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Abstract 
In 2001 and 2002, a group of students in Victoria, Australia, studied a final year secondary 
mathematics course for university entrance that permitted use of a computer algebra 
system (CAS) for the first time in our region. This paper summarizes the changes to 
curriculum, assessment and teaching that occurred and discusses some major issues 
emerging. Teachers found they could give students a better overview of topics and saw 
benefit in some students moving more quickly through lengthy calculations that would 
otherwise frustrate them. The four teachers adopted different teaching styles with CAS, but 
they all stressed by-hand procedures as the basis of understanding. Teachers spent time 
developing students' appreciation of the need to use CAS in a discerning way and the 
algebraic insight that is needed to deal with the sometimes surprising answers provided by 
the machine. Some new topics could be added to the curriculum, but greater explicitness 
about the value of learning skills and concepts is required. Assessment with CAS raises 
many issues for question design and marking schemes. The final examination needed 
careful design, especially so that users of different CAS were treated equitably. Students 
demonstrated good achievement on all aspects of the course. In summary, the trial was a 
success and is now expanding to more schools. 

Introduction 
In 2001 and 2002, a group of students in Victoria, Australia, studied a secondary mathematics 

subject in the final two years of school that permitted use of a computer algebra system (CAS) for the 
first time. This paper will summarize the changes to curriculum, assessment and teaching that occurred 
and discuss the findings and some of the major issues that needed to be addressed. 

The students were part of the “CAS-CAT” project, a trial conducted by the Victorian 
Curriculum and Assessment Authority (VCAA), the state government agency responsible for senior 
secondary school programs and for the end-of-school assessment, in conjunction with a research team 
from the University of Melbourne. A committee of experts established by the VCAA designed the 
curriculum and assessment for a new mathematics subject for years 11 and 12 which was undertaken in 
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three schools, using Casio Algebra FX 2.0, Hewlett Packard HP 40 G and Texas Instruments TI-89 
calculators respectively. These “CAS calculators” have all the features of a standard graphics calculator 
and in addition have powerful symbolic manipulation facilities for algebra and calculus. Some of these 
facilities are illustrated in Figure 1. With some differences which will be summarized below, the 
content and assessment of the new subject Mathematical Methods (CAS) paralleled the existing subject 
Mathematical Methods. This is the main mathematics subject preparing students for the mathematical 
requirements of a wide variety of university and technical qualifications in science, engineering, 
commerce and many other courses. About one third of the total cohort of students across the state 
enrolls in this subject in Year 12. It is basically a functions and calculus course, with a relatively low 
degree of rigor (e.g. no formal proofs are required). A more advanced subject and a less advanced 
subject are also available, alone or in combination with Mathematical Methods or Mathematical 
Methods (CAS). 

In summary, this trial of CAS use took place within a subject designed to cater for a broad 
cohort of students with a wide range of mathematical needs and abilities and within a regime of very 
high-stakes assessment, where small differences in final total score can have a major impact on 
students’ university entrance and other vocational options. As will be described below, the trial was a 
success and is now expanding to more schools. Further details, including papers, discussion documents 
and all the material prepared for schools, are available from the project website (HREF1) and from the 
VCAA (HREF2), which gives regulations, sample examination questions, details of the extended pilot 
study etc. This paper will report and reflect on changes that occurred to the teaching, the curriculum 
and the assessment, and draw some lessons for the future.  

 
 

Sample item Graphics Calculator CAS Calculator 
3e0.5t = 4              t = 1.96 t = 1.96 or t = 2.ln(4/3) 

3eat = b no answer t = ln(b/3)/a  or  t = [ln(b)-ln(3)]/a 
 

x2– 6x + 7 = 0 
 

5.828 or –0.1716 x= 3 + 2√2 and x= 3 – 2√2 or numeric 
 

x3 = 16 
 

2.5198 2^(4/3) and two complex roots 
 

sin 3x = 0 Numerical values x = 2kπ/3 or  (2kπ–π)/3 
Figure 1: Comparison of capability of graphics and CAS calculators in equations.  
 

Teaching  

Observations by the teachers 
The project worked closely with the teachers in both 2001 and 2002, interviewing them on 

several occasions, visiting their classrooms and holding regular meetings. The data reported here is 
from the four teachers (Ken, Lucy, Meg and Neil) who taught the Year 12 students in 2002, all of 
whom had also taught Year 11 students in the project in the previous year. Three of them had taught 



Year 12 MM many times. Participation in the project was a major professional undertaking for the 
teachers and their schools, as they needed to work with new technology and new curriculum, submit 
their students to new assessment procedures and provide research data. As have been noted often 
before (see for example Guin and Trouche, 1999), CAS calculators are complex machines, and learning 
to use them skillfully is a major undertaking for teachers as well as for students.  

