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Abstract:  In this paper, we will consider the center of gravity, or the center of mass, of several types of polygonal 
regions in the XY-plane.  In order to calculate the center of gravity of such regions, instead of techniques from calculus, 
one can conveniently use geometric ideas.  Our regions are of variable nature, so one can consider the locus of their 
center of gravity in the XY-plane.  The locus of the center of gravity of a certain region that we will consider turns out to 
be a hyperbola with axes parallel to the coordinate axes.  This observation can be reversed to come up with a new 
definition for a hyperbola, without involving eccentricity.  We will use this new definition along with the dynamic 
geometry software Geometer's Sketchpad to present a novel construction of a hyperbola.  The locus of the center of 
gravity of some other polygonal regions yield other types of interesting curves as well.  In addition to Geometer's 
Sketchpad, we have also used the computer algebra system Mathematica to facilitate the center of gravity calculations.  
The paper also shows the importance of using different types of software hand-in-hand to experiment with 
mathematical problems. 
      
1.  Introduction 
     This paper is a continuation of our studies of center of gravity of plane regions.  Previously, in 
[1] and [2], we considered the center of gravity of a variety of fixed and variable regions.  Some of 
those regions included parabolic, exponential, and logarithmic regions.  In order to calculate the 
center of gravity of these types of regions, one had to use methods of calculus (see [4]).  In [1] and 
[2], we showed how this was done, with the aid of the computer algebra system (CAS) 
Mathematica.  In addition to the regions described above, we also considered one example of a 
polygonal region, a trapezoid in [1] and [2].  One does not have to use methods of calculus to 
calculate the center of gravity of such regions:  Any polygonal region can be divided into triangles, 
and hence geometric methods can be used to find their center of gravity.  Because of the geometric 
nature of the situation, the dynamic geometry software, Geometer’s Sketchpad can be used to carry 
out our investigations. 
   In [2], we discovered that the locus of the center of gravity of a certain variable trapezoidal region 
was a hyperbola, the axes of the curve being oblique.  In this paper, we will discover a simpler 
variable triangular region whose locus of the center of gravity is a hyperbola, with axes parallel to 
the coordinate axes.  This discovery can be used to formulate a new definition of a hyperbola 
without involving the concept of eccentricity. 
    We will also consider the loci of other types of polygonal regions with variable boundaries.  It is 
of interest to note that ellipses as well as other interesting types of closed curves can be obtained as 
the locus of  the center of gravity of variable polygonal regions. 
    To facilitate our discoveries and calculations, we have used the CAS Mathematica as well as the 
dynamic geometry software Geometer’s Sketchpad ( see [3] and [6] ). 
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2.  The Locus of the Center of Gravity of a Variable Triangular Region 
      Consider the two straight lines passing through the origin, given by the following equations: 
 
   (2.1) axy =
 
    (2.2) bxy =
 
 In the above, a and b are fixed real constants with a .  Let  be a point on the Y-axis 
where  is a fixed constant.  Consider the variable straight line l with slope t, passing through 
the point P, intersecting the straight lines  and  at A and B respectively.  We will 
assume that the real parameter t varies such that the triangle OAB is well-defined.  As the parameter 
t changes, the center of gravity G of the triangular region OAB changes.  We are interested in 
finding the locus of G in the XY-plane.  See the following figure: 
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Figure 2.1  The Center of Gravity of a Variable Triangular Region 
 
One can write the equation of the line l as 
  (2.3)
   

cxty +=

 
One can solve the equations (2.1) and (2.3) to find the coordinates of the point A to be 

.  Similarly, by solving the equations (2.2) and (2.3), the coordinates of the 
point B are given by .  We now know the coordinates of the three vertices of 
the triangle OAB, where O is the origin.  The center of gravity 
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)0,0( ),( yxG of the triangular region 
OAB can be obtained by averaging the x-coordinates of the vertices, and averaging the y-
coordinates of the vertices, separately (see [5]).  Thus, the following equations provide the 
coordinates of the center of gravity G of the region OAB: 
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To find the locus of G, one can eliminate the parameter t between the equations (2.4) and (2.5).  
This can be either done by hand, or by using the following Mathematica command (see [6]): 
 

