actually happens. Such a conflict may be achieved by asking the students to predict 
properties of the diagram before allowing them to check on the computer, as in this problem. In task 
1, we expected that students would prove that IJLK is a rhombus by using the specific properties of 
a rectangle (theorem of Pythagoras, properties of reflection, congruence of right angle triangles) 



   

rather than using the more general property of the midpoint segment that is valid even if ABCD is 
no longer a rectangle. In task 2 we expected them to predict that IJKL is no longer a rhombus as 
they probably would have justified in task 1 that IJKL is a rhombus by using properties of a 
rectangle. In task 3 they should be very surprised by observing that IJKL remains a rhombus and 
would be eager to understand why. This is why they were not asked to justify what they observed. 
We expected that from the strength of the contradiction would arise the need of justifying. 
 
It is exactly what happened. Students were so surprised to discover that IJKL was a rhombus that 
they became eager to prove why without being asked in an explicit way to do so. However it took 
time for them to construct a justification. We could observe that the variability of the diagram 
created several difficulties for students. We comment here the effect of variability on the use of a 
theorem. Some students did recognize that IJ was the segment joining the midpoints and evoked the 
property of this segment but they were not sure about the validity of using the theorem when the 
diagram moved. V. and L. for example evoked the theorem of midpoint segment but did not dare 
using it. Pushed by the observer, they selected a triangle and V. looked carefully at the triangle and 
the midpoint segment when point B was dragged. She expressed her satisfaction:  
“The theorem of midpoints moves, yes it moves. It works even if we move” 
L. confirmed:  “ the midpoint theorem it works” 
V.:  “it works the same way” 
V. even tried to justify the invariance of the property in the drag mode: 
“they are all the same because there is always the same length. AC it is two times that. It is always 
two times that. It is always two times that and it works there all the time even if we move anyway.” 
A student of another pair wrote at the end of their proof: “As DB is always the radius, this proof is 
always right” and then the partner added: “for any position of B” 
 
For these students a proof seems to be carried out only for a particular instance of the diagram. 
From the work in Cabri arose for them the problem of the shift from proving on one instance to 
proving on all instances. According to Netz (1999) Greek proof was rather done on a generic 
example than in a general case. The validity of the general statement was claimed at the end of the 
proof in the final part called Sumperasma. The expression of the validity claimed by students for all 
instances obtained by the drag mode can be compared with the expression of the sumperasma in the 
Greek proof.  
 
In this example, Cabri provided a window (Noss & Hoyles 1996) on the conceptions of students 
about proof but the complexity introduced by the variability of the diagram acted as a catalyst for 
change in this conception for students such as V and L who became aware of the fact that a theorem 
may be valid for a moving diagram since the relations between elements remain unchanged. They 
learned from the complexity brought by the computer environment that offered to the students 
another window on mathematics (Noss & Hoyles ibid.). This point of view was supported by 
several researchers (CAS used as a lever to promote work on the syntax of algebraic expressions 
Artigue, 2002, p.265, Lagrange 2002, p.171, or DGE as assisting pupils to explain the properties of 
a rhombus and to distinguish them from those of a square, Hoyles & Jones 1998). 
 
4. The medium role of technology for teaching mathematics 
The idea of computer environments as reifying abstract objects and structures originates from the 
notion of microworld (Minsky-Papert 1970, Thompson 1985) in which it is possible to explore and 
experiment on representations of abstract objects as if they were material objects. The same 



   

potential is often considered in computer environments such as CAS, spreadsheets or Dynamic 
Geometry environments. They offer working models on which the users can carry out actual 
experiments corresponding to the thought experiments they can perform on abstract objects. But if 
the thought experiments on abstract objects are not available (as it is often the case for learners), a 
crucial question about learning is whether such environments could favor an internalization process 
of the external actions in the environment. 
 