All the teachers were committed to teaching mathematics with understanding and to avoid any 
tendency for students to feel that they could simply press buttons to do maths. They all paid attention to 
developing effective use of CAS (Pierce and Stacey, in press), as they were concerned to ensure that 
students became discerning users who did not rely too much on the technology. From the beginning, it 
was clear that students needed a strong understanding of algebra to successfully use the CAS beyond 
the most routine tasks and so teachers aimed to develop the algebraic insight (Ball, Stacey and Pierce, 
2003) that is needed to deal with the sometimes surprising answers provided by the machine. Dealing 
with unexpected algebraic forms of answers supplied by the CAS was a source of frustration for many 
students and required classroom discussion at every stage of the trial, although especially at the 
beginning of Year 11, when initial testing demonstrated that many of the students had only rudimentary 
familiarity with algebraic equivalence. For example only 54% of students were able to quickly 
recognize the equivalence of 2( )b a+  and 2 2 2a b ab+ + . This frustration diminished over the two year 
course as students’ algebraic insight improved (Ball et al, 2003) but it always remained an issue for the 
weaker students. One teacher, Lucy developed this situation into a sort of classroom game: “[Often] 
I’ll write up three or four answers and ask the kids which one did the calculator give. … I try to guess 
which one [..]  based on my understanding of the conventions but I am not always right”. In summary, 
the capacity of all three brands of calculators to provide unexpected answers continued to alternatively 
exasperate and delight the whole team throughout the project. 

New opportunities for teaching 
The teachers were generally pleased with the new opportunities which CAS provided for their 

teaching. They and their students used it functionally (to get answers) and pedagogically (to support 
exploration of ideas). The experienced teachers reported moving more quickly through the curriculum 
than they had expected. All of them noted time saved when they were able to move through some 
lengthy calculations quickly. Finding the area between the x-axis and a curve which cuts it in several 
places is a typical instance where CAS use saved time. Students could automatically find roots of the 
function and integrate with these as endpoints with only a few CAS commands. Lucy, for example, 
recalled an occasion when she labored for minutes to find a minor error in her by-hand calculations of 
such an area on the board, whilst her students quickly completed this and other exercises using the 
technology. She felt that using CAS for long calculations reduced the level of frustration that some 
students feel with mathematics. There was some evidence that students were more aware of the overall 
plan of their solutions and did not get as often lost in the detail of calculation as students doing the 
algebraic manipulations by hand. 

The teachers did reduce the amount of by-hand practice that they expected students to do. A 
typical compromise was to try half of the routine textbook questions by hand and half using CAS for 
new skills. When previously acquired skills were involved (e.g. using integration in continuous 
probability questions), teachers were generally happy for students to choose the quickest method, 
which meant some students used CAS on all but the easiest questions. All of the teachers were 



concerned that students would become dependent on CAS, and were concerned to encourage them to 
think ahead, selecting CAS only when it was likely to be the fastest method, an orientation in 
accordance with the need for speed on the final examination. 

All of the teachers noted that using CAS enabled them to begin a topic with “the big picture” 
and two teachers, Neil and Meg, observed that this saved considerable time in teaching concepts. Meg 
noted that she covered almost all of the conceptual work involved in exponential and logarithmic 
functions in just two lessons, by demonstrating key ideas with CAS graphical and symbolic features 
(e.g. linking key features of graphs of simple and compound functions such as exp( )y kx= and 

2ln(2 3 1)y x x= + − to their derivatives found using CAS and by-hand). Meg also described her teaching 
of applications of differentiation, where she observed that without the cognitive distraction of dealing 
with technical details, students could focus more clearly on why the derivative is used and the overall 
process. For example, she felt that students were more aware that for finding a maximum value there 
are three macro steps: obtaining a derivative, finding when it is equal to zero and testing the nature of 
the identified points. In summary, she commented that “I’ve probably gone a lot further than what I 
have done with any [Mathematical Methods] teaching this year, with the help of the calculator”.  