Eliminate[{x, y} == {c(a + b - 2t)/(3(a - t)(b - t)), c(2a*b - a*t - b*t)/(3(a - t)(b - t))}, t] 
  
Press “Shift-Enter” to execute the command.  According to the output, the locus of G is given by 
the following equation: 
  (2.6) yycbyaybcacxabx )32()33(3 2 −=−−++
 
It is not hard to analyze the equation (2.6) using the theory of general equation of second degree in 
two variables (see [5]).  However, we will confine ourselves to the special case where .  
The advantage of this special case is that when , the xy-term of the equation (2.6) 
vanishes.  With this condition, the equation (2.6) now reads 
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One can complete the square in equation (2.7) to obtain the locus of G as given by the following 
equation: 
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The above equation (2.8) represents a hyperbola centered at with axes parallel to the 
coordinate axes.  Thus, we can now state the following theorem.            
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Theorem 2.1   Let c be a fixed real constant, and let l be the line through the point with 
slope t, where t is a real parameter.  Consider the triangular region OAB bounded by the line l and 
the lines given by the equation  where  is a fixed real constant.  We will assume that 
the parameter t changes so that the region OAB is always well-defined.  Then, for changing t-values, 
the locus of the center of gravity G of the region OAB is a hyperbola given by the equation (2.8).  
This hyperbola has center at , vertices at V and , axes parallel to the 

coordinate axes, and eccentricity 
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.  Moreover, the asymptotes of the hyperbola are 
parallel to the lines given by  (see the following figure). y
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Figure 2.2  A Hyperbola as the Locus of the Center of Gravity of a Triangular Region 
 
Proof.  Most of the assertions follow from the discussion preceding the statement of the theorem.  
Recall that for any hyperbola of the type , the vertices are given by 

, the eccentricity e is given by the equation b , and slopes of the asymptotes 
are given by ± .  Using these facts, the rest of the theorem can be verified as well.        
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Mathematica can be used to create a dynamic visualization to illustrate our findings.  The following 
Mathematica program creates an animation of the center of gravity G of the triangular region, as the 
upper boundary l of the region changes. 
 
Program 2.1 
<< Graphics`ImplicitPlot` 
Clear[a, b, c, t] 
a = 2;  c = 3;  b = -a; 
{x1, y1} = {c/(a - t), a*c/(a - t)};    
{x2, y2} = {c/(b - t), b*c/(b - t)}; 
{xbar, ybar} = {c(a + b - 2t)/(3(a - t)(b - t)), c(2a*b)/(3(a - t)(b - t))}; 
p1 = ImplicitPlot[(y - c/3)^2/(c/3)^2 - x^2/(c/(3a))^2 == 1, {x, -5, 5}, {y, -6, 6},  
            PlotStyle -> {Thickness[1/200], RGBColor[0.4, 0.7, 0.99]}, DisplayFunction -> Identity] 
p2 := Plot[{a*x, b*x, x*t + c}, {x, -5, 5}, PlotStyle -> RGBColor[1, 0, 0],  
                            DisplayFunction -> Identity,  Prolog -> {{Thickness[1/80], RGBColor[1, 0, 0],  
         Line[{{0, 0}, {x1, y1}, {x2, y2}, {0, 0}}]}, 
        {RGBColor[1, 1, 0], Polygon[{{0, 0}, {x1, y1}, {x2, y2}}]} , 
        {PointSize[1/50], Point[{xbar, ybar}]}, 
        {PointSize[1/60], RGBColor[0, 0, 1], Point[{x1, y1}]}, 
        {PointSize[1/60], RGBColor[0, 0, 1], Point[{x2, y2}]}   }    ] 
Do[Show[{p2, p1}, PlotRange -> {-6, 6}, DisplayFunction -> $DisplayFunction],  
                                                                                                                                {t, -0.8, 0.8, 0.1}]                                  
 
Press “Shift-Enter” to execute the program.  A few frames of the animation are given below. 
                



