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ABSTRACT 

The long-term thermally elastic responses of a saturated elastic stratum containing a deep point/line 
heat source of constant strength are studied in this paper.  To simulate the stratified earth medium, 
the soil mass is modeled as anisotropic with properties differing in the horizontal and vertical 
directions.  On the basis of the fundamental solutions caused by a deep point heat source, analytic 
solutions of the ground deformation, pore water pressure distribution, effective stresses and 
temperature changes of the porous medium due to the deep line heat source are presented using the 
appropriate line integral techniques. 
Keywords: Point heat source, Line heat source, Fundamental solution, Closed-form solution 
 
INTRODUCTION 
The thermally mechanical responses of the fluid saturated porous medium due to a deep buried 
point/line heat source of constant strength are studied in this paper.  The heat source such as a 
canister of radioactive waste will cause a temperature rise in the soil and thus the solid skeleton and 
pore fluid will expand.  This leads to an increase in pore water pressure and a reduction in 
effective stress because the volume increase of the pore water is greater than that of the voids of the 
solid matrix.  Therefore, thermal failure of soil may occur as a result of the loss of shear resistance 
due to the decrease in effective stress. 
     Governing equations for a fluid-saturated poroelastic solid in an isothermal quasi-static state 
have been developed by Biot (1941, 1955).  Booker and Savvidou (1984, 1985, 1989) have 
derived an extended Biot theory including the thermal effects and presented solutions of 



thermo-consolidation around the spherical and point heat sources.  In their solutions, the flow or 
thermal properties are considered as isotropic or cross-anisotropic whereas the elastic properties of 
the soil are treated as isotropic.  Moreover, the stratum is modeled as a full space to simulate the 
deep buried heat sources. 
     Soils in general are deposited through a process of sedimentation over a long period of time. 
Under the accumulative overburden pressure, soils display significant anisotropy on mechanical, 
flow and thermal properties.  In order to describe the anisotropic nature of soils, it may be modeled 
as cross-anisotropic porous medium whose properties are symmetric about the vertical axis.  If the 
heat source buried at a great depth, the effects of the half space boundary on thermally response can 
be neglected. 
     In this paper, the soil mass is modeled as a cross-anisotropic saturated elastic full space.  Not 
only the permeability and conductivity but also the elastic properties are assumed to be 
cross-anisotropic for the soil mass.  Long-term thermally elastic mechanical behaviors of the 
stratum are studied.  On the basis of the derived deep point heat source induced fundamental 
solutions, closed-form solutions of the long-term ground deformation, effective stresses, 
temperature changes of the soil mass and excess pore water pressure due to a deep line heat source 
are obtained using the appropriate line integral techniques.  Results are then reduced to an 
isotropic case to provide a better understanding of the thermally induced mechanical responses of 
the stratum. 
 
POINT HEAT SOURCE INDUCED FUNDAMENTAL SOLUTIONS 
Basic Equations 
Figure 1 shows a point heat source buried deep in a cross-anisotropic porous stratum.  The soil 
mass is considered as a homogeneous cross-anisotropic porous medium with a vertical axis of 
symmetry.  The constitutive behavior of the elastic soil skeleton for linear axially symmetric 
deformation in the cylindrical coordinates (r, θ, z) can be expressed by 
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where rrσ ′ , θθσ ′ , etc., are the effective stress components; ϑ  is the temperature change of the soil 
mass; ru , zu  are the displacements in the radial and axial directions, respectively; A, C, F, L, N 
are the material constants of the cross-anisotropic medium defined by Love (1944); 



( ) szsrr FNA ααβ +−= 2  and szsrz CF ααβ += 2  are the thermal expansion factors in the 
horizontal and vertical directions, respectively.  The linear thermal expansion coefficients of the 
stratum in the horizontal and vertical directions, respectively, are denoted by srα  and szα .  The 
shear stress components θσ r′  and zθσ ′  vanish by locating the vertical z-axis through the point heat 
source.  For an isotropic medium, GCA 2+== λ ; λ=F ; GNL == ; ( ) szr G αλββ 32 +== ; 
where λ, G, sα  are the Lame constant, shear modulus and linear thermal expansion coefficient of 
the isotropic porous matrix, respectively. 
     According to Terzaghi’s effective stress concept, the total stress ijτ  of a saturated porous 
material is given by ijijij pδστ +′= , in which the excess pore fluid pressure p  is positive for 
compression, and ijδ  is the Kronecker delta.  The total stress must satisfy the equilibrium 
relations 0, =+ ijij fτ .  By using equations (1a)-(1d) and Terzaghi’s effective stress concept, the 
equilibrium equations for axially symmetric problem without body forces if  can be expressed in 
terms of displacements iu , temperature change of the soil mass ϑ , and excess pore fluid pressure 
p as follows: 
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     A third and fourth relations between ru , zu , ϑ , and p  can be obtained from the 
conservations of mass and energy: 

( )[ ] 0=+−⋅∇ fsf qn vv ,                                                          (3) 

