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Abstract 
  Recently, Abad (2003) studied the pricing and lot-sizing problem for a perishable good under 
finite production, exponential decay, partial backordering and lost sale. In this article, we extend his 
model by adding not only the backlogging cost but also the cost of lost goodwill. We then 
analytical compare the total profits between Abad’s (2003) model (in which the cycle starts with an 
instant production to accumulate stocks, then stops production to use up stocks, and finally restarts 
production to meet the unsatisfied demands.) and Goyal and Giri’s (2003) model (in which the 
cycle begins with a period of shortages, then starts production until accumulated inventory reaches 
certain level, and finally stops production and uses up inventory). In addition, we show that there is 
no dominant model. Furthermore, we provide certain conditions under which one is more profitable 
than the other. Finally, we give several numerical examples to illustrate the results.    
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1. Introduction 

 
Many researchers have studied inventory models for deteriorating items such as volatile liquids, 

blood banks, medicines, electronic components and fashion goods. Ghare and Schrader (1963) 
were the first proponents for developing a model for an exponentially decaying inventory. They 
categorized decaying inventory into three types: direct spoilage, physical depletion and 
deterioration. Next, Covert and Philip (1973) extended Ghare and Schrader’s constant deterioration 
rate to a two-parameter Weibull distribution. Misra (1975) developed an economic order quantity 
(i.e., EOQ) model with a Weibull deterioration rate for the perishable product but he did not 
consider backordering. Dave and Patel (1981) considered an EOQ model for deteriorating items 
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with time-proportional demand when shortages were prohibited. Sachan (1984) then generalized 
the EOQ model to allow for shortages. Later, Hariga (1996) generalized the demand pattern to any 
log-concave function. Teng et al. (1999) and Yang et al. (2001) further generalized the demand 
function to include any non-negative, continuous function that fluctuates with time. 

Abad (1996) established the optimal pricing and lot-sizing EOQ policies under conditions of 
perishability and partial backordering. Then Abad (2000) extended the optimal pricing and 
lot-sizing EOQ model to an economic production quantity (i.e., EPQ) model. Balkhi and 
Benkherouf (1996) developed a general EPQ model for deteriorating items where demand and 
production rates are time varying, but the rate of deterioration is constant. Balkhi (2001) then 
further generalized the EPQ model to allow for time-varying deterioration rate. Recently, Abad 
(2003) studied the pricing and lot-sizing problem for a perishable good under finite production, 
exponential decay and partial backordering and lost sale. He assumed that customers are impatient 
and the backlogging rate is a negative exponential function of the waiting time. In addition, he 
assumed that the customers are served on first come first served basis during the shortage period. 
Then he provided a solution procedure to obtain the optimal price and lot-size that maximizes the 
average profit. However, he did not include the shortage cost for backlogged items and the cost of 
lost goodwill due to lost sales into the objective. If the objective does not include these two costs, 
then it will alter the optimal solution and overestimate the average profit. To correct them, in this 
paper, we add both the shortage cost for backlogged items and the cost of lost goodwill due to lost 
sales into the objective suggested by Abad (2003).  

In Abad (2003), the production-inventory model starts with an instant production to accumulate 
stocks, then stops production to use up stocks, and finally restarts production to meet the 
unsatisfied demands. In fact, Abad’s production-inventory model is similar to that in Balkhi and 
Benkherouf (1996). Lately, Goyal and Giri (2003) investigated a similar production-inventory 
problem in which the demand, production and deterioration rates of a product were assumed to vary 
with time. However, pricing was not under consideration and the backlogging rate was assumed to 
be a constant fraction. They then proposed a new production-inventory model in which the cycle 
begins with a period of shortages, then starts production until accumulated inventory reaches a 
certain level, and finally stops production and uses up inventory. Finally, Goyal and Giri (2003) 
provided a numerical example to show that their model outperforms Balkhi and Benkherouf’s 
model (1996) in terms of the least expensive total cost per unit time. 
  In this paper, we first extend Abad’s (2003) pricing and lot-sizing model by adding not only the 
shortage cost for backlogged items but also the cost of lost goodwill due to lost sales into the 
objective. Next, we establish a new modeling approach as in Goyal and Giri (2003) to the same 
pricing and lot-sizing inventory problem. We then characterize the optimal solution to both distinct 
models, and prove that both two models provide the same profit if all parameters are constant. 
However, if any single parameter is varying with time, then the performances of these two models 
are varied. Furthermore, we obtain some theoretical results that show the conditions under which 
one model is more profitable than the other. Finally, we provide several numerical examples to 
illustrate the results, and conclusions are made. 