Neil reported that he developed a new “holistic” style for introducing topics, using graphical and 
symbolic features of CAS to provide an overview that emphasized the purpose of the new material, 
demonstrating ideas numerically, graphically and symbolically and observing rules and generalizations 
from the information arising. For example, Neil’s first lesson on calculus discussed instantaneous rates 
of change, demonstrated graphically with tangents and with tables of values of gradients, and linked to 
the results of symbolic differentiation. Patterns observed in the symbolic answers led students to induce 
rules such as that the derivative of nx  is 1nnx − . Previously, this would have been taught as a separate 
rule, as a generalization of the derivative of x2, without proof. Neil reported that this new style was 
more time efficient and gave improved understanding.  

In contrast, Lucy and Ken generally began from by-hand work. Lucy, for example, said: “My 
personal preference is that for every new procedure they see it first by hand, they learn to do it by-hand 
for simple examples and then progressively as the manipulations get more difficult or as the 
manipulation is not the core part of the problem, you ask the calculator to do it. …. I don’t think that 
you can start effectively by just saying that this is what the CAS does and [later] let’s go back to how 
you do it by-hand.” Lucy also stressed, however, that in the examination, students should choose the 
quickest method. On a few occasions, Lucy used CAS to advantage in a black box way. For example, 
she demonstrated the power of integration to find areas by using CAS to calculate the area of a circle 

from 2 2
r

r

r x dx
−

−∫ , an integral well beyond the course.  

 In terms of the black box/white box distinctions, Neil (and to a lesser extent Meg) adopted a 
black box/white box approach for teaching new material using CAS as a generator of examples and an 
explorative tool, whereas Lucy and Ken adopted the white box/black box approach close to that 
advocated by Buchberger (1990). All of these teachers were generally successful with their own 
students: there is no data in the project to say that one approach was more successful than the other. 
The four teachers adopted quite different teaching styles with CAS, although they all stressed by-hand 
procedures as the basis of understanding. 



The curriculum 

The need for change 
The curriculum was designed to run parallel to the existing subject Mathematical Methods, 

which allows use of graphics calculators without symbolic manipulation features, but permits user-
stored programs. The increasing sophistication of the user-stored programs on graphics calculators 
provides one reason why a project investigating the use of computer algebra systems in schools and 
examinations was timely. Programs with increasingly sophisticated symbolic manipulation are 
available which can solve certain classes of equations algebraically (e.g. linear, quadratic), differentiate 
and integrate standard functions etc. One example is the downloadable program “Symbolic” for the TI 
83 graphics calculator (HREF3). Students with more advanced graphics calculators or whose teachers 
are more knowledgeable about resources for calculators are therefore likely to gain an advantage over 
others. The current rules permitting graphics calculators (those without built-in symbolic manipulation 
– i.e. not what we call “CAS calculators”) are therefore likely to become increasingly inequitable.  

In designing the new curriculum, a number of fundamental questions arose. The first decision 
was that the new subject should have a great deal of content in common with the existing subject. This 
allowed students to move between MM and MM(CAS) from Year 11 to Year12 (as they would need to 
do if they shifted from the experimental school, for example), enabled reasonable use to be made of the 
existing textbooks for MM, gave teachers familiar material to teach whilst other things changed etc.  

How, though, and why should the existing content be modified? To create a sensible curriculum 
and to take advantage of new opportunities, there were several reasons for change:  

•  Some topics becoming more accessible when CAS is available; 
•  Including more topics to use curriculum freed by using CAS; 
•  Changes in the pragmatic value of topics when CAS is available; 
•  Changes in the epistemic value of topics when CAS is available.  

CAS makes some topics more accessible than before, principally by eliminating certain 
technical obstacles. (Many authors, for example Drijvers (2003), note that CAS by no means eliminates 
all technical obstacles). The new content introduced into MM(CAS) generally fitted into this category – 
for example, the probability content was extended to include work on transition matrices since 
technology can readily calculate high powers of transition matrices in exact or numerical form. (Unless 
long runs, and hence high powers are involved, there is no benefit in the transition matrices over tree 
diagrams). Similarly, in the new curriculum the range of functions which could be used in many 
settings (e.g. graphing, differentiating) was extended, relaxing previously tight constraints that limited 
technical difficulty of examination questions.  