The idea of internalization process is not new and was present in the Vygostkian theory of semiotic 
mediation and of tool. Vygostky considered that signs and tools belong to the same category of 
mediators of human activity and as such are fundamental elements in the process of constructing 
concepts.  He coined the difference between technical tools and psychological tools (that he also 
called signs) by considering their respective functions. The function of a technical tool is externally 
oriented and helps acting on the outside environment to change it whereas the function of a sign is 
internally oriented and contributes to change the mental constructions of the individual. Vygostky 
described the internalization process as a process transforming a technical tool into a psychological 
tool. 
This Vygostkian approach has been adopted by Bartolini Bussi and Mariotti (1999) for artefacts or 
computer environments (as described in Mariotti 2002). In the case of CAS and DGE incorporating 
mathematical knowledge, it seems possible that teaching contributes to the internalization process 
from the external tools offered by the environment to the construction of the meaning of the 
mathematical concept. This has been done by Mariotti (ibid.,p.713) about the notion of geometric 
construction by using the external tools, drag mode and history command of Cabri. As told by 
Mariotti, “the temporal sequence of the constructions’ steps represents the counterpart of the logic 
hierarchy between the geometric properties of a figure.”  “The availability of an external tool 
referring to the procedure of the construction in its temporal sequence very often contributed to the 
production of a description and a correct justification of a construction.”. But as argued by 
Lagrange (2002, chapter 3) about the use of CAS, the design of the tasks proposed to students is 
critical in order to foster a conceptualization process. The task must introduce a problem that can be 
appropriated by the students and be experienced by them as a real problem that they attempt to 
solve by involving knowledge and not for meeting the expectations of the teacher —corresponding 
to what Brousseau (1997) calls adidactical situation—. 
 
An example : a pointwise conception of figure and geometrical transformation 
An example related to the learning of a pointwise approach of geometrical transformation will be 
given below as an illustration. Two points of view are useful in the use of geometrical 
transformations: a global point of view and a pointwise point of view. The former allows the use of 
conservation properties about figures: a reflection transforms a straight line into a line, a circle into 
a circle, two parallel lines into two parallel lines. The latter allows to determine or to construct the 
image of figures that cannot be reduced to simple figures the image of which is known. It is also 
useful when no global property is available about the transformation. In both cases, a fundamental 
property is used: a figure is a set of points. This conception of figures is far from natural for 
students beginning high school. The problem is that it is not operationally practical in paper and 
pencil environment. But it is possible in Cabri to define a transformation with a pointwise approach: 
the transformation is a macroconstruction which provides a point when the initial object is a point. 
Obtaining the image of a figure is done by using the tool Locus on the image of a variable point of 
the initial figure. The creation of a variable point on the initial figure and the use of Locus are the 
external counterpart in Cabri of the following definition based on a pointwise approach of the figure 



   

and of the transformation: the image of a figure is characterized as the set of points images of the 
points of the initial figure. Jahn (2000) made use of this possible mediation in Cabri of a pointwise 
approach in a teaching sequence in a grade 10 class. An unknown transformation X was given as a 
black box (a macro construction providing the image of any point). It was actually an oblique 
symmetry. Students had to determine how to construct the image of a point by exploring the effect 
of the macro-construction. All succeeded. Then they had to find the image of a circle under 
transformation X. As this latter did not preserve length, the only way to construct the image was to 
obtain it as a locus of a variable point of the circle (Fig.7). Cabri could offer visual feedback 
showing that a circle could not be the image of the initial circle. A point on the initial circle did not 
have its image on the supposed image circle. The task offered good conditions for the construction 
of a solution by the students. 

 
 

Fig.7 – Locus of the image P’ of a variable point P moving on a circle 
 
In this sequence, it was intended to mediate the pointwise approach to geometrical transformation 
through the tools macro-construction and Locus. However, although the tool Locus was already 
introduced in the teaching sequence, its scheme of usage was not yet constructed by the students. 
“They had great difficulties in understanding the order in which the inputs should be selected to 
successfully apply the Locus tool” (Jahn, ibid., p.I-101). But on their own they had recourse to the 
tool Trace and produced the trajectory of the image of a variable point of the circle. Then the 
teacher intervened to favor the move to a mathematical interpretation of their actions in Cabri under 
the form of the pointwise characterization of the image mentioned above. He reinforced the use of 
tool Locus with the arguments that a trace cannot be saved whilst a locus can or that a trace cannot 
move when the initial circle moves. The scheme of usage of Locus required the construction of a 
mathematical meaning of the pointwise view of the notion of image. A contrario this meaning was 
constructed by means of the mediation of image by the combination of the drag mode and the tool 
Trace (another scheme of usage).Then when other transformations were presented to students of 
this class, even outside the Cabri environment, from themselves they claimed that it was necessary 
to check whether the transformation preserves collinearity or not. This was a sign of the 
internalization process of another point of view than the global one, and very likely of a pointwise 
approach (as stated in further activities). This example highlights the embedding of mathematical 
and instrumental knowledge. It also shows the importance of the role of the teacher. 
 
The interventions of the teacher are essential for making possible the construction of a 
correspondence between mathematical knowledge and knowledge constructed from the interactions 
with the computer environment. Because as pointed out by the instrumentation theory, the meaning 
constructed by the student when using the artefact, may differ from what is intended by the teacher, 
the interventions of the teacher are critical to let the meanings evolve towards culturally shared 



   

meanings of mathematical knowledge. This may be done by using collective discussions in 
classrooms as proposed by our Italian colleagues (Bartolini Bussi & Mariotti, ibid.). 
 