0=+⋅∇− hqh ,                                                                (4) 

where n  is the porosity of the porous medium; fv  and sv  are the velocities of fluid and solid, 
respectively; h  is the heat flux vector; fq  and hq  are the internal or external fluid and heat 
sources, respectively. 
     Assuming that the anisotropic flow of pore water and thermal are governed by Darcy’s law 
and Fourier’s law, respectively, we have 
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where rk  and zk  denote the permeabilities in the horizontal and vertical directions, respectively; 

fγ  is the unit weight of pore fluid; trλ  and tzλ  are the thermal conductivities in the horizontal 
and vertical directions, respectively. 
 Let us consider a point heat source of constant strength Q  located at point ( )0,0  and neglect 
the action of fluid source.  Substituting (5) and (6) into (3) and (4), respectively, yield 
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in which ( )xδ  is the Dirac delta function. 
 Eqs. (2a), (2b), (7) and (8) constitute the basic governing equations of the steady state axially 
symmetric thermoelastic responses of a saturated cross-anisotropic porous medium. 
 
Boundary Conditions 
Since the point heat source is buried at a great depth, the effect of the point heat source must vanish 
at the infinity ( ±∞→z ) derived the boundary conditions: 
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Analytic Fundamental Solutions 
With the help of the tools of Mathematica, the closed-form analytic fundamental solutions of the 
long-term thermally elastic response of ground deformations, effective stresses, temperature change 
of the soil mass, and excess pore water pressure due to a point heat source buried deep in a 
cross-anisotropic elastic full space can be obtained by using Hankel transform as follows: 
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in which the upper and lower signs of ( )zrrz ,σ ′  are for the conditions of 0≥z  and 0<z , 

respectively; zRR iii µ+=* , ( )3,2,1=i ; 222 zrR ii µ+= , ( )3,2,1=i ; and 
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1µ , 2µ  must satisfy the characteristic equation 

( )[ ] 02 24 =++−− ALLFFACCL µµ ,                                              (12) 

and tztr λλµ =3 .  From the solutions presented, the excess pore fluid pressure disappears under 
the steady state.  With the help of the tools of Mathematica, fundamental solutions of an isotropic 
soil mass can be obtained from (10a)-(10h) by taking the limit 1321 === µµµ  and using 
L’Hospital’s rule.  Carrying out the procedure, we obtain 

( )
( ) R

rQu
t

s
r νπλ

να
−
+

=
18
1 ,                                                            (13a) 

( )
( ) R

zQu
t

s
z νπλ

να
−
+

=
18
1 ,                                                            (13b) 

0=p ,                                                                      (13c) 

R
Q

t

1
4πλ

ϑ = ,                                                                 (13d) 

( )
( ) 








+

−
+

−=′ 3

21
14
1

R
r

R
QG

t

s
rr νπλ

νασ ,                                                  (13e) 

( )
( ) R

QG

t

s 1
14
1
νπλ
νασθθ −

+
−=′ ,                                                         (13f) 

( )
( ) 








+

−
+

−=′ 3

21
14
1

R
z

R
QG

t

s
zz νπλ

νασ ,                                                  (13g) 



( )
( ) 314

1
R
rzQG

t

s
rz νπλ

νασ
−
+

−=′ .                                                        (13h) 

 
LINE HEAT SOURCE INDUCED THERMOELASTIC BEHAVIORS 
The deep horizontal line heat source, shown in Figure 2, may induce thermally elastic behaviors can 
be derived from the deep point heat source induced fundamental solutions.  In the Cartesian 
coordinates system  (x, y, z), the fundamental solutions in (10a)-(10h) or (13a)-(13h) can be 
expressed as 
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( ) ( ) θσθθσσσ θθθ 2cossincos,, rrrxy zyx ′+′−′=′ ,                                     (14i) 
( ) ( ) rzyzxz zyxzyx σσσ ′=′=′ ,,,, ,                                                   (14j) 

in which 0=θu  and 0=′θσ r .  The symbol r  in (10a)-(10h) or (13a)-(13h) denotes the 
horizontal component of the distance between the point heat source and any location of the stratum.  
Figure 3 presents the horizontal component of the distance from an elementary heat source at point 
(0, s, 0).  Consider the elementary length ds of the line heat source, the thermal strength of the 
length is equal to qds, and this can be treated as a point heat source.  To determine the thermally 
mechanical response due to the elementary heat source at a point (x, y, z), we can substitute qds for 
Q and ( )22 syxr −+=  for 22 yxr += .  With the help of the tools of Mathematica, the 
thermo-mechanical behavior at a point (x, y, z) in the xz-plane due to the entire line heating source 
may now be obtained by integration with respect to the symbol s from −∞ to ∞ and can be given by 
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where ( )10,,2,1 L=ihi  can be expressed as following: 

( ) 







+

−
++−= − z

xz
xzzzxxah 1222

1

11
1

22
1

2
11

2tanln µ
µ

µµµ ,                                (16a) 

( ) 







