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ABSTRACT

The long-term thermally elastic responses of a saturated elastic stratum containing a deep point/line
heat source of constant strength are studied in this paper. To simulate the stratified earth medium,
the soil mass is modeled as anisotropic with properties differing in the horizontal and vertical
directions. On the basis of the fundamental solutions caused by a deep point heat source, analytic
solutions of the ground deformation, pore water pressure distribution, effective stresses and
temperature changes of the porous medium due to the deep line heat source are presented using the
appropriate line integral techniques.
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INTRODUCTION
The thermally mechanical responses of the fluid saturated porous medium due to a deep buried
point/line heat source of constant strength are studied in this paper. The heat source such as a
canister of radioactive waste will cause a temperature rise in the soil and thus the solid skeleton and
pore fluid will expand. This leads to an increase in pore water pressure and a reduction in
effective stress because the volume increase of the pore water is greater than that of the voids of the
solid matrix. Therefore, thermal failure of soil may occur as a result of the loss of shear resistance
due to the decrease in effective stress.

Governing equations for a fluid-saturated poroelastic solid in an isothermal quasi-static state
have been developed by Biot (1941, 1955). Booker and Savvidou (1984, 1985, 1989) have

derived an extended Biot theory including the thermal effects and presented solutions of



thermo-consolidation around the spherical and point heat sources. In their solutions, the flow or
thermal properties are considered as isotropic or cross-anisotropic whereas the elastic properties of
the soil are treated as isotropic. Moreover, the stratum is modeled as a full space to simulate the
deep buried heat sources.

Soils in general are deposited through a process of sedimentation over a long period of time.
Under the accumulative overburden pressure, soils display significant anisotropy on mechanical,
flow and thermal properties. In order to describe the anisotropic nature of soils, it may be modeled
as cross-anisotropic porous medium whose properties are symmetric about the vertical axis. If the
heat source buried at a great depth, the effects of the half space boundary on thermally response can
be neglected.

In this paper, the soil mass is modeled as a cross-anisotropic saturated elastic full space. Not
only the permeability and conductivity but also the elastic properties are assumed to be
cross-anisotropic for the soil mass. Long-term thermally elastic mechanical behaviors of the
stratum are studied. On the basis of the derived deep point heat source induced fundamental
solutions, closed-form solutions of the long-term ground deformation, effective stresses,
temperature changes of the soil mass and excess pore water pressure due to a deep line heat source
are obtained using the appropriate line integral techniques. Results are then reduced to an
isotropic case to provide a better understanding of the thermally induced mechanical responses of
the stratum.

POINT HEAT SOURCE INDUCED FUNDAMENTAL SOLUTIONS

Basic Equations

Figure 1 shows a point heat source buried deep in a cross-anisotropic porous stratum. The soil
mass is considered as a homogeneous cross-anisotropic porous medium with a vertical axis of
symmetry. The constitutive behavior of the elastic soil skeleton for linear axially symmetric

deformation in the cylindrical coordinates (7, &, z) can be expressed by
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where o/, o,,, etc., are the effective stress components; ¢ is the temperature change of the soil
mass; u,, u_, are the displacements in the radial and axial directions, respectively; 4, C, F, L, N

are the material constants of the cross-anisotropic medium defined by Love (1944);



B.=2(A-N)a, +Fa, and pB.=2Fa,+Ca, are the thermal expansion factors in the

horizontal and vertical directions, respectively. The linear thermal expansion coefficients of the
stratum 1in the horizontal and vertical directions, respectively, are denoted by o, and « _. The

shear stress components o/, and o, vanish by locating the vertical z-axis through the point heat
source. For an isotropic medium, 4=C=14+2G; F=4; L=N=G; B =p.= (2G + 31)0@ ;
where 4, G, «, are the Lame constant, shear modulus and linear thermal expansion coefficient of

the isotropic porous matrix, respectively.

According to Terzaghi’s effective stress concept, the total stress 7, of a saturated porous
material is given by 7, =o; + pJd,, in which the excess pore fluid pressure p is positive for
compression, and o, is the Kronecker delta. The total stress must satisfy the equilibrium
relations 7, + f,=0. By using equations (la)-(1d) and Terzaghi’s effective stress concept, the
equilibrium equations for axially symmetric problem without body forces f, can be expressed in

1

terms of displacements u,, temperature change of the soil mass &, and excess pore fluid pressure
p as follows:
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A third and fourth relations between u., u_, ¢, and p can be obtained from the

conservations of mass and energy:
V-[n(vf—vs)] +q,=0, 3)
_V.h+qh:0, (4)

z

where n is the porosity of the porous medium; v, and v, are the velocities of fluid and solid,
respectively; h is the heat flux vector; ¢, and g, are the internal or external fluid and heat

sources, respectively.
Assuming that the anisotropic flow of pore water and thermal are governed by Darcy’s law

and Fourier’s law, respectively, we have
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where k&, and k&, denote the permeabilities in the horizontal and vertical directions, respectively;
7, 1s the unit weight of pore fluid; 4, and A, are the thermal conductivities in the horizontal
and vertical directions, respectively.

