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Abstract 

The bandwidth of a graph is the minimum of the maximum difference between labels of adjacent 
vertices in the graph.  If we label the edges instead of the vertices of the graph, we can define the 
edge-bandwidth accordingly.  People start working on the edge-bandwidth of graphs since 1999[7].  
The edge-bandwidth of a graph is the minimum of the maximum difference between labels of 
adjacent edges in the graph.  Since the edge-bandwidth of a graph G is equal to the bandwidth of 
the line graph of G, establishing the edge-bandwidth of a graph is equivalent to verifying the 
bandwidth of one or more graphs.  The decision problem corresponding to find the bandwidth of 
an arbitrary graph is NP-complete[10].  It is NP-complete even for trees of maximum degree 3[6].  
Although the edge-bandwidth problem is included in the bandwidth problem, the computing 
complexity of the edge-bandwidth is unknown up to now.  The application about the 
edge-bandwidth is in the area of network circuit on-line routing and admission control problem.  
The edge-bandwidth problem has been solved for only a few classes of graphs such as complete 
graph, complete bipartite graph with equal partites, caterpillar and theta graph[5].  This paper 
establishes the edge-bandwidth of the tensor product of a path with a path and a path with a cycle.  
Optimal edge-numberings to achieve each of these edge-bandwidths are provided. 
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1. Introduction and Terminology 

For a graph G, V(G) denotes the set of vertices of G and E(G) denotes the set of edges of G. 
Bandwidth on graphs, and the analogous problem of bandwidth on matrices, has been studied since 
early 1950s (see [2]).  The bandwidth of a graph is the minimum of the maximum difference 
between labels of adjacent vertices in the graph.  If we label the edges instead of the vertices of the 
graph, we can define the edge-bandwidth accordingly. 



Let G = (V, E) be a graph on m edges, an injection function g: E  {1,2,...,m} is called a 

proper edge-numbering of G.  The edge-bandwidth )(GBg′ of a proper edge-numbering g of G is 

the number { } vertexcommona  ithincident w are  and :)()(min)( 2121 eeegegGBg −=′ , and the 

edge-bandwidth )(GBg′ of G is the number  

{ }  of numbering-edgeproper a  is  :)(min)( GgGBGB g′=′ . 

Follow the definition [1], we have the line graph L(G) of a graph G be the graph whose 
vertices can be put in one-to-one correspondence with the edges of G in such a way that two 
vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent.  Then 

)(GB′  is equal to the bandwidth of the line graph L(G) of G, that is, )).(()( GLBGBg =′   

A graph H is called a line graph if there exists a graph G such that H = L(G).  Since there may 
be more than one graph, say iG , such that )( iGLH =  for i ≥ 1, hence establishing the 
edge-bandwidth of a graph is equivalent to verify the bandwidth of one or more graphs. 

The decision problem corresponding to find the bandwidth of an arbitrary graph was shown to 
be NP-complete in [10].  In [6] it was shown that the problem is NP-complete even for trees of 
maximum degree 3.  Although the bandwidth and the edge-bandwidth have certain relation, the 
computing complexity of the edge-bandwidth is unknown up to now. 

The application about the edge-bandwidth is in the area of network circuit on-line routing and 
admission control problem.  In [7] they proved that )()( GBGB ′≤  for any graph G, and gave 
bounds on edge-bandwidth by adding, subdividing, or contracting edges in a graph.  They also 
gave the edge-bandwidth of nnn KK ,, , caterpillars, and some theta graphs.  In [5] they discussed 
the edge-bandwidth of theta graphs.  Here we turn our attention to the edge bandwidth of tensor 
product of paths and cycles. 

2. Paths with Paths 

Proposition 1 (from [3,4])  If G is a connected graph and D(G) is the diameter of G, then 

( ) 1
( )

( )
V G

B G
D G

 −
≥  
 

. 

Proposition 2 (from [11])  Let 1 2( )pG G T G=  for connected graphs 1G  and 2G .  Then G is 

connected if and only if 1G  or 2G  has an odd cycle. 



Proposition 3 (from [9])  Let 1 2( )pG G T G=  for connected graphs 1G  and 2G .  Then G 

consists of exactly two components if and only if 1G  and 2G  are both bipartite. 

Theorem 1  Let ( )m p nG P T P=  with nm ≤≤2 .  Then 
1     2,

( )
    3.

if m
B G

m if m
=′ =  ≥

 

Proof:  When 2=m , G becomes two disjoint paths, so ( ) 1B G′ = . 