Below are reported two teaching experiments based on a semiotic mediation process.  
The first one deals with the notion of operative status of a statement in a deductive step (hypothesis 
or conclusion). The second one deals with the notions of independent and dependent variables as 
well as the notion of graph of a function.  
 
In both experiments, the design of tasks in the technology based environment fulfills a double role, 

- contributing to the construction of a priori expected instrumentation schemes being the 
counterpart of mathematical objects and operations 

- proposing problem situations for which a specific aspect of the notion to be taught which is 
object of teaching is a solution means (adidactical situation in terms of the theory of 
didactical situations, Brousseau 1997).  

 
Mediation of the operative status of a statement in a proof in Cabri Junior 
Duval (1991) analyzes a deductive step in a proof as made of three parts 

- the premises or hypotheses 
- the rule of inference (theorem or definition taken from a corpus accepted by the community 

in -and for- which the proof is done) 
- the conclusion. 

He also pointed out on the function (called by Duval operative status) of a statement in a proof. A 
statement in a step may have the function of hypothesis or of conclusion but in both cases the 
epistemic value of the statement is true. This is why it is so difficult for students to assume for a 
while that only the premises are true whilst the conclusion cannot be considered as true. It is 
difficult for students to accept that what is important in a proof is not the truth of a statement but its 
operative status (given in the data, proved and thus being part of potential premises, not yet proved).  
As a consequence students often do not see a difference between a theorem and its converse, both 
referring to the same objects and the same relations. They do not understand the function of 
hypothesis and of conclusion in the statement of the theorem and therefore are not able to 
distinguish between hypothesis and conclusion as often noticed by teachers.  
 
The drag mode of dynamic geometry can be used to introduce two critical aspects for understanding 
the distinction between hypothesis and conclusion: 

- a dissymmetry in action that allows to make the distinction between hypothesis and 
conclusion 

- the variation that transforms the static truth into a dynamic phenomenon in which the 
consequence of the action becomes true when conditions are satisfied. 

 
Example in Cabri-Junior (Fig.8) 
Construct any quadrilateral ABCD (more general hypothesis), its diagonals and the midpoint of each diagonal. Drag 
any vertex A, B, C or D so that the midpoints are coinciding (variation of one element in order to obtain an additional 
condition). The focus of the control is on the superimposition of the midpoints. 
The visible effect is the change of shape. The obtained shape is a parallelogram.   



   

   
Fig.8 – Dragging vertex D in a quadrilateral until making midpoints of the diagonals coinciding 
 
Changing the condition on an object by dragging it (here the diagonals), implies a visible change on 
other objects (here the parallelogram). The condition is what the student is directly changing. The 
visible effect is the result of the implication. The condition plays the role of the hypothesis. The 
effect plays the role of the conclusion. The link between condition and effect introduces a causal 
effect oriented from the hypothesis to the conclusion. 
A teaching experiment was recently conducted with 8th graders (13-14 years) in France (Coutat 
2003). An initial test was given to all students of the class in order to select a sample of 10 students 
who do not distinguish a theorem and its converse. The ten students were then faced with tasks to 
be done in Cabri Junior. They worked in pairs. Then final tests were given to the whole class about 
the same topic. 
 
In the initial written test, students had to group the statements referring to the same theorem in 
proposed statements in two cases: the midpoint segment theorem and the right angle inscribed in a 
circle. As an example, let us present the first question about the midpoint segment theorem.  

“ Draw a triangle ABC and M the midpoint of side [AB]. Draw a line passing through M and parallel to side [BC]. 
What do you notice? 
Among the following properties, indicate those which seem to correspond to the displayed property. Justify your 
choice. 
- In a triangle if one draws the parallel line to a side passing through the midpoint of another side, then this line is 
passing through the midpoint of the third side. 
- In a triangle a parallel line to the third side is passing through the midpoints of the two other sides.  
- In a triangle, the line passing through the midpoint of a side and parallel to a second side intersects the third side 
into its midpoint 
- In a triangle, if a line is passing through the midpoints of two sides, it is parallel to the third one.” 

 
About one third of the students thought that all statements were the same or that statements 1, 3 and 
4 were the same. Very often no justification was given or students wrote that all statements were 
true. 
 
Then the selected students worked in pairs under the guidance of an experimenter in an one and half 
hour session. They were given two kinds of tasks: formulating a theorem from manipulations in 
Cabri Junior and associating manipulations in Cabri Junior to the statement of a theorem. 
 