Let us consider a point heat source of constant strength (O located at point (0,0) and neglect
the action of fluid source. Substituting (5) and (6) into (3) and (4), respectively, yield
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in which &(x) is the Dirac delta function.
Egs. (2a), (2b), (7) and (8) constitute the basic governing equations of the steady state axially

symmetric thermoelastic responses of a saturated cross-anisotropic porous medium.

Boundary Conditions
Since the point heat source is buried at a great depth, the effect of the point heat source must vanish
at the infinity ( z — 400 ) derived the boundary conditions:

Lirzzo{u, (r,z)u_(r,z), p(r,2), 9(r, z)}={0,0,0,0}. )

Analytic Fundamental Solutions

With the help of the tools of Mathematica, the closed-form analytic fundamental solutions of the
long-term thermally elastic response of ground deformations, effective stresses, temperature change
of the soil mass, and excess pore water pressure due to a point heat source buried deep in a
cross-anisotropic elastic full space can be obtained by using Hankel transform as follows:
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in which the upper and lower signs of a;Z(r,z) are for the conditions of z>0 and z<O0,
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4, , p, must satisfy the characteristic equation

CLu* ~[AC—-F(F+2L)|u* + AL =0, (12)

and g, =44, /4. . From the solutions presented, the excess pore fluid pressure disappears under

the steady state. With the help of the tools of Mathematica, fundamental solutions of an isotropic
soil mass can be obtained from (10a)-(10h) by taking the limit 4 =, = 4, =1 and using

L’Hospital’s rule. Carrying out the procedure, we obtain
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LINE HEAT SOURCE INDUCED THERMOELASTIC BEHAVIORS

The deep horizontal line heat source, shown in Figure 2, may induce thermally elastic behaviors can
be derived from the deep point heat source induced fundamental solutions. In the Cartesian
coordinates system (x, y, z), the fundamental solutions in (10a)-(10h) or (13a)-(13h) can be

expressed as
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in which u,=0 and o/,=0. The symbol » in (10a)-(10h) or (13a)-(13h) denotes the

horizontal component of the distance between the point heat source and any location of the stratum.
Figure 3 presents the horizontal component of the distance from an elementary heat source at point
(0, s, 0). Consider the elementary length ds of the line heat source, the thermal strength of the
length is equal to gds, and this can be treated as a point heat source. To determine the thermally
mechanical response due to the elementary heat source at a point (x, y, z), we can substitute gds for

Q and r=+/x"+(y—s) for r=4x>+y>. With the help of the tools of Mathematica, the

thermo-mechanical behavior at a point (x, y, z) in the xz-plane due to the entire line heating source
may now be obtained by integration with respect to the symbol s from —co to oo and can be given by
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where &, (i =1,2,-, 10) can be expressed as following:
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Proceeding in a similar manner, we can also determine the solutions of an isotropic soil mass
due to the deep horizontal line heat source as below:
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in which the displacement component u, and shear stress components o, , o, vanish by

locating the y-axis through the deep line heat source.

CONCLUSIONS

With the help of the tools of Mathematica, closed-form solutions of the long-term thermoelastic
responses due to a constant point/line heat source buried in a cross-anisotropic elastic full space
have been obtained using suitable integral techniques. The results have been checked by reducing
the solutions of cross-anisotropic thermally elastic behaviors into the isotropic case. All field
quantities are functions of the distance from the heat source and are proportional to the linear
thermal expansion coefficient, but inversely proportional to the thermal conductivity. For the
isotropic cases, the shear modulus does not have influence on displacements and temperature

change of the soils.
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SYMBOLS
a,a,,da;
A CFELN
b,,b, b,
b, .b,,b.

r

parameters defined in equations (11a)-(11c)

elastic constants of the cross-anisotropic porous medium defined by Love(1944)
parameters defined in equations (11d)-(11f)

body forces

shear modulus of the isotropic porous medium

heat flux vector

functions defined in equations (15a)-(15j)

unit vector parallel to the radial/vertical direction
Horizontal/vertical permeability

porosity of the porous medium

excess pore fluid pressure (positive for compression)
strength of the line heat source

internal/external fluid and heat sources

strength of the point heat source

cylindrical coordinates system
parameter defined as R =+/r* + z°

parameters defined as R, = r* + ’z%, (i=12,3)

parameters defined as R =R, + ,ui|z , ((=1,2,3)

radial/tangential/axial displacement of the porous medium

displacements of the porous medium expressed in Cartesian coordinates system
velocity of fluid/solid

Cartesian coordinates system

linear thermal expansion coefficient for solid skeleton of the isotropic porous
medium

linear thermal expansion coefficient of the skeletal material in the
horizontal/vertical direction

thermal expansion factor in the horizontal/vertical direction



unit weight of pore fluid

5(x) Dirac delta function
0jj Kronecker delta
9

temperature change of the porous medium

A Lame constant of the isotropic porous medium
A, thermal conductivity of the isotropic porous medium
As Ao horizontal/vertical thermal conductivity of the cross-anisotropic porous medium
My 1y characteristic roots defined in equation (12)
Hy characteristic root, , =/, /4,
4 Poisson’s ratio for the isotropic porous medium
i effective stress components of the porous medium
r

total stress components of the porous medium
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Figure 1. Point heating problem
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Figure 2. Horizontal line heating problem
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Figure 3. The horizontal component of the
distance from an elementary heat source at
point (0, s, 0)