 
2. Assumptions and notations 

 
The following assumptions are similar to those in Abad’s (2003) model. 

(1) The planning horizon is infinite. 
(2) The initial and final inventory levels are both zero. 
(3) Shortages are allowed. However, the longer the waiting time, the smaller the backlogging rate. 



 

Hence, we assume that the fraction of shortages backordered ( )τB  is a decreasing and 
differentiable function of τ , where τ  is the waiting time up to the next replenishment. 

(4) The demand rate is a decreasing function of the selling price and it is twice differentiable.  
(5) The production rate, which is finite, is higher than the demand rate. 
(6) A constant fraction of the on-hand inventory deteriorates per unit of time and there is no repair 

or replacement of the deteriorated inventory. Hence, there is no salvage value for the 
deteriorated items. 

(7) The unit cost, the holding cost, the shortage cost for backlogged items, and the cost of lost 
goodwill due to lost sales are assumed to be functions of time. 

 
In addition, the following notations are used throughout this paper. 
 
( )tIi  on-hand stock level (or number of backorders) at time t in Phase i, i = 1, 2, 3, and 4. 
R  production rate for the item (units/unit time).  
K  setup cost per setup. 
( )tv  unit cost, as a function of time t . 
( )th  unit holding cost per unit time at time t . 
p  unit selling price within the replenishment cycle, ( )tvp > .  
( )tc1  unit shortage cost per unit time for backlogged items at time t . 
( )tc2  unit cost of lost goodwill due to lost sales at time t .  
( )pD  demand rate per unit time, which is a decreasing function of p . Note ( )pDR > . We  
 will use D  and ( )pD  interchangeably. 
σ  decay coefficient, which is a constant (i.e., exponential decay).. 
T  duration of positive inventory cycle. 
λ  duration of negative inventory cycle (or shortage cycle). 
ψ  duration of negative inventory before the start of production. 
β  duration of positive inventory before the end of production. 

 
In this paper, we assume WLOG that the vendor’s objective is to maximize the average profit per 
unit time.  
 
3. Mathematical formulations and theoretical results 

 
In this section, we first establish Abad’s modeling approach for the problem, then set up Goyal 

and Giri’s modeling approach to the problem next, and finally compare the profits obtained from 
these two models.  
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Fig. 1. A production-inventory cycle of Model 1
 

 

 
3.1 Model 1: Abad’s (2003) approach 

In this subsection, the behaviour of the inventory in a cycle is shown in Figure 1, as well as in 
Abad (2003). Consequently, the inventory cycle is described by the following four phases: 
Phase 1. During the time interval [ ]β,0 , the system is subject to the effect of production, demand 
and deterioration. Therefore, the change of the inventory level at time t, ( )tI1 , is governed by 

( ) ( ) DRtI
dt

tdI
−=+ 1

1 σ , with the boundary condition ( ) 001 =I . (1) 

Phase 2. In the time interval [ ]T,β , the system is affected by the combined the demand and 
deterioration. Hence, the change of the inventory level at time t, ( )tI 2 , is governed by 

( ) ( ) DtI
dt

tdI
−=+ 2

2 σ , with the boundary condition ( ) 02 =TI .  (2) 

The solution to differential equation (1) is 
( ) ( )( ) σσ /11

teDRtI −−−= , [ ]β,0∈t . (3) 
Setting β=t  into Eq.(3), we obtain the maximum positive inventory in a cycle is  

( ) ( )( ) σβ βσ /11
−−−= eDRI .   (4) 

Similarly, the solution to differential equation (2) is 
 ( ) ( )( ) σσ /12 −= −tTeDtI , [ ]Tt ,β∈ .    (5) 
Equating expressions (3) and (4) at β=t , we have 