It is reasonable to expect that if students can use automated procedures to carry out certain 
routine calculations, then some curriculum time which would otherwise be spent on by-hand practice 
may be freed for other purposes: possibly to include more topics, to study topics in greater depth or to 
spend more time on applications of what has been learned. Since time needs to be allocated to learning 
how to use the machine and some by-hand work is essential for developing a strong understanding of 
each topic, the amount of curriculum time freed is limited, as has been observed by many authors (e.g. 
Guin and Trouche, 1999). However, some moderate increase in the content of the curriculum can be 
seen to have been justified because, as noted above, the teachers in the trial generally reported that they 
were able to cover topics more quickly. A particularly successful addition was to include continuous 



probability distributions, whereas previously only finite probability distributions were covered. This 
topic was successful because it revisited the ideas of finite probability distributions in a new context, it 
provided an area of application for integration (a previously studied topic) and students dealt 
confidently with the technical features of integration either by-hand or by-CAS if they preferred.  

Pragmatic, epistemic and pedagogical values 
Topics earn a place in a mathematics curriculum because they are useful (have pragmatic value) 

or because they hold an important place in the structure and development of mathematical content 
(have epistemic value) or because studying them serves a purpose not related to the content itself, such 
as providing an opportunity to practice skills (i.e. pedagogical value). Artigue (2002) discusses the first 
of these two categories and we are adding the third. The framework is illustrated in Figure 2.  

Changes in technology can change both pragmatic and epistemic value. For a few topics, having 
CAS increases the pragmatic value. For example, since CAS is able to work with exact values, these 
became more useful in the MM(CAS) course. Solving problems with exact values has epistemic value, 
but in a graphics calculator environment with its orientation to the numerical, the pragmatic value is 
very low. CAS, on the other hand, is able to calculate with exact values and this seemed to increase 
their value to students, who were able to use them as intermediate as well as final results.  

 
 

 
Figure 2: Topics can have epistemic, pragmatic and pedagogical value. 

 
 
More often, though, technology reduces pragmatic value. For example, using calculus to make a 

linear approximation to a function with the formula ( ) ( ) . ( )f x h f x h f x′+ +� once had a pragmatic 
value in permitting ready approximation to the values of complicated functions. One could, for 
example, readily approximate the square root of 26.1 as 5.11 (with correct value 5.1088 to four decimal 
places) based on x = 25, whereas a by-hand calculation is very long. Questions of this nature have been 
asked in our school examinations until recently. When students have immediate access to a scientific 
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calculator, this approximation formula is no longer of pragmatic value. However, this formula still has 
immense epistemic value, being central to the principles underlying calculus. More subtly, it also 
retains a pragmatic value as the basis of many algorithms used within the calculator, but this is not of 
pragmatic value to the student. In a course of generally low rigor such as MM (and hence MM(CAS)), it 
is difficult to retain an emphasis on key ideas such as this, when there are no accessible problems to 
solve using them.2  

The rules for differentiation of complex functions also lose their pragmatic value when they are 
automated by readily available technology. If they are only taught as rules without reasons (as they 
tend to be in our low-rigor courses), they also have little epistemic value and seem good candidates for 
elimination from the curriculum. To retain a place, these rules need to be used to enhance the 
understanding of the structure of calculus and connections between topics. For example, the product 
rule now has little pragmatic value. CAS calculators are highly reliable in differentiating both simple 
and complex functions (in contrast, for example to their lower reliability in equation solving, where 
minor variations in algebraic form can make a major impact on whether a CAS can solve a set of 
equations). There is some pragmatic value in knowing the product rule in order to monitor results of 
CAS calculations and identify errors of entry or syntax and there may be some pragmatic value in 
knowing that the derivative of a product is not the product of the derivatives, hence avoiding a 
temptation to differentiate by hand erroneously. There may also be some pragmatic/pedagogical value 
in teaching the product rule in case students require it for other study where CAS is not available. 
Altogether though, the case for inclusion of the product rule on pragmatic grounds is not strong.  

On epistemic grounds, there is a strong case for the product rule related to demonstrating the 
connections in the conceptual web that is calculus. The sense of understanding mathematics arises in 
large measure from seeing it as a related whole, rather than as a series of disconnected facts. As is 
shown in Figure 3, the derivative of a product can be found using the linear approximation of the 
function obtained from the derivatives. In this way, the two terms of the product rule are exposed as the 
“cross-product” terms of the expansion of the large brackets on the first line. From this informal proof, 
I feel that I understand why the product rule holds. Without a proof, there is still some lesser epistemic 
value in being able to connect results together – for example, to link the derivative of x3 to the 
derivatives of x and x2: 

 
3 2

2 2( ) ( . ) .(2 ) 1. 3d x d x x x x x x
dx dx

= = + =  

This epistemic value will, however, only be realized if the links and reasons are explicitly made, which 
requires a different orientation to using the product rule only in sets of differentiation exercises.  