Tasks 1 

“Create a triangle ABC then construct the perpendicular bisector of [BC]. Then construct the altitude of triangle 
ABC passing through A.  
What manipulation do you have to do to make the perpendicular bisector coinciding with the altitude? What is the 
consequence of this manipulation on triangle ABC? 
Formulate in terms of if…then the corresponding property.” 
 
“Create a triangle ABC, draw two perpendicular bisectors of this triangle then the circums cribed circle of the 
triangle. What manipulation do you do in order to make the centre of the circle coming onto a side of the triangle? 
What becomes the triangle? 



   

Formulate a theorem under the form If… then that you can associate to the manipulation that you have done.”  
 
Tasks 2 

“If a parallelogram has a right angle, then it is a rectangle” 
What manipulations can be associated in Cabri Junior to this statement in order to make apparent the distinction 
between hypothesis and conclusion ? 
 
“A quadrilateral with two opposite sides parallel and equal is a parallelogram.” 
Same question 

 
After each task the experimenter intervened to point out the link between hypothesis and actions 
and the link between conclusion and the consequence of the actions and proposed the converse 
theorem in which students were asked to find hypotheses and conclusions by evoking the action on 
Cabri. 

 
The drag mode is the key element in the mediation process offered by Cabri Junior. It allows to start 
with a diagram not satisfying the conditions (this is quite impossible in paper and pencil 
environment) and to act on the diagram to make it satisfying one (or several) condition(s). The 
dynamic change of the diagram makes visible the effect of the condition. In tasks 1, students must 
produce formulations at two levels: 

- at the level of actions and manipulations 
- at the theoretical level  in mathematical terms. 

These tasks are intended to facilitate the correspondence between the actions in Cabri Junior and 
mathematics. In tasks 2 students must analyze the statement of a theorem in terms of hypothesis and 
conclusion and Cabri offers a visualization of their analysis. 
 
All five pairs did not encounter problems in the manipulations with Cabri-Junior in finding what 
they had to move in order to obtain the conclusion. Formulating a theorem was not so easy for some 
of them who needed the help of the experimenter. Generally the formulations of theorems kept 
some elements coming from the manipulation such as “If one moves … then…” or “In a triangle if 
the altitude and the perpendicular bisector are superimposed, then one obtains an isosceles triangle” 
or “If… then the triangle becomes isosceles” “If… then the triangle will be isosceles”. The 
dissymmetry introduced by the manipulations in Cabri-Junior is reflected in those formulations. The 
working session on Cabri Junior was short (1,5h) and it is clear that the internalization process takes 
much more time and a longer sequence of tasks. The students seemed to be able to produce a hybrid 
formulation of a theorem combining mathematical terms and some elements attached to the 
manipulations. It is important also to know whether they were able to distinguish hypothesis and 
conclusion outside the Cabri environment. After the session each pair was given by the 
experimenter a theorem and its converse and asked to say whether they were identical or not. 
Almost all students found them identical but as soon as the experimenter evoked Cabri, students 
were able to simulate in thought what they could do in Cabri and gave a correct answer.  
In the final tests (given 3 weeks after the session), that turned out to be difficult for all students of 
the class, the group of the Cabri students differed from their classmates in that seven of them were 
able to find the hypotheses and the conclusion in a theorem. In a test about finding theorems 
identical to a given theorem in a list of statements the students of the Cabri group had definitely 
better results than the others (as presented below Fig.9), although they were the students who 
initially encountered the greatest difficulties. 
 



   

Written Test 
For each of the proposed formulations, select the formulations which seem to be equivalent to the given theorem, i.e. 
which have the same hypotheses and conclusion. 

1 – If a quadrilateral has its diagonals intersecting into their midpoint then it is a parallelogram. 
- A parallelogram has its diagonals intersecting into their midpoint 
- A quadrilateral that has its diagonals intersecting into their midpoint is a parallelogram. 

2 - In a triangle, if the altitude is coinciding with the perpendicular bisector, then the triangle is isosceles. 
- A triangle that has a perpendicular bisector coinciding with its altitude is an isosceles triangle. 
- An isosceles triangle has its altitude and its perpendicular bisector are coinciding  
 - A triangle is isosceles if an altitude and the corresponding perpendicular bisector are coinciding 

3 – In a triangle, if a line is parallel to a side and intersects a second side into its midpoint, then it intersects the 
third side into its midpoint 

- In a triangle, a line intersecting two sides into their midpoints is parallel to the third one.  
- In a triangle, a line intersecting a side into its midpoint and parallel to another side intersects the last side 
into its midpoint. 
- In a triangle, a line that is parallel to a side et and that intersects a second side into its midpoint is passing 
through the midpoint of the third side 

 
 

                              Tasks 1 2 3 
Group without Cabri J 100% 46% 31% 
Experimental Group  100% (9/9) 66% (6/9) 77% (7/9) 

 Fig. 9 - Table of the proportion of correct answers 
 
Mediation of the notions of dependent and independent variables and of graph of a function 
Let us present an example of each kind of task in a DGE taken from our work on functions and 
graphs of functions (Mariotti et al. 2003) that took place in French and Italian schools (grade 10) 
under the form of a long term teaching sequence (Falcade 2003). 
 