( ) ( ) ( )( ) ( )( ) σσββ βσβσ /1/121 −=−−== −− TeDeDRII ,     (6) 
Solving Eq.(6) for β , we have  

 ( )[ ]ReDDR T /ln1 σ

σ
β +−= . (7) 

Phase 3. For [ ]ψ+∈ TTt , , similar to Abad’s (2003) model, the backlogging rate ( )τB  is a 
negative exponential function of the waiting time τ . Therefore, we have  
  ( ) 100 0,1,1 kkekB k ≤≤= − ττ . (8) 
Since customers are served on first come first served basis during shortage period, we know from 
Figure 1 that the waiting time is given by ( ) RtItT /3−−+= ψτ , for [ ]ψ+∈ TTt , . Therefore, 
the number of backorders at time t, ( )tI3 , satisfies the following differential equation: 



 

( ) ( ) ( )( )RtItTkekDRtItTBD
dt

tdI /
03

3 31/)( −−+−−=−−+−= ψψ ,    (9) 

with the boundary condition ( ) 03 =TI .  
The solution to (9) for [ ]ψ+∈ TTt ,  is  

( ) ( )( )[ ]RekDRekD
k
RtI kTtk /ln 11

00
1

3
ψψ −−− −+−= .  (10) 

Phase 4. For [ ]λψ ++∈ TTt , , the waiting time is given by ( ) RtI /4−=τ . Therefore, the number 
of backorders at time t, ( )tI 4 , satisfies the following differential equation: 

( ) ( )( )RtIkekDRRtIBDR
dt
dI /

04
4 41/)( −−−=−−= ,with the boundary condition ( ) 04 =+ λTI .(11) 

The solution to (11) for [ ]λψ ++∈ TTt ,  is 

 ( ) ( ) ( )( )[ ]RkDekDR
k
RtI Ttk /ln 00

1
4

1 +−−= −−− λ . (12) 

Given the condition ( ) ( )ψψ +=+ TITI 43 , we get  

  ( )( )[ ]RkDRekD
k

k /ln1
00

1

1 −+= λψ . (13) 

Applying Eq.(13) into Eq.(12), we can rewrite the Eq.(12) as follows: 

( ) ( ) ( )( )[ ]RkDekDeR
k
RtI TtkTtk /ln 00

1
4

11 +−−= −−−−− ψ .     (14) 

Next, the average profit per unit time consists of the following six elements: 
(a) Revenue is given by 

( )ψλ −+= RpTDpR1 . (15) 
(b) The set up cost is given by 

KSC =1 . (16) 
(c) The production cost is given by 

( ) ( ) dtRtvdtRtvPC
T

T∫∫
+

+
+=

λ

ψ

β

01 . (17) 

(d) The inventory holding cost is given by 
( ) ( ) ( ) ( )∫ ∫+=

β

β0 211

T
dttIthdttIthHC   

      ( )( ) ( ) ( ) ( )( ) dteDthdteDRth tTTt σσ σ

β

σβ
/1/1

0
−+−−= −− ∫∫ . (18) 

(e) The shortage cost for backlogged items is given by 
( ) ( )[ ] ( ) ( )[ ]∫ ∫

+ +

+
−+−=

ψ λ

ψ

T

T

T

T
dttItcdttItcBC 41311  

       ( ) ( )( )[ ]{ dtRekDRekDTtc
k
R ktk∫ −− −++=

ψ ψψ

0 001
1

/ln 11  

( ) ( )( )[ ] }∫ +−++ −−−λ

ψ

ψ dtRkDekDeRTtc tktk /ln 001
11 . (19) 

(f) The cost of lost goodwill due to lost sales is given by 
( ) ( )( )[ ] ( ) ( )( )[ ] dtDRtIBtcdtDRtItTBtcLC

T

T

T

T ∫∫
+

+

+
−−+−−+−=

λ

ψ

ψ
ψ /1/1 42321  



 

( )
( )

( ) dtD
ekDekDR

ekRTtc
tkk

tk

∫ 







+−

−+=
−−

−λ

ψψ

ψ

0
00

0
2

11

1

1 .      (20) 

Given the above, the profit during time-span [ ]λ+T,0  is 
( )λ,,1 TpF 111111 LCBCHCPCSCR −−−−−=  