Our experience with the trial program has underlined two facts. Firstly, the curriculum value of 
topics is markedly changed by the introduction of CAS. Old justifications for teaching topics, 
especially pragmatic justifications, will not necessarily still apply. Secondly, the educational 
community now needs to build up sophisticated rationales for curriculum decisions related to areas that 
were not debated in the past. Justifications may be on pragmatic, epistemic or pedagogical grounds. 
Meg commented that she often asked herself “What am I doing this for, when the kids can just put it 
into their calculators and do it?”. Nowadays, a curriculum with or without CAS needs a strong 
rationale to help teachers understand the value of the topics included, so that they can be treated in a 
way which enhances their curriculum purposes. 
                                                 
2 One possibility is to regain some of the pragmatic value by introducing basic calculator algorithms as a topic of study.  
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Figure 3. The product rule arises from the use of the derivative to approximate functions. 
 
 

Students’ achievement 
This section presents some observations on the achievement of the MM(CAS) trial students. It is 

not possible to use the examination data to make an overall judgment about whether learning 
mathematics with CAS promotes higher achievement than learning mathematics with just a graphics 
calculator or whether the students in MM(CAS) did better than the students in MM. This is because the 
trial could not be set up to allow valid conclusions of this nature to be made. Firstly, all three schools 
had teachers of above average competence and commitment, which was essential to work in the 
difficult experimental situation (e.g. without an appropriate textbook and with complex new technology 
to master). For the same reason, the schools involved are not representative. Secondly, for ethical 
reasons the students were not randomly allocated to MM or MM(CAS) – the decision was either made 
by the school when it decided to be involved in the trial or by the students and their families. Thirdly, 
the learning objectives of the two subjects are different (the content and methods differ) and whilst 
there are common questions on the exams, the assessment is not the same. Despite the inability to 
compare achievement, it was essential to monitor the achievement in the CAS course was satisfactory 
and this was done as outlined below.  

The greater general ability of the MM(CAS) pilot group was confirmed by the fact that the 
MM(CAS) “scaled score” which is used for university entrance was higher than the MM scaled score. 
The scaled score for each subject is calculated from the results of the student population3 in all the 
other examinations that these students sat (HREF4). For the 2002 examinations, the scaled mean scores 
were 38.8 for MM(CAS) and 36.6 for MM. For comparison, the subject English had a scaled mean 
score of 28.5. The hardest mathematics subject, Specialist Mathematics, had a scaled mean score of 
41.2. 

Analysis of the responses to questions asked on both the MM and MM(CAS) examinations 
confirmed that the MM(CAS) cohort performed better than the MM cohort, as expected. MM(CAS) 
students outperformed MM students on almost all of the questions which were asked on both papers 

                                                 
3 For technical reasons, the calculations of the scaled score involved only 70 of the 78 MM(CAS) students. 



(66% of the total marks) (Leigh-Lancaster, 2003). Since CAS was generally not useful in these 
common questions, the higher performance of the MM(CAS) group is unlikely to be due to the different 
technology permitted in the examination. VCAA testing of important algebra and calculus skills 
without technology, which was carried out shortly before the examinations, also showed that students 
had similar by-hand skills to students learning without CAS, reflecting the attention that the pilot group 
teachers had given to by-hand skills for developing understanding.  

The official assessment reports noted that students generally used CAS well. The VCAA-
appointed Chief Examiners for MM(CAS) were both highly experienced in writing and marking 
external mathematics examinations, including MM. As part of the formal process of the examination, 
they commented (positively and negatively) on achievement in each question, noting that students 
overall found the examination papers accessible, that students generally used the symbolic facility of 
the calculators well, generally wrote answers in standard mathematical notation, and that many students 
did very well. Analysis by the research team of the students’ scripts showed that they omitted fewer 
questions than is normally the case. They used CAS very widely in the examinations, probably more 
than their teachers expected and for purposes which had not been expected.  