 
 

Figure 2.3  An Animation of the Center of Gravity of the Triangular Region OAB 
 
Our theorem says a whole lot more indirectly!  In fact Theorem 2.1 implies an important property 
of a hyperbola. Refer to Figure 2.2.  Recall that the center of the hyperbola is given by 

and the vertices are given by V  and V . The crucial observation is to note 
that how the position of point C relates to the positions of P and V .  The relationship is indeed 

.  Also observe that how the sides of the triangle OAB are related to the hyperbola. One 
side is the variable line with slope t passing through the point on the x-axis.  The other two 
sides of the triangle pass through the vertex V  of the hyperbola, and are parallel to the two 
asymptotes.  The observation is that the center of gravity of a triangle formed this way, again 
belongs to the same hyperbola.  The following theorem records this observation in precise terms: 
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Theorem 2.2  Consider any hyperbola with center U and vertices V  and V .  Let P be the point on 
the extended transverse axis V  so that UP  and V  is the vertex closest to the point P.  
Consider the triangle formed by a variable straight line through the point P, and two straight lines 
through vertex V  parallel to the two asymptotes.  Then for changing positions of l, the locus of the 
center of gravity of this triangle belongs to the same hyperbola (see the following figure). 

1 2

21V 12UV= 2

1

 

 
 

Figure 2.4  An Important Property of a Hyperbola 
 
Proof.  Without loss of generality, one can write the equation of the hyperbola as 
 
 1  (2.9) // 2222 =− byax
 



Then we have the coordinates U , V ,V and .  The equation of the variable 
line through point P can be written as 
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  (2.10) axty 2+=
where t is a variable parameter.  Since the slopes of the asymptotes of the hyperbola are equal to 

, we can write the equations of the other two sides of the triangle in the theorem as follows: ab /±
 
  (2.11) aaxby /)( +−=
  (2.12) aaxby /)( +=
   
One vertex of the triangle under consideration is clearly V .  By solving the equations (2.10) 
and (2.11), the second vertex of the triangle can be obtained as the point 

.  Similarly, by solving the equations (2.10) and (2.12), the 
third vertex of the triangle can be found as the point .  Then 
one can average the three x-coordinates, and the three y-coordinates, separately, to obtain the 
following coordinates of the center of gravity 
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Then it is easy to verify that the point ),( yx satisfies the equation (2.9).  This means that the center 
of gravity of the triangle described in the theorem lies on the given hyperbola.  This proves the 
theorem.     
 
One can use the above Theorem 2.2 to formulate a new definition for a hyperbola without involving 
the concept of eccentricity.  Suppose that you are given two intersecting lines  and (as 
asymptotes), and a point V  not on these two lines (as one of the vertices).  In accordance with the 
Figure 2.4, let U be the point of intersection of these two lines.  Locate point P as described in 
Theorem 2.2, and consider variable lines l through P.  Then, for changing positions of P, the center 
of gravity of the triangle defined in Theorem 2.2 traces a hyperbola.  In other words, this provides a 
convenient way of constructing a hyperbola if the two asymptotes and one of the vertices are given.  
The following construction utilizes this idea to construct a hyperbola, using Geometer’s Sketchpad 
(see [3]). 
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Figure 2.5  Constructing a Hyperbola if the Two Asymptotes and One Vertex is Given 
 

3.  The Ellipse as the Locus of the Center of Gravity of a Triangular Region 
 
In the previous section, we obtained the conic section hyperbola as the locus of the center of gravity 
of a triangular region.  Likewise, one can also obtain the ellipse as the locus of the center of gravity 
of a suitable region.  There are several ways to do this, some obvious, but some not so.  We will 
first state a theorem: 
 
Theorem 3.1  Consider the two concentric circles   and C  given by the equations  
and  respectively, with .  Let P be an arbitrary point on the larger circle C , 
and let Q be the mirror image of P on the x-axis.  Suppose that the line segment OQ meets the 
smaller circle at the point R between O and Q, where O is the origin.  Then for changing points P, 
the locus of the center of gravity of the triangular region OPR is given by the ellipse 

 (see Figure 3.1). 
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Proof.  One can write the point P as  for some .  Then we can write 
the coordinates of the points Q and R as Q and .  We now have 
the coordinates of the three vertices of the triangle OQR.  By averaging the coordinates, one can 
find that the center of gravity 
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), y(xG  of the triangular region OQR is given by the equations 
3/)( θCosbax +=  and 3/θSin)( bay −= .  By eliminating the variable θ  between these last two 

equations, one can obtain the locus of G as the ellipse .  Hence the 
theorem.    
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The following construction using Geometer’s Sketchpad  illustrates the above theorem: 
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Figure 3.1  Construction of an Ellipse as the Locus of the Center of Gravity of a Triangular Region 