Task 1  
Points A,B and P are free points in the screen of Cabri. An unknown macro-construction provides a 
fourth point when showing A, B and P as input. The task of the students is to say whether it is 
possible to move directly each of these points and what points move when each of those points is 
dragged (Fig.10). 

 
Fig.10 

 
This task obviously introduces in the artefact the counterpart of dependent and independent 
variables and offers an external means for distinguishing between both. This task turned out to be a 
reference situation for the students. This external means was evoked by a pair of students later 
during the teaching sequence who hesitated between two expressions when they had to express 
symbolically that P is function of Q in a geometric figure:  P= f(Q) or Q= f(P) ? They evoked 
without performing it what should happen when dragging these points. The instrumentation scheme 
for recognizing a variable depending on another one is the learning aim of the task. 
 
Task 2 



   

Students were asked to propose a geometrical construction of H starting from the three points A, B 
and P. Two solving strategies leading to a construction were possible: 

- either by using Trace observing that H is moving on line (AB) when P is dragged and that 
line (PH) was always perpendicular to line (AB) (Fig.11) 

- or by considering H as intersection point of two traces obtained when moving two of the 
free points and determining the obtained traces as curves depending only on the two free 
points that are not dragged (Fig.12) 

     
Fig.11       Fig.12     

 
The notion of H as a result of a construction process starting from P is an implicit tool of the first 
strategy (process aspect of function).  
The notion of H as intersection of curves is the implicit tool of the second strategy as well as the 
recognition of the geometrical curves (circles and line) from their appearance. The notion of image 
set as obtained when varying the independent variable is underlying this strategy. 
Of course solving task 2 also involves an instrumented activity  (using adequately the combination 
of drag and trace). This shows that very often a task may fulfill a double role creating the external 
tool and requiring a mathematical construction. 
All students used the second strategy in Italian and French schools that allowed the teacher to 
introduce the notion of image set. 

. 
5. Conclusion 
Two issues must be stressed at the end of this paper: the one dealing with the role of the teacher in 
the interplay between mathematics and the environment, the other one with the computer 
environment. 
Ruthven (2002) mentioned the difficulties of designing tasks in computer environments between 
two extremes: on the one hand proposing tasks with great technical and conceptual demands but 
with the danger of being didactically uncontrolled, on the other hand developing a carefully 
controlled student experience with the danger to give ‘keystroke by keystroke’ instructions to 
students. The interplay between the mathematical dimension and the instrumental dimension is one 
way of solving this dilemma but only partly. The collective discussion and interventions of teacher 
play a critical role under various aspects such as: 

- transforming what has been done by students in the task in something mathematically 
legitimate by introducing mathematical terminology, helping students to formulate in 
mathematical terms 

- evoking the environment to help the students when they have difficulties when back  to 
paper and pencil.  

 
The instrumental dimension has always been present in the history of mathematics, be it in the 
treatments operated within registers as claimed at the beginning of this paper (cf. quotation of 
Kaput & Schorr, §1) or in the use of the available technology. Paper technology and printing 



   

technology played certainly an important role in the development of mathematics by facilitating the 
representation of mathematical ideas and the expression of relations by spatial configurations in the 
sheet of paper, not only in geometry but also in arithmetic and algebra. Dynamic geometry 
environments introduce a spatial representation of another key feature of mathematics, the 
variability. We are only at the beginning of taking advantage of the semiotic mediation potential of 
this new dimension in the teaching of mathematics. But even in this era of great possibilities offered 
by dynamic geometry environments, there is a need of pursuing the reflections on the design of 
interface. The deep intertwining of the mathematical and instrumental knowledge in the use of 
computer environments illustrated at several places in this paper implies that interface features 
certainly affect the construction of instrumentation schemes by the user and thus the construction of 
mathematical knowledge.  
We would like to conclude by stressing the importance of introducing prospective teachers to the 
instrumental dimension of the use of technology and of making them aware of the critical role of 
interface features. 
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