Further confidence that the students in MM(CAS) learned well comes from the observations of 
three of the four teachers who were highly experienced in teaching MM. Asked 4 months before the 
final examination to summarize how the students were progressing, the teachers were all positive, 
although all reported some degree of difficulty in teaching the new subject and using the CAS 
calculators for the first time. Meg contrasted the students’ enjoyment with her own apprehension and 
commented: “I think I’m doing a lot more conceptual and high-powered things than I would normally 
[do] in the Mathematical Methods course. I think I’ve gone further with these kids than what I have in 
the straight Mathematical Methods course”. Lucy commented that: “relative to a normal MM course, 
the kids seem to continually surprise me with a depth of understanding that I wouldn’t have expected in 
the traditional course.” Neil, whilst noting a Hawthorne effect for students who feel special because 
they are involved in the experimental course, commented that students have a “better holistic view of 
the topic. ... Rather than just overtaking their mathematics, it [CAS] has just given then another way of 
looking at it, a very powerful way of looking at every piece of maths that they would want.”  

Assessment 
Assessment of mathematics has an important part to play in the design of an excellent system of 
mathematics education for any country. It reflects the curriculum and also plays an important role in 
showing what is valued. It defines in detail what is regarded as acceptable and what methods for 
solving problems are preferred. The final MM(CAS) examinations needed to be very carefully 
designed, especially to ensure that users of different CAS were treated equitably. Amongst the key 
challenges of CAS to assessment are: 

♦  That CAS “gobbles up” the solving phase, so that intermediate steps are not available for 
inspection by the examiner or examinee; 

♦  That there is an explosion of possible methods that students can use, including making some 
conceptually simple numerical and graphical methods feasible, where previously only algebraic 
methods were practical. 



♦  That the lower intrinsic value of manipulative procedures demands a shift away from questions 
that test routine procedures towards questions that test formulating mathematical models and 
interpreting what answers mean in context; 

♦  That many of the devices used to avoid questions which have been “trivialized” by CAS (e.g. 
the introduction of parameters) can in fact make questions very much more difficult 
conceptually; 

♦  CAS often causes shifts in what mathematical knowledge and abilities are assessed so that 
careful consideration must be given as to what is assessed in an examination question; 

♦  That different models and brands of CAS have distinctly different capabilities, raising 
heightened issues of equity.  

All of these phenomena have consequences for both examination question design and for marking 
schemes. It is expected that examination practices will take some time to evolve and to develop 
powerful techniques for examining important mathematics in this new environment. Our creativity is 
challenged to design questions that will show how deeply held mathematical values can be adequately 
tested, in a way which encourages preparation through good learning and teaching.  

The consequences for examinations are outlined below. However, it is important to note that 
extending high-stakes assessment beyond the traditional examination format will also be required, in 
order to gain any benefit from the way in which CAS can amplify what students can do.  
Our recommendations for examinations are that: 

♦  Examinations should include both questions where CAS is necessary for nearly all students, 
where it may be chosen by some students and where it is not useful (i.e. the examination as a 
whole should be “CAS-active”, although not all individual questions will be);  

♦  The overall level of difficulty of CAS-permitted examinations must be monitored closely to 
prevent them becoming too difficult, and this will require inclusion of some routine questions 
that an expert regards as “trivialized” by CAS;  

♦  Examinations need to be carefully monitored to check that they are “brand-neutral” overall (i.e. 
users of no permitted CAS models and brands have an unfair advantage over others), but it is 
not feasible to set an examination where each of the questions are individually “brand-neutral”; 

♦  Opportunities exist to set newer style questions that test valued mathematical knowledge and 
focus on using CAS to apply algebra and calculus-based techniques. 

♦  Examination questions require explicit indications to students of which intermediate answers 
should be shown; 

♦  Students need assistance to write adequate records of solutions assisted by CAS (Ball and 
Stacey’s (2003) RIPA scheme is one approach); 

♦  Examiners need to be aware of emerging capabilities of the technology that students use and 
adjust questions accordingly;  

♦  Marking schemes will need to reflect new solution approaches offered by students and will need 
to accommodate the explosion of methods that is a consequence of technology availability; 

♦  Examiners can expect solutions containing non-standard mathematical syntax; 
♦  The complexity of modes and other means of personalizing a CAS means that students should 

not have to clear memory or reset machines to default settings before an examination; 
♦  The opportunities to assess a wider range of mathematical knowledge and abilities beyond 

routine calculation should be taken carefully but deliberately. 



The next sections provide examples of the points above, and further details are given in Stacey (2002).   