( )[ ] KRpTDp −−+= ψλ ( ) ( ) 



 +− ∫∫

+

+
dtRtvdtRtv

T

T

λ

ψ

β

0
  

( )( ) ( ) ( ) ( )( ) 



 −+−−− −− ∫∫ dteDthdteDRth tTTt σσ σ

β

σβ
/1/1

0
 

( ) ( )( )[ ]{ dtRekDRekDTtc
k
R ktk∫ −− −++−

ψ ψψ

0 001
1

/ln 11  

( ) ( )( )[ ] }∫ +−++ −−−λ

ψ

ψ dtRkDekDeRTtc tktk /ln 001
11  

( )
( )

( ) dtD
ekDekDR

ekRTtc
tkk

tk

∫ 







+−

−+−
−−

−λ

ψψ

ψ

0
00

0
2

11

1

1 .  (21) 

Hence, the average profit per unit time is 
( )λ,,1 TpΠ ( ) ( )λλ += TTpF /,,1 , (22) 

where ( )TpF ,,1 λ  is given by Eq. (22). As a result, the problem faced by the vendor is 
(P1)  max. ( )λ,,1 TpΠ  (23a) 

       subject to ( )( )[ ]RkDRekD
k

k /ln1
00

1

1 −+= λψ , (23b) 

( )[ ]ReDDR T /ln1 σ

σ
β +−= , (23c) 

λψ <<0 , (23d) 
                T<< β0 , (23e) 
                pv ≤ . (23f) 
  

Inventory Level

( )tI

Time
λβ +

ψ
λ+T

0

Fig. 2. A production-inventory cycle of Model 2
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3.2 Model 2: Goyal and Giri’s (2003) approach 

 
In this subsection, the behaviour of the inventory in a cycle is depicted in Figure 2, as well as in 



 

Goyal and Giri’s (2003) model. Based on the assumptions in Section 2, and from Figure 2, we 
know that the inventory is also described by the following four phases:  
Phase 1. For [ ]ψ,0∈t , 

( ) ( )( )RtItkekD
dt

tdI /
0

1 11 −−−−= ψ , with the boundary condition ( ) 001 =I .  (24) 

Phase 2. For [ ]λψ ,∈t , 
( ) ( )( )RtIkekDR

dt
tdI /

0
2 21 −−−= , with the boundary condition ( ) 02 =λI . (25) 

Phase 3. For [ ]λβλ +∈ ,t , 
( ) ( ) DRtI

dt
tdI

−=+ 3
3 σ , with the boundary condition ( ) 03 =λI . (26) 

Phase 4. For [ ]λλβ ++∈ Tt , ,  
( ) ( ) DtI

dt
tdI

−=+ 4
4 σ  with the boundary condition ( ) 04 =+ λTI . (27) 

The solutions of the above ordinary differential equations are given as follows. 

( ) ( )( )[ ]RekDRekD
k
RtI ktk /ln 11

00
1

1
ψψ −− −+−= , [ ]ψ,0∈t , (28) 

( ) ( )( )[ ]RkDekDeR
k
RtI tktk /ln 00

1
2

11 +−−= −−− ψ , [ ]λψ ,∈t ,     (29) 

( ) ( ) ( )( ) σλσ /13
−−−−= teDRtI , [ ]λβλ +∈ ,t , (30) 

and 
  ( ) ( )( ) σλσ /14 −= −+ tTeDtI , [ ]λλβ ++∈ Tt , , (31) 
respectively. Solving the boundary conditions ( ) ( )ψψ 21 II =  and ( ) ( )λβλβ +=+ 43 II , we 
obtain the following equations which are the same as Eqs. (7) and (13), respectively. 