 Now we consider the case where 3≥m .  Then, by Proposition 3, G must consist of exactly 
two components.  Let G1 be the component containing vertex 11v , G2 be the component 
containing vertex 12v ; and let 1( )L G  be the line graph of G1, 2( )L G  be the line graph of G2.  

Then { }1 2( ) max ( ( )), ( ( ))B G B L G B L G′ = .  Since 1 2( ( )) ( ( )) ( 1)( 1)V L G V L G m n= = − −  and 

1 2( ( )) ( ( )) 2D L G D L G n= = − , by Proposition 1, 1 2
( 1)( 1) 1( ( )) ( ( ))

2
m n

B L G B L G
n

− − − = ≥  − 
 m=  

for 3≥m .  Consider f, a simple column by column sequential numbering of 1( )L G  and 2( )L G .  

Then 1 2( ( )) ( ( ))f fB L G B L G m= = .  Therefore we have ( )B G m′ = .  Figure 1 and Figure 2 show 

the proper numbering of 1( )L G  and 2( )L G  for both m, n are odd.  Figure 3 shows the proper 

numbering of ( )1 1 2( ) ( ) ( )L G L G L G≡  for other cases.  That completes the proof.  

 

Figure 1: Proper numbering of L(G1) of 5 7( )pP T P  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24



 

Figure 2 : Proper numbering of L(G2) of 5 7( )pP T P  

 

Figure 3 : Proper numbering of L(G1) of 5 6( )pP T P  

3. Paths with Cycles 

For )(GVS ⊆ , let S  denote ( )V G S−  and S∂  denote the set of vertices in S adjacent to 

those in S .  For a proper numbering f, let { }, ( ) : ( )f tS v V G f v t= ∈ ≤ . 

Proposition 4 (from [8])  Let f be an optimal proper numbering of a connected graph G with n 

vertices.  Then for {1,2,..., }t n∈ , , ( )f tS B G∂ ≤ . 

Proposition 5 (from [8])  Let f be an optimal proper numbering of a connected graph G with n 

vertices.  Then for {1,2,..., }t n∈ , , ( )f tS B G∂ ≤ . 
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Theorem 2  Let ( )m p nG P T C=  with 2,  4m n≥ ≥  where n is even.  Then 

 2                               2,
 4                               3  4,

( )
 5                               3  6,
 min{2 1, 2}    4.

if m
if m and n

B G
if m and n

m n if m

=
 = =′ =  = ≥
 − + ≥

 

Proof:  Let iR  be row i of G, { }( , ) :1  and ( , )  iR i j j n i j G= ≤ ≤ ∈ , jC  be column j of G, 

{ }( , ) :1  and ( , )  jC i j i m i j G= ≤ ≤ ∈ .  By Proposition 3 we know G has exactly two components.  

Let 1G  be the component of G containing (1,1) , 2G  be the component of G containing (1,2) .  
We know that 1 2G G≡ .  Let 1( )L G  be the line graph of 1G , then 1( ) ( ( ))B G B L G′ = . 

 For 2m = , 1G  is a cycle, so ( ) ( ) 2nB G B C′ = = .  For 3m =  and 4n = ,  define iR′  as 

row i of 1( )L G  to be { }1( , ) :1   and  ( , ) ( ( ))iR i j j n i j V L G′ = ≤ ≤ ∈ , and define jC′  as column j of 

1( )L G  to be {( , ) :1 1jC i j i m′ = ≤ ≤ −  and }1( , ) ( ( ))i j V L G∈  (Figure 4 shows an example of 

1( )L G  of 4 6( )pP T C ).  Consider a proper numbering 1f  of 1( )L G  as in Figure 5.  Then 

1 1( ( )) 4fB L G = .  Since every vertex in 1( )L G  has degree 4, we have ,1 4fS∂ =  for all proper 

numbering f of 1( )L G .  By Proposition 3.5, we have 1( ( )) 4B L G ≥ .  Thus 

1( ) ( ( )) 4B G B L G′ = = . 



 

Figure 4 : 1( )L G  of 4 6( )pP T C  

 

Figure 5 : Proper numbering of 1( )L G  from 3 4( )pP T C  

 For 3m =  and 6n ≥ , consider proper numbering 2f  that numbers 1( )L G  as follows: 

( )2

 4( 1)                         if  1 2  and  1 ,
2,  

 2( 1) 4( 1)   if  1 2  and  1 .
2 2

n
i j i j

f i j
n n

n i j i j n

 + − ≤ ≤ ≤ ≤= 
 − + − − − ≤ ≤ + ≤ ≤


 

Then 
2 1( ( )) 5fB L G =  (Figure 6 is an example for the proper numbering of 1( )L G  of 3 6( )pP T C ). 
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Figure 6  Proper numbering of 1( )L G  from 3 6( )pP T C  

Since we have either ,7 5fS∂ ≥  or ,7 5fS∂ ≥  for all proper numbering f of 1( )L G , by 

Proposition 3.4 and Proposition 3.5 we have 1( ( )) 5B L G ≥ .  Thus 1( ) ( ( )) 5B G B L G′ = = . 