Example 1. Finding the maximum value of f(t) = exp (– kt). t n   

This question illustrates how CAS gobbles up intermediate steps, how technology can change 
what a question assesses (in this case shifting the demand from differentiation to finding equivalent 
algebraic forms), the need for good understanding of algebra (especially algebraic insight) and how a 
careful watch needs to be carried out to minimize inequities for users of different models and brands of 
CAS. 

By hand, finding the maximum value of the function f(t) = exp (– kt). t n  is a substantial task for 
our students. They have to differentiate using the product rule and then simplify the expression f '(t) = –
k.exp((–kt).tn+ n exp(–kt).tn–1 = (n– kt).exp(–kt). tn–1 before solving f '(t)= 0 using the null factor law in 
an unfamiliar situation. In contrast a CAS user can define the function f(t) and then give a single 
command in appropriate syntax such as  

solve (d/dt (f(t)) = 0, t) 
to receive the solution t = n/k. CAS has “gobbled up” the technical work, leaving only the overall plan 
of the solution to be inputted.  

This question also illustrates the point: how using new technology can change what a question 
assesses. If the student works with the CAS step by step with a standard CAS (the Hewlett Packard 
HP40G), instead of using the compound command, they find that  

f '(t) = exp (n.ln(t)) * (n- kt)/t.exp(kt) 
 and it is very difficult to use the calculator to change the expression exp (n.ln(t)) into the simpler form 
tn. A user of another model or brand of CAS may get the form involving tn immediately. Surprises like 
this demonstrate that using computer algebra requires good algebraic insight, but that the demand of 
questions can be significantly altered.  

Example 2: The problem of assessing connections with CAS solution 
When using CAS for assessment, calculation can no longer be used to assess understanding and 

knowledge of patterns. Instead, we need to create new strategies for highlighting reasoning, 
explanations and connections in mathematical work. Currently, except in the highest level courses, our 
Year 12 students mostly display their mathematical reasoning and demonstrate their understanding of 
the connections between mathematical facts when they carry out algebraic manipulations in the context 
of trigonometry, calculus etc. For example, the argument shown in Figure 4 links two different types of 
 
By-hand solution By-CAS Solution 
(sin x + cos x)2  
=   sin2x + 2 sin x cos x + cos2x  
=   sin2x + cos2x + 2 sin x cos x  
=  1 + 2 sin x cos x 
=  1 + sin 2x 

Enter: (sin x + cos x) 2  
Output: 1 + 2 sin x cos x 
Highlight second term and select 
TLIN or TCOLLECT 
Output: 1 + sin 2x 

Figure 4: Connections evident in a by-hand solution are missing in a by-CAS solution. 
 
 



trigonometric expressions, by applying algebraic expansion, Pythagoras’s theorem and a double angle 
formula. It is an ordinary result of mathematics, but quite beautiful and obtaining it by carrying out the 
steps one by one by-hand is immensely satisfying. In contrast, using CAS for the simplification (see 
Figure 4 for the HP40G steps) takes away the charm and satisfaction. Much of what many people like 
about school mathematics is contained in small instances like these. In Gila Hanna’s terms (Hanna & 
Jahnke, 1996), the proofs that explain, rather than simply prove, are the ones which we do not want to 
lose. My hope is that we can find creative ways of retaining this even when we adopt the technology. 

Example 3: How algebraic form opens and closes gateways to solution paths 
The question in Figure 5, which is written for a non-CAS environment, has been analyzed by Flynn and 
Asp (2002). This question demonstrates how working with a CAS might open some gates in a solution 
path and close others, in a way that is different to by-hand solutions. The answers in parts (a) and (b) 
can be obtained in one step with some CAS and in two steps with others (first differentiate, then factor 
to get in the required form). For part (c), however, there are considerable inequities which would arise 
for students assisted by different CAS. All CAS have strengths and weaknesses in this regard: with 
some questions one brand is better, with others a different brand has an advantage. 

With one CAS (the TI89) solving the equation 2 (3cos 4sin ) 0ae a a− =  for a gives 
 1tan (3 / 4)a nπ −= +  where n J∈ . 

and applying the function “tan” to both sides of the equation gives the output tan 3 / 4a = . Substituting 
into the derivative gives 

12 tan (3/ 4)e
−

 which is 2ae (with some care about the nπ term).  

  
 

{question introduction omitted} . . .   [Let] 2 cosxy e x=  

(a) Show that 2 (2cos sin )xdy e x x
dx

= −  

(b) Find 
2

2

d y
dx

  

(c) There is an inflexion point at P(a,b). Use the results from (a) and (b) to prove that  

(i) tan 3/ 4a =   and  (ii) the gradient of the curve at P is 2ae . 