( )( )[ ]RkDRekD
k

k /ln1
00

1

1 −+= λψ  and ( )[ ]ReDDR T /ln1 σ

σ
β +−= . (32) 

Therefore, the average profit per unit time consists of the following elements. 
(a) Revenue is given by 

( )ψλ −+= RpTDpR2 . (33) 
(b) The set up cost is given by 

KSC =2 . (34) 
(c) The production cost is given by 

( ) ( ) dtRtvdtRtvPC ∫∫
+

+=
λβ

λ

λ

ψ2 .  (35) 

(d) The inventory holding cost is given by 
( )( ) ( )( ) dteDRthHC t σ

λβ

λ

λσ /12 ∫
+ −−−−= ( ) ( )( ) ./1 dteDth

T tT∫
+

+

−+ −+
λ

λβ

λσ σ  (36) 

(e) The shortage cost for backlogged items is given by 

( ) ( )( )[ ]{ dtRekDRekDtc
k
RBC ktk∫ −− −+=

ψ ψψ

0 001
1

2 /ln 11  

       ( ) ( )( )[ ] }dtRkDekDeRtc tktk∫ +−+ −−−λ

ψ

ψ /ln 001
11 .  (37) 



 

(f) The cost of lost goodwill due to lost sales is given by 

( )
( )

( ) dtD
ekDekDR

ekR
tcLC tkk

tk

∫ 








+−
−= −−

−λ

ψψ

ψ

0
00

0
22 11

1

1 .   (38) 

Hence, the profit during time-span [ ]λ+T,0  is 
( )λ,,2 TpF 222222 LCBCHCPCSCR −−−−−=  

( )[ ] KRpTDp −−+= ψλ ( ) ( ) 



 +− ∫∫

+
dtRtvdtRtv

λβ

λ

λ

ψ
 

( )( ) ( )( ){ ( ) ( )( ) }dteDthdteDRth
T tTt ∫∫
+

+

−++ −− −+−−−
λ

λβ

λσλβ

λ

λσ σσ /1/1  

( ) ( )( )[ ]{ dtRekDRekDtc
k
R ktk∫ −− −+−

ψ ψψ

0 001
1

/ln 11  

( ) ( )( )[ ] }dtRkDekDeRtc tktk∫ +−+ −−−λ

ψ

ψ /ln 001
11  

( )
( )

( ) dtD
ekDekDR

ekRtc
tkk

tk

∫ 







+−

−−
−−

−λ

ψψ

ψ

0
00

0
2

11

1

1 .   (39) 

The average profit per unit time is 
( )λ,,2 TpΠ ( ) ( )λλ += TTpF /,,2 , (40) 

where ( )TpF ,,2 λ  is given by Eq. (40). Consequently, the problem faced by the vendor is 
(P2)  max. ( )λ,,2 TpΠ  (41a) 

       subject to ( )( )[ ]RkDRekD
k

k /ln1
00

1

1 −+= λψ , (41b) 

( )[ ]ReDDR T /ln1 σ

σ
β +−= , (41c) 

λψ <<0 , (41d) 
                T<< β0 , (41e) 
                pv ≤ .        (41f) 
3.3 A comparison between two models 

 
Now, we compare the above two models, and identify which model has more profit than the 

other under what conditions. From the above results, we can obtain the following theorems. 
 

Theorem 1.  
(a) If all time-varying parameters are constant (i.e., ( ) vtv = , ( ) hth = , ( ) 11 ctc = , and ( ) 22 ctc = ), 

then ( ) ( )λλ ,,,, 21 TpTp Π=Π   
(b) If the holding cost ( )th  is non-decreasing with t , and the other parameters are constant (i.e., 

( ) vtv = , ( ) 11 ctc = , and ( ) 22 ctc = ), then ( ) ≥Π λ,,1 Tp ( )λ,,2 TpΠ . On the other hand, if the 
holding cost ( )th  is non-increasing with t , and the other parameters are constant, then 

( ) ( )λλ ,,,, 21 TpTp Π≤Π . 
(c) If the shortage cost ( )tc1  is non-increasing with t , and the other parameters are constant (i.e., 

( ) vtv = , ( ) hth =  and ( ) 22 ctc = ), then ( ) ≥Π λ,,1 Tp ( )λ,,2 TpΠ . Conversely, if the shortage 



 

cost ( )tc1  is non-decreasing with t , and the other parameters are constant, then 
( ) ( )λλ ,,,, 21 TpTp Π≤Π . 

(d) If the cost of lost goodwill ( )tc2  is non-increasing with t , and the other parameters are 
constant (i.e., ( ) hth = , ( ) vtv =  and ( ) 11 ctc = ), then ( ) ( )λλ ,,,, 21 TpTp Π≥Π . In contrast, if 
the cost of lost goodwill ( )tc2  is non-decreasing with t , and the other parameters are 
constants, then ( ) ( )λλ ,,,, 21 TpTp Π≤Π . 