 For 4m ≥ , consider the following two cases: 

Case 1: Suppose 2 2n m≥ − .  Define proper numbering 1g  of 1( )L G  that numbers 1( )L G  as 
follows: 

( )1

 2( 1)( 1)                                if  1 1  and  1 ,
2,  

 ( -1)( 1) 2( 1)( 1)   if  1 1  and  1 .
2 2

n
i m j i m j

g i j
n n

m n i m j i m j n

 + − − ≤ ≤ − ≤ ≤= 
 − + − − − − ≤ ≤ − + ≤ ≤


 

Then 
1 1( ( )) 2 1gB L G m= −  (Figure 7 is an example for the proper numbering of 1( )L G  of 

4 8( )pP T C ). 
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Figure 7  Proper numbering of 1( )L G  from 4 8( )pP T C  

Since we have either ,3 -2 2 1f mS m∂ ≥ −  or ,3 -2 2 1f mS m∂ ≥ −  for all proper numbering f of 1( )L G , 

by Proposition 4 and Proposition 5 we have 1( ( )) 2 1B L G m≥ − .  Therefore, in case 1, 

1( ) ( ( )) 2 1B G B L G m′ = = − . 

Case 2: Suppose 2 4n m≤ − .  Since we have either , 2 2f nS n+∂ ≥ +  or , 2 2f nS n+∂ ≥ +  for all 

proper numbering f of 1( )L G , by Proposition 4 and Proposition 5, we have 1( ) 2B G n′ ≥ + .  
Define proper numbering 2g  of 1( )L G  as follows: 

2

 ( 1)( 1)   if  1   and  1 1,
( ,  )                          if  1  and  ,

 ( 1)( 1)        if  2   and  .

j i n i m j n
g i j n i j n

i n i n j n

+ − + ≤ ≤ ≤ ≤ −
= = =
 − + ≤ ≤ =

 

Then 
2 1( ( )) 2gB L G n= +  (Figure 8 is an example for the proper numbering of 1( )L G  of 

6 6( )pP T C ).  Therefore, in case 2, 1( ) ( ( )) 2B G B L G n′ = = + . 

Combining case 1 and case 2, we have ( ) 2 1B G m′ = −  for 2 2n m≥ −  and ( ) 2B G n′ = +  for 
2 4n m≤ − .  Therefore, we have ( ) min{2 1, 2}B G m n′ = − + .  
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Figure 8  Proper numbering of 1( )L G  from 6 6( )pP T C  

Theorem 3  Let ( )m p nG P T C=  with 2,  3m n≥ ≥  and n is odd.  Then 

{ }
2                                 2,

( )
min 2 1,  2 2     3.

if m
B G

m n if m

=′ =  − + ≥
 

Proof: Since G has odd cycle, by Proposition 2, we know that G contains only one connected 
component.  When 2m = , G becomes a cycle with 2n vertices, so ( ) 2B G′ = . 

 Assume that 3m ≥ .  Let 1G  be the component of 2( )m p nP T C  that contains vertex (1,1) .  

We know that ( )m p nG P T C=  is isomorphic to 1G .  Therefore, by Theorem 2, we have 

{ } { }1( ) min 2 1,  (2 ) 2 ( ) 2 1,  2 2B G m n B G m n′ ′= − + ⇒ = − + .  
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4. Conclusions 

 The edge-bandwidth problem is a restricted version of the bandwidth problem.  The 
edge-bandwidth of a graph G is equal to the bandwidth of the line graph of G.  Although the 
bandwidth and the edge-bandwidth are related, the computing complexity of the edge-bandwidth is 
unknown up to now.  Although the edge-bandwidth problem of graphs has been proposed for over 
ten years, but only very few classes of graphs that have been studied.  This paper establishes the 
edge-bandwidth of the tensor product of a path with a path, and the edge-bandwidth of the tensor 
product of a path with a cycle for which bandwidth problem has been solved [8].  We get the lower 
bound of the edge-bandwidth for the tensor product of a path with a path, and the tensor product of 
a path with a cycle by using some known theorems for bandwidth of graphs then giving algorithms 
to find the exact edge-bandwidth for the corresponding graphs.   
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