+

−
++−= − z

xz
xzzzxxah 2222

2

21
2

22
2

2
22

2tanln µ
µ

µµµ ,                                (16b) 

( ) 







+

−
++−= − z

xz
xzzzxxah 3222

3

31
3

22
3

2
33

2tanln µ
µ

µ
µµ ,                                (16c) 

( )







++

−
−= − 22

1
2

122
1

2
11

14 ln2tan zxz
zx

xzxbh µµ
µ

µ ,                                      (16d) 

( )







++

−
−= − 22

2
2

222
2

2
21

25 ln2tan zxz
zx

xzxbh µµ
µ

µ ,                                      (16e) 

( )







++

−
−= − 22

3
2

322
3

2
31

36 ln2tan zxz
zx

xzxbh µµ
µ

µ ,                                      (16f) 

( )22
3

2

3
7 ln1 zxh µ

µ
+−= ,                                                        (16g) 

( ) ( ) ( )22
3

2
3

22
2

2
2

22
1

2
18 lnlnln zxazxazxah µµµ +−+−+−= ,                            (16h) 

( ) ( ) ( )22
3

2
33

22
2

2
22

22
1

2
119 lnlnln zxbzxbzxbh µµµµµµ +−+−+−= ,                        (16i) 

222
3

31
33222

2

21
22222

1

11
1110

2
tan

2
tan

2
tan

xz
zx

a
xz

xz
a

xz
xz

ah
−

+
−

+
−

= −−−

µ
µ

µ
µ

µ
µ

µ
µ

µ  

( ) ( ) ( )22
3

23322
2

22222
1

211 lnlnln zx
x

zbzx
x

zbzx
x

zb µ
µ

µµµµ
++++++ .                        (16j) 

 Proceeding in a similar manner, we can also determine the solutions of an isotropic soil mass 
due to the deep horizontal line heat source as below: 
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in which the displacement component yu  and shear stress components xyσ′ , yzσ′  vanish by 
locating the y-axis through the deep line heat source. 
 
CONCLUSIONS 
With the help of the tools of Mathematica, closed-form solutions of the long-term thermoelastic 
responses due to a constant point/line heat source buried in a cross-anisotropic elastic full space 
have been obtained using suitable integral techniques.  The results have been checked by reducing 
the solutions of cross-anisotropic thermally elastic behaviors into the isotropic case.  All field 
quantities are functions of the distance from the heat source and are proportional to the linear 
thermal expansion coefficient, but inversely proportional to the thermal conductivity.  For the 
isotropic cases, the shear modulus does not have influence on displacements and temperature 
change of the soils. 
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SYMBOLS 

1a , 2a , 3a  parameters defined in equations (11a)-(11c) 
A, C, F, L, N elastic constants of the cross-anisotropic porous medium defined by Love(1944) 

1b , 2b , 3b  parameters defined in equations (11d)-(11f) 
rb , θb , zb  body forces 

G  shear modulus of the isotropic porous medium 
h  heat flux vector 

101 ,, hh L  functions defined in equations (15a)-(15j) 

zr ii ,  unit vector parallel to the radial/vertical direction 

zr kk ,  Horizontal/vertical permeability 
n porosity of the porous medium 
p excess pore fluid pressure (positive for compression) 
q strength of the line heat source 

hf qq ,  internal/external fluid and heat sources 
Q strength of the point heat source 

(r, θ, z) cylindrical coordinates system 

R parameter defined as 22 zrR +=  

321 ,, RRR  parameters defined as 222 zrR ii µ+= , ( )3,2,1=i  
*
3

*
2

*
1 ,, RRR  parameters defined as zRR iii µ+=* , ( )3,2,1=i  

zr uuu ,, θ  radial/tangential/axial displacement of the porous medium 
zyx uuu ,,  displacements of the porous medium expressed in Cartesian coordinates system 

vf, vs velocity of fluid/solid 

(x, y, z) Cartesian coordinates system 

sα  linear thermal expansion coefficient for solid skeleton of the isotropic porous 
medium 

szsr αα ,  linear thermal expansion coefficient of the skeletal material in the 
horizontal/vertical direction 

rβ , zβ  thermal expansion factor in the horizontal/vertical direction 



γf unit weight of pore fluid 
( )xδ  Dirac delta function 

δij
 

Kronecker delta 
ϑ  temperature change of the porous medium 
λ  Lame constant of the isotropic porous medium 

tλ  thermal conductivity of the isotropic porous medium 

tztr λλ ,  horizontal/vertical thermal conductivity of the cross-anisotropic porous medium 

21, µµ  characteristic roots defined in equation (12) 
3µ  characteristic root, tztr λλµ =3  

ν  Poisson’s ratio for the isotropic porous medium 
ijσ ′  effective stress components of the porous medium 

ijτ  total stress components of the porous medium 
 

 
 

Figure 1. Point heating problem 
 
 

 
 

Figure 2. Horizontal line heating problem 
 

 
 

Figure 3. The horizontal component of the 
distance from an elementary heat source at 

point (0, s, 0) 