Proof: It is trivial to show this theorem. 
 
Theorem 2. 
If the unit cost ( )tv  is time-varying, and the other parameters are constant (i.e., ( ) hth = , 
( ) 11 ctc = , and ( ) 22 ctc = ), then we obtain 

( ) ( )λλ ,,,, 21 TpTp Π≥Π  if and only if, ( ) ( )[ ] ( ) ( )[ ] 0
0

≤−+++− ∫∫ dttvTtvdttvtv
λ

ψ

β
λ . (42)      

Proof: It is trivial to show this theorem. 
 

In order to find the optimal values of p , λ  and T , we have to solve the complex, nonlinear 
equations ( ) ,0/,, =∂∏∂ pTpi λ ( ) ,0/,, =∂∏∂ λλ Tpi  ( ) ,0/,, =∂∏∂ TTpi λ and some additional 
complementary conditions, for =i 1, and 2. Although it is difficult to solve the problem analytically, 
the reader can follow the solution procedure proposed by Abad (2003) with proper software to 
solve the problem numerically.   
 
4 Numerical examples 

In this section, we use software MATHEMATICA version 4.1 to obtain the optimal solutions for 
both (P1) and (P2).  
 
Example 1. To understand the effect of adding the shortage cost ( )tc1 , and the cost of lost goodwill 
( )tc2  to the average profit per unit time, we adopt the same example in Abad (2003). Therefore, we 

suppose ( ) =pD 1600000 3−p , =R 1000 units/week, v(t) = $10/unit, h(t) = $1/unit/week, 
=K $1000/production run, =σ 0.3, =0k 0.9, and =1k  0.6,  However, we add ( ) =tc1  $8 /unit, 

and ( ) =tc2  $5/unit. We obtain the computational results as shown in Table 1. Comparing with the 
computational results in Abad (2003), we know that the optimal price would be lower while the 
average profit per unit would be higher if we do not include the shortage cost and the cost of lost 
goodwill into the model. Table 1 also verifies Part (a) of Theorem 1. 
 Table 1. The optimal values for Example 1. 

Model(i) ψ  λ  β  λβ + T  ψ+T λ+T p  iΠ  

1 0.1650 0.2669 0.6602 0.9271 1.3329 1.4979 1.5998 15.3142 1039.02 

2 0.1650 0.2669 0.6602 0.9271 1.3329 1.4979 1.5998 15.3142 1039.02  

 

 
Example 2. To see the effect of the unit cost on the average profit per unit time, let us assume that 
the unit cost is as below, and the rest parameters are the same as in Example 1.  



 

( )
( )

( )







+≤≤++

+≤≤
≤≤+

=
−−

−−

λλβ

λββ
β

λβ

β

Tte
t
te

tv
t

t

,9$
,10$
0,9$

   /unit.             (43) 

Consequently, we know from Theorem 2 that Model 2 is more profitable than Model 1, which is 
shown in Table 2. 
 
 Table 2. The optimal values for Example 2. 

Model(i) ψ  λ  β  λβ + T  ψ+T λ+T p  iΠ  

1 0.1833 0.2560 0.4396 0.6957 1.1757 1.359 1.4317 16.8683 876.19 

2 0.2597 0.3700 0.5008 0.8708 1.2469 1.5066 1.6169 16.4814 999.11  

 

 
5 Conclusions 

 
  If we omit the shortage cost and the cost of lost goodwill into the production-inventory model 
with many lost sales, then we alter the results, and overestimate the profits. In this paper, we not 
only extend Abad’s (2003) model by adding the shortage cost and the cost of lost goodwill into his 
model, but also compare his modeling approach (as well as in Balkhi and Benkherouf (1996)) and 
Goyal and Giri’s (2003) approach. We analytically prove that both models provide the same 
average profit per unit time if all parameters are constant. Otherwise, under certain conditions 
Abad’s model is more profitable than Goyal and Giri’s approach, and vice versa. In short, there is 
no dominant modeling approach. 
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