 
One can use the idea learned from the above theorem to construct an ellipse, if the lengths of the 
major and minor axis are given.  Here are the details of the construction: 
 
Construction 3.1  Suppose that the semi-lengths p and q of the major and minor axes of the ellipse 
are given, along with their direction (position), respectively.  Construct the line segments of lengths 

 and .  Draw two concentric circles with radii a and b, with center as 
the center O of the ellipse (see Figure 3.1).  Pick an arbitrary point P on the larger circle, and follow 
the steps described in Theorem 3.1 to obtain the triangle OPR.  Find the centroid (center of gravity) 
G of this triangle in the usual manner, by constructing the medians.  Then for changing positions of 
P, the point G will lie on an ellipse with the semi-lengths of the major axis and minor axis equal to 
p and q respectively.  This is so, because of Theorem 3.1, the semi-length of the major axis is equal 
to , and the semi-length of the minor axis is equal to 

.   
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4.  The Locus of the Center of Gravity of a Variable Quadrilateral 
 
We can also consider the locus of the center of gravity of a variable quadrilateral using similar 
geometric methods.  For example, consider the quadrilateral OAPB with four vertices at O , 

,  and P, where P is a variable point on a circle with center at  and radius r.  
We will assume that p, q, b, , and r are fixed quantities, and that the four vertices will define a 
quadrilateral OAPB.  See the following figure: 
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Figure 4.1  The Center of Gravity of a Variable Quadrilateral 



 
We can find the center of gravity of the region OAPB using geometric methods:  Write the point P 
as  for some 0 . First, divide the region using the line segment 
AB.  Using the averaging process, the center of gravity of the triangles OAB and ABP are given by 

, and G  respectively. It then follows 
that the equation of the line G  is given by  
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Secondly, divide the region using the line segment OP.  It is easy to verify that the center of gravity 
of the triangles OAP and OBP are given by G and 

 respectively.  Therefore, the equation of the line  is 
given by 
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Now, the center of gravity G of the region OAPB must lie on both lines  and G , so the 

coordinates of 
21GG 43G

),( yxG  can be obtained by solving the equations (4.1) and (4,2).  Either by hand 
calculations, or by using the Mathematica “Solve” command, one can obtain the following (see 
[6]): 
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where 
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In order to find the locus of G, one has to eliminate the variable θ  between the equations (4.3) and 
(4.4).  This is a non-trivial problem even with the help of a CAS such as Mathematica!  However, 
an indirect approach can be used. One can make the substitutions  and 

 for some real t.  With these substitutions, the equations (4.3) and (4.4) 
become rational functions of t.  Then, the “Eliminate” command of Mathematica can be used to 
eliminate t to obtain the locus of G (see [6]).  Though not included here because of the space 
limitations, the result, in general, is a fourth-degree polynomial equation in x and y.   

)1/(2 2ttSin +=θ

)1/()1( 22 ttCos +−=θ

 
As a specific example, for  and , the locus of G is given by the 
following: 
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The “ImplicitPlot” command of Mathematica can be used to graph the above equation (4.6):  
 

 
 

Figure 4.2  The Locus of G  for  and r  ,5,1,1,2/1 0 =−=== xbqp 1=
 
According to the above diagram, the locus of G is similar in shape to an ellipse or a circle, at least 
for the values  and .  However, we do not yet have a proof 
regarding the exact shape of the above graph.  We have also used Geometer’s Sketchpad to 
construct the locus of the center of gravity of the region OAPB.  Unlike Mathematica, Geometer’s 
Sketchpad constructions are very interactive in the sense that one can instantly see the updated locus 
as values for p, q, b, , and r are changed by dragging the point A, B, etc. (see [3]).  Depending on 
these values, the locus of G can take a number of interesting shapes, but because of the space 
limitations, we are unable to include further details.  We conclude by saying that when considering 
geometric problems such as described in the paper, it is important to use more than one type of 
software to get different insights.  
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