Figure 5. International Baccalaureate Mathematical Methods Standard Level Paper 2, Question 7, 
2000 
 

 
With another CAS (in this case the Casio FX2.0), the problem is considerably harder and the 

CAS user needs considerable flexibility moving between by-hand and CAS techniques as the 
unexpected CAS output interrupts the flow of the question as planned by the examiners. With this CAS 
solving the equation 2 (3cos 4sin ) 0ae a a− =  for a gives 12 2 tan (1/ 3)a kπ −= +  where k J∈  and it is 
very difficult to get to tan 3/ 4a =  in the exact mode, although the approximate mode readily evaluates 



tan a as 0.75. Substituting 1tan (3 / 4)− into the expression for the derivative gives 
12 tan (3/ 4) 1 1(2cos(tan (3 / 4) sin(tan (3 / 4)))e

− − −− and the second bracket can be evaluated to 1 in the CAS, 
giving the required answer. This example shows how calculator outputs are dependent on internal 
simplification algorithms. Different outputs lead solutions most easily along different paths. 
Intermediate results are like gateways that are provided in the question to enable passage from one area 
of a question to the next. In this question, we see how a gateway meant to easily lead the solver from 
one part of the solution to the next, may in fact be very badly placed for some CAS users and thus can 
serve to make the question very much harder. 

Example 4: Assessing patterns and connections 
One example of how we may be able to adapt assessment to emphasize the connections and 

patterns in school mathematics is shown in Figure 6, which was created by Peter Flynn of the 
University of Melbourne. With a CAS, differentiating e2xcos x is a trivial task, although as we note 
above getting the answer into a requested algebraic form may be more complex. Whereas solving this 
question without CAS demonstrates knowledge of the interaction between multiplication and 
differentiation (the “product rule”), with CAS this knowledge is not needed. The question in Figure 6 
attempts to assess the appreciation of the pattern of the product rule. Since this can no longer be 
directly assessed by computation, an indirect approach is needed to assess understanding of patterns 
such as the product rule. 
 
 
(a) Find the derivative of e2x cos x. 
(b) The product rule states that (uv)' = uv ' + vu ' Given that u' = -sin x, show how your 
answer to (a) fits the product rule by correctly identifying u, v and v ' 

Figure 6: A possible new approach to assessing understanding of the product rule. 
 
 

Future directions 
This paper has outlined some of the major findings of the CAS-CAT project. Overall the trial 

was a success, due in great measure to the dedication of the participating teachers who had to learn how 
to teach with a complex and demanding technology. In this process, there were frustrations, but there 
were also opportunities for enhanced learning. The presence of CAS offered many challenges for the 
teachers, in terms of both content and pedagogy. The symbolic capability of CAS provided 
opportunities to treat topics in a more algebraic way, although this was not always an easy thing to do. 
In concert with the graphical capability, the CAS offers a powerful tool to enhance school mathematics. 
Students required good understanding of algebra to work with CAS, and this understanding was able to 
grow in its presence. Overall the results of the students indicated that they had learned well and that 
further trials can confidently proceed.  

CAS has implications for curriculum and for assessment, whether one is considering a school 
system about to adopt new technologies for learning and assessing mathematics, or a more conservative 
school system which nevertheless has an eye to the future. An exclusive emphasis on routine 
procedures is not defensible: instead the curriculum and the assessment of the future must give greater 



weight to formulating real world problems in mathematical terms and interpreting mathematical 
solutions in real problem contexts. This has been a goal of mathematics curriculum reform for many 
years but more needs to be done and the rationale is becoming stronger and stronger as technology 
takes over mathematical procedures from the simplest shopping applications to advanced algebra and 
calculus. This affects questions in a traditional examination but it also requires that other modes of 
assessment should be used.  

Effective assessment with CAS is a challenging task and it will take some years and 
considerable creativity for new practices to be established. A series of “hot-spots” have been illustrated 
in this paper, along with some guidelines for responding to them. They demonstrate that doing 
mathematics with a technology tool is not the same as doing it by-hand. Throughout the CAS-CAT 
project, we have had many occasions when the answers thrown up by the CAS have caused us to look 
at mathematics in new ways. In this way the project has been challenging and rewarding 
mathematically and pedagogically and has provided strong guidelines for policy changes.  
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